
Shared Buffer-Based Reverse Scheduling
for Onboard Clos-Network Switch

Wanli Chen1,2, Kai Liu3, Xiang Chen1,2(B), and Xiangming Kong4

1 School of Electronics and Information Technology, Sun Yat-sen University,
Guangzhou 510006, Guangdong Province, China

2 Key Lab of EDA, Research Institute of Tsinghua University in Shenzhen (RITS),
Shenzhen 518075, China

chenxiang@mail.sysu.edu.cn
3 China Academy of Electronics and Information Technology, Beijing 100041, China
4 Starway Communications Inc., Guangzhou 510663, Guangdong Province, China

Abstract. Onboard switching (OBS) is facing resource constraints and
special requirements of hardware complexity and scheduling efficiency.
By studying the existing OBS fabrics and scheduling algorithms, the
Shared Buffer-based Reverse Scheduling (SB-REV) Algorithm is pro-
posed, adopting the shared buffer in the input module (IM) and guiding
the IM scheduling with the matching result of the central modules. The-
oretical and experimental analysis shows that the SB-REV algorithm
greatly improves the resource utilization and scheduling efficiency, while
guaranteeing the cell delay and the throughput performance. The SB-
REV Algorithm is highly suitable for resource-constrained OBS environ-
ment.

Keywords: Onboard switching · Clos-network · Resource utilization
Scheduling efficiency

1 Introduction

Evolving from 1960s, the satellite communication has gained enormous atten-
tions with the characteristics of large capacity, wide bandwidth, ubiquitous cov-
erage, and the adaptability to multiple services [1]. Compared with the conven-
tional bent-pipe forwarding technology, the onboard switching (OBS) technology
only requires end-to-end transmission of one hop, which leads to higher security,
lower latency, higher bandwidth utilization and less reliance on ground stations
[2]. As the core of the OBS, the OBS fabrics determine the performance of
throughput, cell delay, etc. Therefore, the main bottleneck of developing high-
speed OBS lies in the OBS fabrics, with many challenges yet to be fulfilled.

In particular, the OBS of China are faced with even worse resource con-
straints. At present, the payload weight and power of China’s largest satellite
platform Dongfanghong No. 4 are only 700 kg, 8000 W, whereas that of the

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

X. Liu et al. (Eds.): ChinaCom 2018, LNICST 262, pp. 719–728, 2019.

https://doi.org/10.1007/978-3-030-06161-6_70

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06161-6_70&domain=pdf
https://doi.org/10.1007/978-3-030-06161-6_70

720 W. Chen et al.

European satellite platform Alphabus are 2000 kg, 18000 W [3], far exceeding
China. Since the resources are limited, it is necessary to fully consider the hard-
ware complexity and enhance the resource utilization. On the other hand, as
the bandwidth of the OBS gradually increases, it is vital to improve the speed
of packet processing and the efficiency of scheduling algorithms. The Reverse
Scheduling algorithm was proposed for great enhancement of scheduling effi-
ciency, but with no buffer in the input modules (IM), the scheduling in IM is
centralized, decreasing scalability. To solve the problem, crosspoint queue (CQ)
can be adopted in IM. But the resource utilization of CQ is low, and thus the
structure Shared Buffer was proposed individually, not deployed in the Clos
network yet. In order to meet the above challenges, the Shared Buffer-based
Reverse Scheduling (SB-REV) Algorithm is proposed, which greatly improves
the resource utilization and the scheduling efficiency.

The outline of this paper is as follows. Section 2 presents the central fea-
tures of the existing OBS fabrics and scheduling algorithms, and then leads to
the shared buffer (SB) structure and the reverse scheduling (REV) algorithm.
Section 3 analyzes the SB and the REV theoretically. Section 4 shows the per-
formance of the SB and the REV with comprehensive experiment results. The
conclusions are drawn in Sect. 5.

2 Related Works

As the switching capacity increases, the OBS fabrics evolve from Time-Division
(TD) Switches, suitable for only small-capacity switching, to Space-Division
(SD) Switches for large-scale OBS [4]. According to the uniqueness of the switch-
ing path, the SD switches can be further divided into single-path switches (such
as Crossbar) and multi-path switches (such as Clos) [4]. When the switch size
of Crossbar scales, the number of crosspoints added increases exceedingly, while
the Clos network free of this problem [5]. The multi-path switch can establish
multiple independent paths, and thus the cells of different input-output connec-
tions can be forwarded concurrently, with a capacity of up to 10 Tbps. In a
Clos network C(n,m, r) (where n,m, r are the number of input links of an input
module, central modules and input modules respectively), if m ≥ 2n − 1, the
Clos network is strictly non-breaking [6]. Among multi-path switches, the Clos
network is preferable and widely studied for the next-generation OBS, due to its
higher reliability, scalability, and the feature of non-blocking.

The Crossbar switch is a key component of the Clos network. According to
the existence of buffer inside of it, the Crossbar can be divided into Bufferless
Crossbar (including input queue, IQ and output queue, OQ) and Buffered Cross-
bar (including crosspoint queue, CQ). Because the input and output ports are
directly connected, the bufferless Crossbar requires a centralized scheduling algo-
rithm to match the ports. When the switching scales, it becomes difficult for the
bufferless Crossbar to meet the requirements of fast scheduling. On the contrary,
in the buffered Crossbar (e.g. CQ), the input and output ports are separated. So
the concurrent and distributed scheduling algorithm can be implemented, which

Shared Buffer-Based Reverse Scheduling for Onboard Clos-Network Switch 721

reduces the complexity of scheduling and improves the scalability. However, the
queue buffer size required for the CQ [7] is proportional to the squared number
of ports n2. To solve this problem, the current solution is adopting the SB [8]
(as shown in Fig. 1). Note that each row of crosspoints share the same buffer.
Contrasting with the CQ, the required buffer size of the SB is only proportional
to the number of ports n, which can be conducive to resource utilizing. Yet the
SB has not been deployed in the Clos network in previous literature.

As for the Clos network, it consists of three stages of Crossbar modules,
referred to as input modules (IMs), central modules (CMs), and output modules
(OMs) respectively. According to the memory deployment of each stage, it can
be categorized into SSS-Clos, MSM-Clos, SMM-Clos, and MMM-Clos networks.
In the SSS-Clos network, the port matching is actually an N × N bipartite
graph matching problem (in a complexity of O(N2), where N is the switch
size), degrading the scalability [9]. Both the SMM and MMM-Clos networks
employ memory at the central module (CM), causing cells out-of-sequence at the
receiver. To solve this problem, more buffers and feedbacks are needed, which
hinders hardware implementation [10]. Free from the above problems, the MSM-
Clos network only needs to solve the conflict at the output port of CM [11].
Herein we will concentrate on the MSM-Clos network.

In the MSM-Clos network, current scheduling algorithms are twofold:
dynamic algorithms and quasi-static algorithms. The dynamic algorithm needs
to perform real-time routing according to the arriving traffic and employs five-
way handshake, which is complicated and time-consuming. The main dynamic
algorithm is the Concurrent Round-Robin Dispatching (CRRD) algorithm [12].
In contrast, the quasi-static algorithm pre-configures the connection of CM
and cannot adapt to the real-time traffic. To solve the above problems, Zhang
et al. [13] proposed the Reverse Scheduling (REV) algorithm, by combining both
the dynamic and the quasi-static algorithm. The REV guides the IM scheduling
with the matching result of the CM, and cuts down the handshake times and
the scheduling time. However in the IM, it’s still using the bufferless Crossbar
aforementioned, which needs centralized scheduling and lacks scalability.

In this article, we will combine the advantages of both the shared buffer and
the reverse scheduling, propose the SB-REV algorithm, and prove its superiority
by theoretical and experimental analysis.

3 The Shared Buffer-Based Reverse Scheduling
Algorithm

3.1 The Shared Buffer Fabrics (SB)

In the crosspoint queue CQij , only the cells from the input port Ii to the output
port Oj can be buffered. By comparison, in the shared buffer SBi as shown in
Fig. 1, cells from the input port Ii to any output port Oj(∀j) can be buffered.

722 W. Chen et al.

1

n

1 2 n

SB1

SBn

CQ11 CQ12 CQ1n

CQn1 CQn2 CQnn

Fig. 1. The shared buffer fabrics

Accordingly we have the relationship between the queue length of the SB and
the CQ LSB = sum(LCQ), where LCQ, LSB ∈ [0, n]. The required buffer size,
denoted by Lset, is set according to the maximum queue length Lmax when the
queue length is not limited in the experiment. Consequently, we have

Lset SB

Lset CQ
=

n × Lmax SB

n2 × Lmax CQ
∈

[
1
n
, 1

]
, (1)

where Lmax SB and Lmax CQ are the maximum queue lengths among n SBs and
among n2 CQs respectively. In other words, the required buffer size of the SB
can be reduced up to 1/n that of the CQ. Note that the buffer utilization r is
the ratio between the actually used buffer size and the required buffer size, i.e.,
r = Lact/Lset. If the SB and the CQ have the same Lact in the experiment, by
Formula (1) we have

rSB

rCQ
=

Lact SB

Lset SB

Lact CQ

Lset CQ

∈ [1, n], (2)

i.e., the buffer utilization of the SB can be improved up to n times that of the
CQ.

3.2 The Reverse Scheduling Algorithm (REV)

In the MSM-Clos network, the concurrent round-robin dispatching (CRRD) algo-
rithm and the reverse scheduling (REV) algorithm are compared.

(1) Hardware complexity
The core component of the scheduling is the arbitration scheduler, so the
hardware complexity of the scheduler represents the resource overhead.

Shared Buffer-Based Reverse Scheduling for Onboard Clos-Network Switch 723

IM1src1,2

src1,n

src1,1

IM2src2,2

src2,n

src2,1

IMrsrcr,2

srcr,n

srcr,1

CM2

1 2 ··· r

1 2 ··· r

1 2 ··· r

CMm

1 2 ··· r

1 2 ··· r

1 2 ··· r

CM1

1 2 ··· r

1 2 ··· r

1 2 ··· r

OM1
dst1,2

dst1,n

dst1,1

OM2
dst2,2

dst2,n

dst2,1

OMr
dstr,2

dstr,n

dstr,1

VOQ OQ

Fig. 2. The reverse scheduling algorithm in the MSM-Clos network

When adopting the CRRD, the hardware complexity of the r IMs is O(nmr),
so the complete hardware complexity is O(mrN) [13]. When adopting the
REV, as shown in Fig. 2, only the input port CIji in the CM needs a sched-
uler, so the hardware complexity of the m CMs is O(r2), and the complete
hardware complexity is O(mr2). Consequently, the ratio of hardware com-

plexity between the two algorithms is
O(REV)

O(CRRD)
=

O(mr2)
O(mrN)

=
O(r)
O(N)

=
1
n
.

That is, the resource overhead of the REV is much lower than that of the
CRRD, which is conducive to solving the resource constraints of the OBS.

(2) Scheduling time
The scheduler is responsible for the decision of the handshakes or the match-
ings between the input and output ports. For a scheduler with n input num-
bers, the time complexity of the scheduler is O(logn) [13]. When adopting
the REV, the scheduling is only required in the CM. Assume that the Round-
Robin (RR) algorithm is adopted in the CM to avoid starvation, then the
scheduling time of the REV is proportional to logr, i.e., tarb(REV) = αlogr,
where α is a constant coefficient, determined by actual hardware perfor-
mance.

As for the CRRD, it requires five-way handshake. Let i(i ≥ 1) be
the iteration times in the IM, then the scheduling time of the CRRD is
tarb(CRRD) = α[i(logN + logm) + logr]. So when n = m = r, we have [13]

tarb(REV)
tarb(CRRD)

=
1

1 + ilogrnmr

n=m=r=
1

1 + 3i
=

1
4
. (3)

724 W. Chen et al.

4 Simulation Analysis

4.1 The Shared Buffer Fabrics (SB)

This paper uses the software OPNET to build the environment of the OBS
simulation. In the experiment, we adopt the RR algorithm, simulate for 10 000
timeslots in a 16×16 Crossbar (n = 16), and compare the SB with the CQ. Here
we define symbols ηLact

, ηLset
, ηr to represent the ratios between the SB and

the CQ in terms of the actually used buffer size, the required buffer size and
the buffer utilization. Specifically, the actually used buffer size is proportional
to the average of the actually used buffer size in the experiment Lact ∝ Lavg,
and the required buffer size is proportional to the maximum used buffer size
Lset ∝ Lmax.

Under Bernoulli traffic, adopting the SB or the CQ can both achieve 100%
throughput, but they differs in terms of the required buffer size. Experimen-
tal results are shown in Fig. 3. When the Bernoulli traffic load λ ≤ 0.5, we
have ηLset

= ηLmax
= Lmax SB/Lmax CQ = 1/16 = 1/n, and ηLact

= ηLavg
=

Lavg SB/Lavg CQ = 1. So the ratio of the buffer utilization between the SB and
the CQ is ηr = ηLact

/ηLset
= 16 = n.

Fig. 3. Queue length of CQ and
SB

Table 1. The throughput and cell delay of
the iterative CRRD and REV algorithm

CRRD Iterations Cell delay ρ1 ρ2

1 389.44 0.99214 0.90800

2 41.39 0.99982 0.97915

3 40.80 1 0.97738

4 40.80 1 0.97738

5 40.80 1 0.97738

REV 46.24 N/A 0.99827

4.2 The Reverse Scheduling Algorithm (REV)

In the experiment, we simulate for 10 000 timeslots under the Bernoulli traffic
(λ = 1) in the Clos network C (8,8,8), and compare the REV with the CRRDi

(i = 1, 2, . . . , 5). Here we define the matching rate between the input and output

Shared Buffer-Based Reverse Scheduling for Onboard Clos-Network Switch 725

ports in the IM as ρ1, and the matching rate in the CM as ρ2. Consequently we
have the throughput of IM ρIM = ρ1 × ρ2.

Experimental results are shown in Table 1. At the iterations of i = 1, 2, 3,
we have the matching rate in the IM ρ1 = 99.214%, 99.982%, 100%, respectively.
Iteration times higher than three cannot contribute to the matching rate and the
cell delay, but further decreases the actual scheduling efficiency. On the contrary,
the REV need no iteration to achieve a throughput of 99.8%, higher than that
of the CRRDi(∀i).

4.3 The Shared Buffer-Based Reverse Scheduling Algorithm

In the experiment, we simulate for 10 000 timeslots under the Bernoulli traffic
(λ = 1) in the Clos network C (8,8,8), and compare seven algorithms. In order
to avoid the Head-of-Line (HoL) Blocking, the virtual output queue (VOQ)
is adopted [14] in input stages. Here, the scheduling algorithms involving the
CRRD iterate once.

According to the queuing strategy in the IM, seven algorithms can be divided
into the following three groups:

(1) Bufferless Crossbar: the CRRD and the REV without buffer inside of the
Crossbar;

(2) SB: the CRRD based on the SB and that with speedup (SB-CRRD and SB-
CRRDS) and the REV based on the SB and that with speedup (SB-REV
and SB-REVS);

(3) CQ: the CRRD based on the CQ (CQ-CRRD).

Among them, the second and the third groups of algorithms are based on
Buffered Crossbar, which is conducive to concurrent and distributed scheduling
and thus enhances scalability.

Specifically, there are two mechanisms of the RR scheduling in the SB:
(1) The polling objects are all n × m cells in the buffer; (2) The polling objects
are n×1 shared buffers (where n,m are the number of input and output ports of
the IM respectively). The effect of adopting mechanism (1) is completely equiv-
alent to that of not employing the SB, and thus mechanism (1) is not discussed
specifically. When adopting mechanism (2), the polling number decreases to n,
and the polling efficiency increases to m times of that without the SB. In this
paper, when some shared buffer is successfully authorized, we only allow the
oldest cell in it to be served first. Hereafter we adopt mechanism (2) in the SB
by default.

As shown in Fig. 4a, the throughput of algorithms except CRRD, SB-CRRD,
and SB-REV, reaches 100%. However, the throughput of SB-CRRD is even lower
than that of CRRD. This is because we adopt mechanism (2) in the SB afore-
mentioned, which causes the non-oldest cell in the buffer losing the right to poll,
but meanwhile increases the RR scheduling efficiency up to m times. Different
from the CQ, the cells in the SB can go to any output port. So as shown in
Fig. 6, if some SB (SB1) is not empty and some output port (O2) is idle, then
the throughput can be improved with a speedup. As shown in Fig. 7, the CQ is

726 W. Chen et al.

limited by the fixed output link rate and cannot increase the throughput with a
speedup.

Fig. 4. Comparison of 7 algorithms in 4 different performances

As shown in Fig. 4a, SB-CRRD can achieve 100% throughput with a speedup,
and as shown in Fig. 5, the speedup of SB-CRRD converges to S = 1.208. Simi-
larly, the SB-REV algorithm has a throughput of 98.4% without speedup. And
as shown in Fig. 5, the SB-REV needs a speedup of only S = 1.05 to outperform
other algorithms in terms of throughput, cell delay and queue overhead.

As shown in Fig. 4a, c, the CQ-CRRD throughput is 100% and the cell delay
performance is optimal. However, it can be seen from Fig. 4b, d that the queue
overhead of the CQ-CRRD is large. Calculations show that the average required

buffer size Lset =
1
10

1∑
λ=0.1

Lmax(λ) of the CQ-CRRD is 4 times that of the

SB-REVS , much inferior to the SB-REVS .
As can be seen from the four aspects in Fig. 4a, b, c, d, using the SB does

not necessarily optimize the performance. However compared with the CRRD,
adopting the REV can optimize the performance of all aspects. Among the seven
algorithms, the SB-REVS outperforms others remarkably.

Shared Buffer-Based Reverse Scheduling for Onboard Clos-Network Switch 727

Fig. 5. Speedup performance when Bernoulli traffic load λ = 1

Fig. 6. SB improves throughput with
speedup

Fig. 7. CQ cannot speed up

5 Conclusions

This paper focuses on the problem of resource constraints of the OBS. Starting
from the resource utilization and the scheduling efficiency, we study the shared
buffer structure and the reverse scheduling algorithm, and propose the SB-REV
algorithm. Theoretical analysis shows that the queue buffer size is reduced up to
1/n, that the hardware complexity is reduced to O(1/n), and that the scheduling
time is reduced to 1/(1 + 3i) (where i is the iteration times of the compared
algorithm CRRD).

This paper uses the software OPNET to build the environment of the OBS
simulation. Experiment results show that: (1) By adopting the SB, the memory
utilization is increased to n times that of the CQ; (2) By adopting the REV, no
iteration is required, yielding a throughput (ρ = 99.8%) higher than that of the
CRRDi(∀i). In addition, we also figure out the effects of adopting the SB and/or
the REV from different points. Simulations show that the SB-REV algorithm
only needs a speedup of S ≤ 1.05 to outperform other algorithms in terms of cell
delay and throughput. With lower hardware complexity and higher scheduling
efficiency, the SB-REV algorithm is suitable for the resource-constrained onboard
switching.

728 W. Chen et al.

Acknowledgement. The work is supported by the NSFC (No. 61501527), Sci-
ence, Technology and Innovation Commission of Shenzhen Municipality (No.
JCYJ20170816151823313), Foundation for Innovation by China Academy of Elec-
tronics and Information Technology “Research on Protocol Oblivious Forward-
ing Technologies for Space Network”, Guangdong Innovative and Entrepreneurial
Research Team Program (No. 2013D014), China’s Postdoctoral Science Foundation
(No. 2017M620061), State’s Key Project of Research and Development Plan (No.
2016YFE0122900-3), the Fundamental Research Funds for the Central Universities and
2016 Major Project of Collaborative Innovation in Guangzhou (No. 201604046008).

References

1. He, Y.Z.: Research on new genergation mobile satellite communication system[D].
Beijing University of Posts and Telecommunications (2015)

2. Wang, J., Qiao, L., Shao, S., et al.: High-performance routing search algorithm in
satellite IP switches[C]. In: Proceedings of IEEE Computer Science and Network
Technology, pp. 863–866. Dalian (2013)

3. Wang, M., Zhou, Z.C.: Analysis of the alphabus platform devel and design char-
acteristics[J]. Spacecr. Eng. 19(2), 99–105 (2010)

4. Chao, H.J., Liu, B.: High Performance Switches and Routers. Wiley, New York
(2007)

5. Yang, W.X., et al.: Design and implementation of a multi-stage bufferless high
radix router[J]. Comput. Eng. Sci. 39(2), 245–251 (2017)

6. Tang, H.K.: Load balance technology of the Clos network[J]. Sci. Technol. Inf.
15(8), 7–9 (2017)

7. Kleban, J., Suszynska, U.: Static dispatching with internal backpressure scheme for
SMM Clos-network switches[C]. In: Computers and Communications, pp. 000654–
000658. IEEE (2014)

8. Kornaros, G.: BCB: A Buffered CrossBar switch fabric utilizing shared memory[C].
In: Euromicro Conference on Digital System Design, pp. 180–188. IEEE Computer
Society (2006)

9. Chao, H.J., Jing, Z., Liew, S.Y., et al.: Matching algorithms for three-stage buffer-
less Clos network switches[J]. IEEE Commun. Mag. 10, 46–54 (2003)

10. Dong, Z., Rojas-Cessa, R., Oki, E.: Memory-memory-memory Clos-network packet
switches with in-sequence service[C]. In: IEEE, International Conference on High
PERFORMANCE Switching and Routing, pp. 121–125. IEEE (2011)

11. Gao, Y., Qiu, Z., Zhang, M., et al.: Distributed weight matching dispatching scheme
in MSM Clos-network packet switches[J]. IEEE Commun. Lett. 17(3), 580–583
(2013)

12. Oki, E., Jing, Z., Rojas-Cessa, R., et al.: Concurrent round-robin-based dispatch-
ing schemes for Clos-network switches. IEEE/ACM Trans. Netw. 10(6), 830–844
(2002)

13. Zhang, M., Qiu, Z., Gao, Y., et al.: Reverse dispatching scheme for satellite Clos-
network switches[J]. J. Xidian Univ. 40(4), 96–101 (2013)

14. Kleban, J.: Packet dispatching using module matching in the modified MSM Clos-
network switch[J]. Telecommun. Syst. 8, 1–9 (2017)

	Shared Buffer-Based Reverse Scheduling for Onboard Clos-Network Switch
	1 Introduction
	2 Related Works
	3 The Shared Buffer-Based Reverse Scheduling Algorithm
	3.1 The Shared Buffer Fabrics (SB)
	3.2 The Reverse Scheduling Algorithm (REV)

	4 Simulation Analysis
	4.1 The Shared Buffer Fabrics (SB)
	4.2 The Reverse Scheduling Algorithm (REV)
	4.3 The Shared Buffer-Based Reverse Scheduling Algorithm

	5 Conclusions
	References

