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Abstract. As video is witnessing a rapid growth in mobile networks, it is
crucial for network service operators to understand if and how Quality of Ser-
vice (QoS) metrics affect user engagement and how to optimize users’ Quality of
Experience (QoE). Our aim in this paper is to infer the QoE from the observable
QoS metrics using machine learning techniques. For this purpose, Random
Forest is applied to predict three objective QoE metrics, i.e., rebuffering fre-
quency, mean bitrate and bitrate switch frequency, with the initial information of
each video session. In our simulation, QoE of four different video streamings are
analyzed with eight different system loads. Results show that sufficient pre-
diction accuracy can be achieved for all QoE metrics with the attributes we
adopted, especially with low and middle system loads. In terms of type of
streamings, the prediction of all metrics for static users performs better than
mobile users. Feature selection is also implemented under the highest load to
examine the effect of different attributes on each QoE metric and the correlation
among attributes.
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1 Introduction

Video streaming is becoming more and more important in recent years. According to
Cisco’s forecast [1], video traffic will account for 78% of Internet traffic by 2021.
HTTP video streaming is widely used in delivering on-demand multimedia content,
with retransmission applied to guarantee data correctness. At the server side, single or
several encoded versions are stored, where video files are divided into several chunks
(segments). After being downloaded, the chunk is stored in the player’s buffer for
playback. Before the buffer becomes empty, users can proceed on video playing;
otherwise, the video will suffer a rebuffering event.

The QoE concept has emerged mainly with the basic motivation that QoS is not
powerful enough to fully express everything nowadays involved in a communication
service, which is a multi-dimensional construct and consists of subjective and objective
parameters [2]. When it comes to the QoE of HTTP streaming users, according to [3], it
highly depends on two crucial factors: (1) the visual quality and its variation and (2) the
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frequency and duration of rebuffering events. Different from the Peak Signal to Noise
Ratio (PSNR), rebuffering events cannot be directly measured but only predicted from
classic QoS metrics [4]. This allows to infer QoE metrics by still relying on QoS
monitoring systems. Nevertheless, it is highly complex to map between QoS and QoE
metrics, as they often lay in high dimensional spaces and are subject to noise. As a
consequence, it is not practical to get a closed form modeling and its experimental
validation. Therefore, machine learning techniques are applied to derive the complex
relationships between QoS and QoE metrics. In the context of mobile networks, it is
challenging for operators to correlate the cell-related parameters like channel state
information (CSI) and existing users number to QoE metrics of video consumers, due
to the system complexity and difficulty in obtaining the cross-layer information. To
overcome this difficulty, we have established a cross-layer simulation program that
simulates the behaviors of HTTP video streamings in mobile networks as well as buffer
information in user side. Thus we can access all cross-layer information for correlating
the QoS parameters in data link or physical layer and the user QoE.

When video streaming service is offered over wireless networks, there are two
variability time scales in QoE metrics: flow level (tens of seconds) driven by the
departures/arrivals of calls, and wireless channel variability time scale (milliseconds)
driven by the fast fading [5]. The analytical results in [5] demonstrate that the flow
dynamics have dominant influence on QoE metrics compared to the jittering in the
throughput due to the fast fading. Therefore, we model the radio access network in flow
level and focus on the video flow behaviors such as arrival, departure, mobilty and
rebuffering while reducing the complexity involved by packet-level protocols [6]. In
this paper, a flow refers to a video streaming session.

The rest of paper is organized as follows. Section 2 discusses relevant related work.
In Sect. 3, we introduce the mobile network and QoE metrics. Prediction performance
of four different types of video streaming is shown in Sect. 4. Section 5 concludes the
paper and discusses the future works.

2 Related Work

QoE has recently gained momentum as a way to assess the perceived quality of users
during videos watching. Authors of [7] studied the QoE with TCP information. Authors
of [8,9] utilized flow-level model to investigate the video performance metrics, where
the correlation between video rebuffering and the proposed performance metrics is not
clear. Machine learning has been widely used to study both subjective and objective
QoE to deal with the complexity of finding correlation between the parameters. Authors
of [10] used machine learning to study the correlation between users’ engagement and
application metrics, such as buffer times. In [11], the cell-related parameters were first
used as the research focus, but they just researched whether rebuffering occurred.
Studies like the one presented in [12] proposed a QoE predicting module for adaptive
HTTP streaming, without taking the traditional bitrate-constant streaming into account.
Although many services have already made the migration towards adaptive streaming,
their platforms continue to maintain backward compatibility with traditional bitrate-
constant streaming. The investigation performed in [13] predicted QoE factors focusing
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on the hidden and context information, while consideration of up to 50 associated
variables may increase the complexity of attribute extraction and the construction of the
predictive model.

The authors of [11] used cell-related parameters (e.g., physical throughput and
number of active flows) with Support Vector Machine (SVM) to predict whether a flow
will encounter a rebuffering event. We consider this work as a starting point for our
research and present two further contributions: (1) Instead of merely focusing on
rebuffering/non-rebuffering, we bring insight into the relationship between cell-related
QoS metrics and three main QoE metrics, namely rebuffering frequency, the video
quality, and its variation. (2) In terms of machine learning tools, the Random Forest
algorithm is adopted, which outperformes SVM in multiple classification problems and
supports feature (attribute) selection analysis.

3 System Description

In this section, model of radio access network based on the flow-level concept are
presented firstly. Then we show four types of HTTP streamings in our simulation. At
last, we introduce the recorded attributes and QoE metrics.

3.1 Radio Access Network

Based on the concept of flow-level model in paper [8], a cell is modeled by a set of K
capacity regions denoted as R = {Ry,...,Rg}. In each region, physical throughputs
are supposed to be homogeneous and thus, on the downlink, users are served with the
same physical throughputs. Users in a cellular network are classified into static users
and mobile users. The physical throughput of static users is assumed to be constant, and
that of mobile users may randomly vary with time when a mobility envent occurs.

As for traffic characteristics, we follow the classical assumption that streaming
flows with beginning physical throughput R; arrive as a Poisson process with rate
Ax = pi4, where A is the overall flow arrival rate in the cell and py stands for the traffic
proportion with physical throughput Ry, where ", px = 1. With the stability condition
in paper [8], the maximum flow arrival rate, 4,,,,, guaranteeing the system stability, can
be obtained. In our simulation, eight flow arrival rates normalized by the maximum
value 4, were demonstrated, since traffic arrival rate, 4, varies along hours in the real
network. For each A, simulator generates m = 10° streaming arrivals for the training of
the Random Forest.

3.2 HTTP Video Streaming
Generally speaking, the video streaming can be categorized into two types

e Fixed bitrate streaming (also called progressive download). This is the original
implementation of the HTTP video streaming and maintains a fixed bitrate for each
chunk during the whole video downloading process.

e Adaptive streaming. Adaptive video streaming can switch among several optional
bitrates according to the measured throughput, y. Given the preset discrete set
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V ={vi,...,vu}, where vyy > ... > vy, users select a video bitrate, v, for the next
chunk as below, where i =1, - - -, M — 1.
Y >v
p=J M T=TM (1)
Vi, Vi<y<viyi

In order to provide a solution which will be compatible with current and previous
video streaming technologies, four types of streamings are simulated. Table 1 lists the
four types of streamings in our simulation.

Table 1. Types of streamings.

Type Description

Type I | Static and adaptive streaming
Type II | Static and fixed bitrate streaming
Type III | Mobile and adaptive streaming
Type IV | Mobile and fixed bitrate streaming

3.3 Recorded Attributes

We aim to take a step closer to exploring the correlation of each user’s initial QoS
metrics and user’s QoE by recording complete buffer statistics. Therefore, we develop
an simulator that simulates the actual behavior (e.g., playback, rebuffering, and
mobility) and buffer state of each user in a radio access network, driven by some flow-
events. In Fig. 1, we present an illustration of a video session life time in the event-
driven simulatorm, where the buffer state will switch as the corresponding flow-event
occurs and the chunk events mean downloading of a new chunk. Fine-grained infor-
mation about the video session in our simulation program is recorded, including the
bitrate of each video segment, the bitrate switching between adjacent video segments,
and the number of rebuffering events during video downloading.

Flow events Chunk

Buffer state 5 -
prefetch rebuffering rrebuﬁerlng m
7~ 7~ T 7
|
|
|
|
|

|
|
Chunk IChunk Chunk Chunk Chunk i
| |
|

| |
| |
| |
| |
| |
Arrival Play Rebuffering  Play Rebuffering Play Mobility Departure

Fig. 1. An illustration of a video session life time in the event-driven simulator.

Table 2 presents all the data output by our simulator for j-th user, which can be
summarized into two sets: (1) attributes set: the initial attributes recorded when user
j arrives and (2) targets set: the total number of rebuffering events and the set of
selected bitrates recorded during departure of user j.
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Table 2. Parameters generated for j-th user in our simulations.

Set Symbol | Description Unit

Attributes | R; Physical throughput recorded at arrival Mbps
T; Video duration S
F; Numbers of flows in cell of each region Vector
|Fj| Total number of flows in cell Null
Fy Numbers of flows in rebuffering of each region | Vector
Fr Total number of flows in rebuffering Null

Targets | N; Number of rebuffering events encountered Null
S; Set of bitrates selected Vector

3.4 The QoE Metrics

In this subsection, we present three main QoE metrics reflecting the perceived video
quality of users and the discretization for classification

e Rebuffering frequency (RF): The ratio of the number of rebuffering events to the
duration of the session.

e Mean bitrate (MB, only for adaptive streaming) : The average of the bitrates
weighted by the duration each bitrate is played for.

e Bitrate switch frequency (SF, only for adaptive streaming): The ratio of the number
of bitrate switches to the duration of the session.

These metrics are difficult to be predicted in its raw continuous form. To simplify
the classification and create a predictive model, we have further processed the metrics
by labeling the data as shown in Egs. (2)—(4).

"no rebuffering” RF =0
RFipe = {  "mild rebuffering”, O0<RF <L,y 2)
"severe rebuffering”, Ly <RF

where we adopt Ly = 0.1, since [14] showed that with rebuffering ratio over 0.1, most
of users abandon the video because of the quality degradation.

"low bitrate” vi <MB<L,
MBi el = "middle bitrate", L,y SMB<L,; (3)
"high bitrate”, Ly <MB<vy

where v; and vy, are the minimum and maximum values of the optional bitrates and we
set Lp1 as 1.5, Ly as 2, the medians of the optional bitrates.

"no switch”, SF=0
SFlabel = "mild SWitCh/l, 0<SF< Laf (4)
"severe switch”", Ly <SF

where Ly is set to 0.3, which distinguishes mild and severe switch in this paper.
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4 Simulation Analysis

In this section, we analyze the prediction performance of machine learning among
different types of HTTP streaming with recorded attributes. We adopt the simulation
configuration in [11] and set the optional bitrates as 1, 1.5, 2, 2.5 Mbps.

WEKA [15], one of the most popular open-source machine learning libraries, is
adopted to implement the Random Forest algorithm and to investigate the prediction
performance. In classification for each QoE metric, the datasets consist of instance-
label pairs (Xj, Yj) where j = 1, - - -, m. X; consists of all attributes of user j, and Y;
corresponds to each category label. For example, the prediction of the rebuffering
frequency can be expressed as a three-class classification problem with instance-label
pairs (XJ, RF 4001 j). With the feature selection algorithms, Random Forest evaluates the
predictive power of each attribute and its redundancy with each other, and tends to
select attributes that have a high correlation with the target but have a low correlation
with each other. Effective feature selection can significantly reduce the difficulty of
attribute extraction and the complexity of the predictive model. In addition, the Ran-
dom Forest algorithm can evaluate the information gain which represents the worth of
each attribute in the construction of the predictive model.

In our simulation, eight flow arrival rates normalized by the maximum value .,
are demonstrated to show the performance at each load. Under each load, we present
the respective prediction performance for four different HTTP video streamings, as
shown in Fig. 2, 3, and 4. In general, when load increases, prediction performance
decreases due to the increase of uncertainty.
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Fig. 2. The average prediction accuracy of the rebuffering frequency.

Figure 2 shows the average prediction accuracy of the rebuffering frequency. In
general, sufficient accuracy can be achieved especially when the load is low. With
respect to mobility of streamings, the simulation results show that static users can
achieve more than 90% of accuracy even in large load, which is a significant
improvement over previous approaches [16] where the achieved accuracy was
approximately 84% for a binary classification and the severity of rebuffering was
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Fig. 3. The average prediction accuracy of the mean bitrate.
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Fig. 4. The average prediction accuracy of the bitrate switch frequency.

unclear. However, rebuffering frequency of mobile users is much more difficult to be
predicted when load is large. In terms of fixed or adaptive property, there is no general
rule saying that fixed bitrate is easier to be predicted than adaptive streaming, where
mobility plays a more important role. We list the results of feature selection for each
type of streamings under the highest load in Table 3. As presented in Table 2, Fj i
means the number of flows of region & in the cell, where k = 1, ..., K.

Firstly, for mobile users, the physical throughput R; is not selected, which means
that the initial physical throughput can not provide enough information to predict the

rebuffering. Secondly, the abandon of ’FJ’

suggests a high redundancy between ‘F]’

and ‘Fj’

, which may be good news for operators that they do not need to know more

application information from users’ side. Further, experiments show that, using the
remaining attributes can achieve almost the same accuracy as overall attributes, but
with reduced feature extraction overhead.

Figure 3 shows the average prediction accuracy of the mean bitrate. As mentioned
earlier, the mean bitrate is only meaningful for adaptive video streaming. In terms of
adaptive streaming alone, overall, over almost 85% accuracy is achieved even at high
loads. Similarly, the prediction accuracy of static users can still reach more than 90%
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Table 3. Attributes selected and respective information gain for RF.

Static adaptive | Static fixed Mobile adaptive | Mobile fixed
Attribute | Gain | Attribute | Gain | Attribute | Gain | Attribute | Gain
R; 0.382 | R; 0.344 | T; 0.141 | T; 0.086
T; 0.023 | T; 0.03 ‘Fj‘ 0.301 |F]| 0.444
}Fj| 0.144 {FJ| 0.214 | F; 0.082 | Fj 0.110
Fis 0.086 Fj> 0.10 | Fj, 0.138
Fj3 0.15 | Fj3 0.219
Fi4 0.164 | Fj 4 0.257
Fjs 0.121 | Fj 5 0.179

even in high load and the impairment of mobility on predictions reduces the prediction
performance for mobile users. Table 4 presents the results of feature selection for
adaptive users under the highest load.

Table 4. Attributes selected and respective information gain for MB.

Static adaptive | Mobile adaptive
Attribute | Gain | Attribute | Gain
R; 0.254 | T; 0.044
T; 0.002 ‘ Fj’ 0.57
‘F,| 0.308 | Fj3 0.294
Fi3 0.195 | Fj 4 0.324
Fi4 0.219 Fr 0.461

Table 5 presents the confusion matrix for MB for static adaptive users under the
highest load. The confusion matrix provides specific prediction accuracy of each class.
We can see that the classification errors occur between instances “Low ” and those with
“Middle”, also between “Middle” and “High”, however, significantly fewer mis-
classifications between “Low” and “High”. Possible reasons include the classifier’s
inability to correctly identify marginal cases which are close to the MB thresholds, and
the subtle differences between instances of different classes.

Figure 4 shows the average prediction accuracy of the bitrate switch frequency. In
general, the accuracy of predicting for all loads exceeding 80% can be achieved, and
when the load is not so high, the accuracy is above 90%. In addition, higher prediction
accuracy for static users can be achieved.

Table 6 presents the results of feature selection for adaptive users under the highest
load. The information gain of 7; shows the importance of T; for predicting SF.
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Table 5. Confusion matrix for MB of static adaptive users.

Predicted label
Actual label | “Low” | “Middle” | “High”
“Low” 97.2% |22% | 0.6%
“Middle” | 15.7% |73% 11.3%
“High”  |2.8% |92%  |88%

Table 6. Attributes selected and respective information gain for SF.

Static Adaptive | Mobile adaptive

Attribute | Gain | Attribute | Gain
R; 0.050 | T; 0.381
T; 0.126 |F/| 0.083
‘F,| 0.066

5 Conclusions and Feature Works

In this paper, we aim to infer the QoE metrics from the observable QoS metrics with
machine learning techniques. Based on the concept of flow-level dynamics, we develop
an event-driven simulator to generate datasets, by which we correlate the cell-
parameters and users’ QoE. We examined the prediction performance of three QoE
metrics for different HTTP video streamings along different loads. Then the machine
learning technique, i.e., Random Forest, is used to obtain our predictive model along
the system loads. Simulation results show that, with the initial information of each
video session such as number of flows and radio conditions, sufficient accuracy can be
achieved. In terms of type of streamings, the prediction of all metrics for static users
performs better than mobile users, due to the increase of uncertainty from mobility,
which calls for more information for prediction. We also perform feature selection with
the highest load as an example to examine the effect of different attributes on each QoE
metric and the correlation among attributes.

Future works will consider more attributes to improve the prediction accuracy in
high loads, especially for mobile users. More QoE metrics like start-up delay will be
researched to completely study the perceived quality by HTTP video streaming. The
application of other machine learning models such as Neural Networks may improve
the prediction accuracy.

Acknowledgements. This work has been sponsored by Huawei Research Fund (grant
No. YBN2016110032) and National Science Foundation of China (No. 61201149). The authors
would also like to thank the reviewers for their constructive comments.



Quality of Experience Prediction of HTTP Video Streaming 91

References

10.

11.

12.

13.

14.

15.

16.

. Cisco visual networking index: Global mobile data traffic forecast update 2016-2021 white

paper.  https://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-
vni/vni-infographic.html. Accessed 06 June 2018

. Patrick Le Callet, S.M., Perkis, A.: Qualinet White Paper on Definitions of Quality of

Experience (2012). http://www.qualinet.eu/index.php. Accessed 06 June 2018

. Yin, X., Jindal, A., Sekar, V., Sinopoli, B.: A control-theoretic approach for dynamic

adaptive video streaming over HTTP. In: Proceedings of the 2015 ACM Conference on
Special Interest Group on Data, pp. 325-338, London (2015)

. Dimopoulos, G., Leontiadis, 1., Barlet-Ros, P., Papagiannaki, K.: Measuring video QoE

from encrypted traffic. In: Proceedings of the 2016 Internet Measurement Conference,
pp- 513-526, Santa Monica (2016)

. Xu, Y., Elayoubi, S., Altman, E., El-Azouzi, R.: Impact of flowlevel dynamics on qoe of

video streaming in wireless networks. In: 2013 Proceedings IEEE INFOCOM, pp. 2715-
2723, Turin (2013)

. Bonald, T., Proutiere, A.: A queueing analysis of data networks. Queueing Netw. 154, 729—

765 (2011)

. Singh, K.D., Aoul, Y.H., Rubino, G.: Quality of experience estimation for adaptive

HTTP/TCP video streaming using H.264/AVC. In: 2012 IEEE Consumer Communications
and Networking Conference (CCNC), pp. 127-131, Las Vegas (2012)

. Bonald, T., Elayoubi, S., Lin, Y.-T.: A flow-level performance model for mobile networks

carrying adaptive streaming traffic. In: IEEE Globecom, San Diego (2015)

. Lin, Y.-T., Bonald, T., Elayoubi, S.: Impact of chunk duration on adaptive streaming

performance in mobile networks. In: 2016 IEEE Wireless Communications and Networking
Conference, Doha (2016)

Balachandran, A., Sekar, V., Akella, A., Seshan, S., Stoica, L., Zhang, H.: Developing a
predictive model of quality of experience for internet video. In: Proceedings of the
ACM SIGCOMM 2013 Conference on SIGCOMM, pp. 339-350, New York (2013)

Lin, Y.-T., Oliveira, EEM.R., Jemaa, S.B., Elayoubi, S.E.: Machine learning for predicting
QoE of video streaming in mobile networks. In: 2017 IEEE International Conference on
Communications (ICC), pp. 1-6. IEEE, Paris (2017)

Chen, Z., Liao, N., Gu, X., Wu, F., Shi, G.: Hybrid distortion ranking tuned bitstream-layer
video quality assessment. In: IEEE Trans. Circuits Syst. Video Technol. 26(6), 1029-1043
(2016)

Vasilev, V., Leguay, J., Paris, S., Maggi, L., Debbah, M.: Predicting QoE factors with
machine learning. In: IEEE International Conference on Communications (ICC) 2018,
Kansas City (2018)

Krishnan, S., et al.: Video stream quality impacts viewer behavior: inferring causality using
quasi-experimental designs. IEEE/ACM Trans. Netw. 21(6), 2001-2014 (2013)

WEKA: Data Mining Software in Java. https://www.cs.waikato.ac.nz/ml/weka. Accessed 26
May 2018

Aggarwal, V., et al.: Prometheus: toward quality-of-experience estimation for mobile apps
from passive network measurements. In: Proceedings of the 15th Workshop on Mobile
Computing Systems and Applications, p. 18. ACM, Santa Barbara (2014)


https://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/vni-infographic.html
https://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/vni-infographic.html
http://www.qualinet.eu/index.php
https://www.cs.waikato.ac.nz/ml/weka

	Quality of Experience Prediction of HTTP Video Streaming in Mobile Network with Random Forest
	Abstract
	1 Introduction
	2 Related Work
	3 System Description
	3.1 Radio Access Network
	3.2 HTTP Video Streaming
	3.3 Recorded Attributes
	3.4 The QoE Metrics

	4 Simulation Analysis
	5 Conclusions and Feature Works
	Acknowledgements
	References




