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Abstract. Blind channel identification methods based on second-order
statistics (SOS), have attracted much attention in the literature. How-
ever, these estimators suffer from the phase ambiguity problem, until
additional diversity can be exploited. In this paper, with the aid of the
cyclic prefix (CP) induced periodicity, a channel identification algorithm
based on the time varying autocorrelation function (TVAF) is proposed
for doubly selective fading channels in Orthogonal Frequency Division
Multiplexing (OFDM) systems. The closed-form expression for time-
varying channel identification is derived within the restricted support
set of time index. Particularly, the CP-induced TVAF components and
their corresponding channel-spread correlation elements implicitly carry
rich channel information and are not perturbed by additive noise. These
advantageous peaks can be employed to address the phase uncertainty
problem, offering an alternative way of increasing the rank of signal
matrix to achieve complementary diversity. Simulation results demon-
strate the proposed method can provide distinctly higher accurate of
channel estimation over the classical scheme.
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1 Introduction

The cyclic prefix orthogonal frequency division multiplex (CP-OFDM) tech-
nique, which is well known for its ability to resist inter-symbol-interference (ISI)
in multicarrier communications, has been widely adopted in modern wireless
communication systems. In practical OFDM systems, reliable channel estimation
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is an indispensable process to ensure coherent detection and plays a major impact
on the whole system performance. Without use of training symbols, blind channel
identification methods are well motivated for high bandwidth efficiency applica-
tions. Moreover, when the training sequence is not available or contaminated by
interferences, blind channel estimation also plays a useful role.

Most blind channel estimation algorithms are based on higher-order statistics
(HOS) to identify the non-minimum phase channel [1]. If additional diversity is
available, the channel identification issue can be settled with the sole help of
second-order statistics (SOS). Subspace algorithm is one of the most popular
SOS-based channel estimation methods for its robustness against noise. The
additional diversity of channel, to enable the subspace-based methods workable,
can be obtained by resorting to oversampling [2], multiple sensors [3,4], precoding
[5], and predefined linear structure [6] etc.

Due to the practical requirement of mobility, there has been an increasing
interest in wireless transmissions over time varying (TV) multipath channels.
This time and frequency (doubly) selective fading effect makes channel identi-
fication more challenging. In order to reduce the number of unknown channel
parameters, basis expansion model (BEM) is often applied to approximate the
doubly-selective fading channel. In [7], a classical time-varying autocorrelation
function (TVAF) based method is proposed to estimate the BEM coefficients
of a TV single-input single-output channel via the subspace solution. The time
varying nature of the autocorrelation of the received signal comes from the effect
of time-variant channels. It was shown in [3] that the linear independence con-
dition required in [7] does not hold for complex exponentials based BEM model.
With the aid of multiple receive antennas, a subspace-based channel estima-
tor associated with arbitrary basis functions is proposed over doubly selective
fading channels [8,9]. In [10], a two-step subspace-based estimation method, by
introducing splitting factor and permutation operation, is analyzed under time-
varying single-input multiple-output (SIMO) channels. Overall, these improved
estimators are designed with restriction on the antenna number or with the help
of additional operation added to the system.

The motivation of this paper is to investigate blind channel estimation over
doubly selective fading channels, without adding any other restriction to a CP-
OFDM system. Not only the limitation of application scenarios can be relaxed,
but the newly achievable diversity can also be integrated to other possible meth-
ods to further improve estimation performance. The standard subspace-based
estimators assume that the transmitted signal is stationary [7–10]. Under such
a premise, the time varying autocorrelations of the received signal are just
exploited partially and some of the used correlations are corrupted by noise,
which limit the estimation performance. Rather than stationary assumption,
cyclostationary signal, which is a more realistic one, possesses extra informa-
tion due to its hidden periodicity [11]. Based on the CP-induced cyclostation-
arity, we have extended the cyclostationary analysis method to BEM modeled
doubly-selective fading channels [12]. This provides a more comprehensive view
on the cyclostationarity at the receiver, thus additional channel diversity can be
exploited for channel identification.
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In this paper, we focus on a time-variant SOS based blind identification app-
roach for doubly selective fading channels in OFDM systems. By decoupling the
complicated effect of multiple paths in the TVAF of the received CP-OFDM sig-
nal, the closed-form expression for blind identification of a doubly selective chan-
nel is derived, which is an extension of the traditional TVAF-based time-varying
channel identification method. With the use of the CP-induced time-varying
autocorrelation components and their corresponding channel-spread correlation
elements, the effect of additive noise can be canceled. Furthermore, a new param-
eter is therefore introduced in the proposed estimator which increases the rank
of the signal matrix, enabling substantial performance improvement.

The rest of the paper is organized as follows. Section 2 describes the sys-
tem model. Section 3 reviews the TVAF of the received CP-OFDM signal over
doubly-selective fading channels. In Sect. 4, a subspace-based time-varying chan-
nel identification approach is proposed by exploiting the TV correlations con-
tributed by the CP and the channel. Then the analysis of the simulation results
is presented in Sect. 5. Finally, we conclude our work in Sect. 6.

2 System Model

Consider an OFDM system with CP, the discrete-time baseband equivalent
transmitted signal can be written as

s (n) =
1√
N

+∞∑

m=−∞

N−1∑

k=0

dm,kg (n − mM) e
j2πk(n−mM)

N , (1)

where N is the fast Fourier transform (FFT) size. dm,k denotes the complex
data symbol transmitted on the kth subcarrier in the mth OFDM symbol.
We assume that dm,k is zero-mean and independent of each other such that

E
{

dm,kd∗
m′,k′

}
= δ(m − m′)δ(k − k′), where E(·), δ(·), and superscript (·)∗

stand for the mathematical expectation, the Delta function, and the complex
conjugation, respectively. g (n) is an M -length rectangular window. M is the
length of an OFDM symbol with CP, i.e. M = N + Ng. Ng denotes the length
of CP.

Then the transmitted signal passes through a doubly selective fading channel
with additive white Gaussian noise (AWGN). Let us define h(n, l) as the channel
impulse response (CIR) at lag l and instant n. At the OFDM receiver, the
discrete-time received signal can be expressed as

r(n) = z(n) + v(n) =
Lh∑

l=0

h(n, l)s(n − l) + v(n), (2)

where v(n) is a zero-mean white noise with variance σ2
v . Lh denotes the maximum

discrete delay spread of the channel. In order to eliminate ISI, Ng is set to be
larger than Lh.
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The doubly-selective fading channel is usually modeled as the BEM. Each
channel tap in this model is represented as the weighted sum of a few complex
exponential basis functions. According to [12,13], the BEM can be applied for a
burst of K OFDM symbols. Considering that the sampling period at a receiver
is equal to that at a transmitter, we have the discrete-time baseband equivalent
channel model in a burst as

h(n, l) =
Q/2∑

q=−Q/2

hq(l)ej 2π
KM qn, n = 0, · · · ,KM − 1 (3)

where Q denotes the discrete Doppler spread. hq(l), where q ∈ [−Q/2, Q/2], are
the channel parameters for the lth channel tap (l ∈ [0, Lh − 1]), which remain
invariant per burst and vary independently from burst to burst.

3 Time-Varying Autocorrelation Function Over
Doubly-Selective Fading Channels

For a cyclostationary signal, its autocorrelation function is not time-invariant,
but time-dependent and periodic in time. The TVAF of a zero mean complex
cyclostationary signal s(n) is defined as

cs(n, τ) = E {s(n)s∗(n + τ)} , (4)

where τ is an integer lag parameter. By substitution of (1) into (4), we have the
result of cs(n, τ) with

cs(n, τ) = ΓN (τ)
∞∑

m=−∞
g(n − mM)g(n + τ − mM), (5)

where ΓN (τ) = 1
N

∑N−1
k=0 e−j2πkτ/N . From (5), we can observe that cs(n, τ) is

M -periodic in n for each value of τ , i.e., cs(n, τ) = cs(n + M, τ).
Using (2) and (3), we have derived the TVAF of the received OFDM signal

r(n) based on BEM model in the previous work in [12], which is given as

cr(n, τ) =
Lh∑
l=0

τ+l∑
ξ=τ+l−Lh

Q/2∑
q=−Q/2

Q/2∑
q′=−Q/2

hq(l)h∗
q′(l + τ − ξ)

×cs(n − l, ξ)ej2π qn
KM e−j2π

q′(n+τ)
KM + cv(τ),

(6)

where cv(τ) = σ2
vδ(τ). Since cs(n, τ) = cs(n + M, τ), we have cr(n, τ) = cr(n +

KM, τ) for every τ . This signifies that r(n) is a cyclostationary random process
with cyclostationary period KM .

Figure 1(a), (b) separately illustrate the TVAF of the transmitted signal and
received signal in CP-OFDM systems, where N = 32 and Ng = 8. It is shown
that, in Fig. 1(a), all the nonzero correlation peaks have the value of 1 and
appear at the three cross sections with (τ = 0,±N) in the correlation function
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plane. The components at τ = ±N characterize the correlations caused by the
CP, where the time varying characteristic is in a ladder manner. The set of cor-
relations at τ = 0 interprets the correlations induced by signal itself which is
invariant in time n. In Fig. 1(b), the TVAF of the received OFDM signal over a
doubly-selective fading channel is described, in which K = 2. The time varying
behavior of the channel make the correlation peaks varying like a sinusoid in
terms of time n. Due to the multipath delay effect, the correlation function is
spread with respect to the lag parameter dimension. As AWGN v(n) is station-
ary, cv(τ) only has values of σ2

v when τ = 0, which means the stationary noise
only disturbs the information on cr(n, 0).
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Fig. 1. TVAF of CP-OFDM signals.

4 Proposed Blind Estimation Method Based on TVAF

With known parameters of Lh and Q as in [3,7], the goal of channel identification
in this paper is to estimate the time-invariant coefficients {hq(l)}. In this section,
the estimation of the BEM coefficients is developed in two steps. In the first step,
the correlations of the time-invariant coefficients are estimated by exploiting the
CP-induced correlations and corresponding channel-spread correlations. In the
second step, subspace method is applied to obtain the expansion coefficients.

4.1 Channel Estimator Based on TVAF

Substituting (5) into cs(n − l, ξ) in (6), we have

cs(n − l, ξ) =

⎧
⎪⎪⎨

⎪⎪⎩

1 for N ≤ ((n − l) mod M) ≤ M − 1 and ξ = −N
1 for 0 ≤ ((n − l) mod M) ≤ M − N − 1 and ξ = N
1 for ξ = 0
0 otherwise,

(7)
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where mod stands for the modulus operator. To decouple the complicated effect
of l of cs(n − l, ξ) in (6), we use the restricted support region of n for channel
identification, where the non-zero values of cs(n − l, ξ) equal 1 for different l at
a given ξ. Consequently, the TVAF of r(n) can be derived as

cr(n, τ) =
Q/2∑

q=−Q/2

Q/2∑
q′=−Q/2

Rh(τ − ξ; q, q′)f(n, ξ)bq(n)b∗
q′(n + τ) + cv(τ), (8)

where

Rh(τ − ξ; q, q′) =
Lh∑

l=0

hq(l)h∗
q′(l + τ − ξ), (9)

f(n, ξ) =

⎧
⎪⎪⎨

⎪⎪⎩

1 for N + Lh ≤ (n mod M) ≤ M − 1 and ξ = −N
1 for Lh ≤ (n mod M) ≤ M − N − 1 and ξ = N
1 for ξ = 0
0 otherwise,

(10)

and bq(n) = exp(j2πqn/KM). It is worthwhile to note that the proposed esti-
mator can be reduced to the classical estimator in [7], when the effect of v(n) is
ignored and ξ = 0.

It can be seen that, at the receiver, not only the correlations induced by signal
itself (i.e., ξ = 0) but also introduced by CP (i.e., ξ = ±N), implicitly carry the
channel information. For the sake of avoiding the noise uncertainty induced by
v(n), we just exploit the correlation components introduced by the CP and their
channel-spread peaks for channel estimation. Thus, in the following, two values
of ξ, i.e., −N and N , are considered. Accordingly, the contribution of stationary
noise is therefore canceled out in (8), because the values of cv(τ) are nonzero
only for τ = 0 (ξ, at this moment, equals 0).

4.2 Recovering the Channel Correlations

The first step of identification of the expansion parameters hq(l) is to recover
the correlations of the time-invariant coefficient pairs of channel Rh(τ − ξ; q, q′).
For the convenience of description, we denote γ = τ − ξ. It can be easily found
that −Lh ≤ γ ≤ Lh.

Then, the vector form of (8) can be written as

cr(n, ξ + γ) = f(n, ξ)φ(n, ξ, γ)Rh(γ), (11)

where

φ(n, ξ, γ) =
[
b− Q

2
(n)b∗

− Q
2
(n + ξ + γ) , · · · , b− Q

2
(n)b∗

Q
2
(n + ξ + γ),

· · · , bQ
2
(n)b∗

− Q
2
(n + ξ + γ), · · · , bQ

2
(n)b∗

Q
2
(n + ξ + γ)

]
,

(12)

Rh(γ) =
[
Rh(γ,−Q

2 ,−Q
2 ), · · · , Rh(γ,−Q

2 , Q
2 )

· · · , Rh(γ, Q
2 ,−Q

2 ), · · · , Rh(γ, Q
2 , Q

2 )
]T

.
(13)
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Define
[
n1i,1 , · · · , n1i,P

]
= [(i − 1)M + N + Lh, · · · , iM − 1][

n2i,1 , · · · , n2i,P

]
= [(i − 1)M + Lh, · · · , iM − N − 1] , (14)

where P = Ng − Lh. (11) can be further represented in a compact matrix form
as

cr(γ) = Φ(γ)Rh(γ). (15)

The components of cr(γ) can be obtained from the instantaneous estimation of
ĉr(n, τ) = r(n)r∗(n + τ), given by

cr(γ) = [cT
r1,−N

, · · · , cT
ri,−N

, · · · , cT
rK,−N

,

cT
r1,N

, · · · , cT
ri,N

, · · · , cT
rK,N

]T ,
(16)

where
cri,−N

=
[
cr

(
n1i,1 ,−N + γ

)
, · · · , cr

(
n1i,P

,−N + γ
)]T

cri,N
=

[
cr

(
n2i,1 , N + γ

)
, · · · , cr

(
n2i,P

, N + γ
)]T

,
(17)

and (·)T denotes transpose operation. The matrix Φ(γ), which is known a priori,
has the following structure

Φ(γ) =
[
AT

1,−N,γ , · · · ,AT
i,−N,γ , · · · ,AT

K,−N,γ ,

BT
1,N,γ , · · · ,BT

i,N,γ , · · · ,BT
K,N,γ

]T
,

(18)

where
Ai,−N,γ = [φT

(
n1i,1 ,−N, γ

)
, · · · , φT

(
n1i,P

,−N, γ
)
]T

Bi,N,γ = [φT
(
n2i,1 , N, γ

)
, · · · , φT

(
n2i,P

, N, γ
)
]T .

(19)

The identification problem of Rh(γ), for every fixed γ, can be solved by
the least squares (LS) method based on the 2KP × 1 vector cr(γ) and the
[2KP ]×[(Q + 1) (Q + 1)] matrix Φ(γ). It has been verified that the use of instan-
taneous approximations for cr(n, τ) is feasible for channel identification, as the
number of equations is far greater than the unknown parameters [7]. It is the
rank of Φ(γ) that is an important factor affecting the estimation performance.
Since an additional variable ξ with value of N or −N is introduced in (12), the
linear independence of the columns in the matrix Φ(γ) can be largely increased
compared to that in the classical TVAF-based method, which results in a signif-
icant improvement of the proposed estimator. In addition, the number of equa-
tions for estimating Rh(γ; q, q′) in the proposed method is reduced from KM to
2KP . This decreases the computational complexity of the proposed method to
a certain extent.

4.3 Identification of Channel Coefficients

The blind identification procedure is finally to estimate the (Q + 1) (Lh + 1)× 1
vector h of the BEM coefficients

h =
[
h−Q/2 (0) , · · · , h−Q/2 (Lh) , · · · , hQ/2 (0) , · · · , hQ/2 (Lh)

]T
. (20)
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According to [3], the parameters Rh(γ; q, q′) can be regarded as the out-

put cross-correlation of a hypothetical SIMO system yq(n) =
Lh∑
l=0

hq(l)w(n − l),

where w(n) is a common zero-mean white input with unit variance. Define the
vectors yq(n) = [yq(n), · · · , yq(n − L)]T for some order L and the vectors Y(n) =[
yT

−Q/2(n), · · · ,yT
Q/2(n)

]T

. Based on the [(Q + 1)(L + 1)]×[(Q + 1)(L + 1)] cor-
relation matrix of Y(n), as described in [7], we can uniquely identify {hq(l)} (up
to a complex scalar factor) if L ≥ Lh, by using the subspace solution.

5 Numerical Results

In this section, we present numerical comparisons between our proposed scheme
and the classical TVAF-based subspace method. As illustrated in Fig. 2, the
conventional TVAF-based estimator uses the correlation components at τ = 0±l
for time varying channel identification, while the proposed method exploits the
correlation peaks at τ = ±N ± l within the restricted support region of n, where
0 ≤ l ≤ Lh. In the experiments, the OFDM signal has 128 subcarriers and the
length of the CP is 1/8 of the useful symbol data. Subcarriers are modulated by
16QAM. The carrier frequency is 2.5 GHz. The OFDM symbol duration with
CP is 102.86μs. The BEM coefficients with Q = 2 and Lh = 2 are listed below.

hT = [0.1660 − 0.1722i, 0.0101 + 0.1551i,−0.3199 − 0.0863i,
0.0043 − 0.2809i, 0.1423 − 0.1443i,−0.1355 − 0.1699i,
0.3245 + 0.1537i,−0.5881 − 0.0773i, 0.2572 − 0.3079i]

The channel coefficients are scaled so that the parameter vector h has unit
norm. In addition, the order L adopted in the subspace identification process
is set to Lh. Estimation is then carried out using Monte Carlo method with
Ni = 500 runs. As a performance metric we use the normalized mean square error

(NMSE), which is defined as NMSE = 1
Ni

Ni∑
i=1

E

{∥∥∥ĥi − h
∥∥∥
2
/

‖h‖2
}

. Before

computing NMSE, the estimated parameter vector ĥ is scaled by E
{
h
/

ĥ
}

to
resolve the scaling ambiguity for simulation purpose.

In order to verify the validity of the LS estimates for Rh(γ; q, q′), the time
varying signal power of the noise-free output data z(n) is employed to eval-
uate the performance. The reconstructed signal power can be computed by
ĉr,LS(n, 0) = f(n, 0)φ(n, 0, 0)R̂h(0), 0 ≤ n ≤ KM − 1. From Fig. 2, it can
be seen that the LS estimates for Rh(γ; q, q′) can be reliably recovered based on
the instantaneous approximations for cr(n, τ). Additionally, the reconstructed
results of the proposed scheme are much closer to the accurate ones than those
of the compared scheme. This deviation of the conventional method is mainly
generated by using the noise-contaminated components at cr(n, 0) for estimation
and by the fact of the column dependence in the matrix Φ.

Figure 3 illustrates the performance of NMSE as a function of SNR for K =
10 and K = 20. It can be observed that the considered methods both follow
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Fig. 2. Time-varying signal power (SNR = 10 dB and K = 20).

a descending trend in NMSE with increasing SNR. Specifically, the proposed
scheme outperforms the benchmark method. When the SNR is greater than or
equal to 10 dB, the proposed estimator can achieve significant improvement in
estimation performance. Since the effect of noise is minor at a higher SNR, these
substantial performance gains of the proposed scheme are obtained mainly owing
to the increased linear independence in the matrix Φ. As the number of symbols
changes from 10 to 20, the NMSE performances of the two channel estimators are
both enhanced while the superiority of the proposed estimator still maintains.
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6 Conclusions

In this paper, a time-variant SOS based channel estimation method is proposed
for doubly selective fading channels by using the inherent cyclostationrity of the
transmitted signal. To address the phase ambiguity issue, the cyclostaionarity
induced by the CP as well as the channel is exploited for channel identification.
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As a result of this, a new lag parameter is introduced in the proposed estimator,
which increases the linear independence required by the subspace method. This
leads to substantial improvement on estimation performance. Computer simula-
tion results show that the estimation performance of the proposed algorithm is
superior to that of the traditional algorithm.
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