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Abstract. Detecting network events has become a prevalent task in
various network scenarios, which is essential for network management.
Although a number of studies have been conducted to solve this problem,
few of them concern about the universality issue. This paper proposes a
General Network Behavior Analysis Approach (GNB2A) to address this
issue. First, a modeling approach is proposed based on hidden Markov
random field. Markovianity is introduced to model the spatio-temporal
context of distributed network and stochastic interaction among inter-
connected and time-continuous events. Second, an expectation maximum
algorithm is derived to estimate parameters of the model, and a maxi-
mum a posteriori criterion is utilized to detect network events. Finally,
GNB2A is applied to three network scenarios. Experiments demonstrate
the generality and practicability of GNB2A.
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1 Introduction

Detecting network events has emerged as a common task in various network
scenarios. Wireless Sensor Network (WSN) is applied to different fields includ-
ing monitoring environment [4] and tracking targets [2], the collected sensed
data is often analyzed to find interesting events. The WannaCry ransomware
strikes across the globe and worm propagates throughout the mobile communi-
cation network lead to a critical problem of detecting malicious events. These
diverse network scenarios carry out a uniform task of detecting network events.
It watches what’s happening to network, identifies the nature of network events,
which is of great importance of network management.
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In order to detect network events, a lot of studies have been conducted [1].
These works mostly focus on detecting network events at a single node of net-
work, such as at the border of network [6]. Due to the dynamic characteristics
of network event, for example, a worm outbreaks in computer network [8], a
single node’s information may not be sufficient to identify events clearly. To
overcome the limitation of single node’s detection scheme, data fusion is consid-
ered in some researches, which collecting a collection of nodes’ data to detect
events [3,5]. However, the literatures review only considers the data features of
network events, the correlation characteristics between network events and time
continuity of network events are rarely applied. Moreover, the works mentioned
in the literatures are applied to a specific network scenario instead of a general
approach to deal with the uniform problem of detecting network events.

To solve limitations of the literatures review, this work is motivated to pro-
pose GNB2A to detect network events, which utilizes the correlation between
network events and time continuity of network events. In GNB2A, a network is
divided into three layers: topology layer is the actual network topology, event
layer denotes the network events occur in network and behavior layer describes
the external behavior of network nodes that is driven by underlying network
events. Since the network events can not be measured directly, but the external
behavior feature of network is measurable, therefore, event layer can be inferred
from the behavior layer, the detecting task is map to an inference problem, and
the goal is to infer the current event types of network nodes through measurable
behavior feature. A two-layer mathematical model is introduced to model this
inference problem, an observable random field denotes the measurable feature
of behavior layer, and an unobservable Markov random field that describes the
underlying event layer. In this work, an expectation maximum (EM) algorithm is
applied to estimate parameters of model from the training data, and a maximum
a posteriori (MAP) criterion is utilized to infer the event layer.

Contributions of this work include:

– Proposing GNB2A by leveraging hidden Markov random field, a spaio-
temporal context is introduced to model the correlation of network events.

– Deriving algorithms for parameter estimation and network events detection.
– Evaluating the performance of GNB2A by designing three network scenarios

in a simulated environment.

The rest of this paper is organized as follows. Section 2 describes GNB2A, the
modeling approach and algorithms of this work are provided. In Sect. 3 experi-
ments are designed to validate GNB2A. Finally, Sect. 4 includes the conclusion
to this paper.

2 The Proposed Approach

2.1 General Network Behavior Analysis Approach

In most communication networks, a network node’s behavior depends on the
event it is currently encountering. For instance, a host may forward a large
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number of packets to a specific destination when it is involved in a DDoS attack.
Here, “forward a large number of packets to a specific destination” is a network
node’s behavior, while the “DDoS attack” is the event that is affecting the node.
This phenomenon is common in many network scenarios. A three-layer model is
used to describe the relationship of (Node, Event, Behavior). Extending to dis-
tributed scenarios, it forms a general model, as shown in Fig. 1. Hence in GNB2A,
a network is divided into three layers: topology layer, event layer and behavior
layer. Topology layer is network topology consists of network nodes connected
by links. Event layer denotes network events occur in network, the event occurs
in a node also called “hidden state” in the following, since it cannot be observed
by measurement directly. Behavior layer describes the external behavior of net-
work which is driven by the underlying network events, the behavior also called
“observation” in the following since it can be measured directly.

Fig. 1. The framework of GNB2A. Fig. 2. Spatio-temporal context of net-
work.

Due to the connectivity of network and the time continuity of events, an
event E occurred on a node N is not only affected by N’s neighbors, but also
closely related to N’s previous moment. To simply the modeling, this work only
consider the impact of one-hop nodes, which is shown in Fig. 2, at time t, node
3 is influenced by its neighboring nodes’ {1, 2, 4, 5} events and previous event at
time t−1. This interdependent phenomenon is called “spatio-temporal context”
in this paper.

Based on the above modeling approach in GNB2A, the event layer and behav-
ior layer of a network can be considered as a double-layer random field: a hidden
State Field (SF) and an Observation Field (OF), respectively, as shown in Fig. 1.
Hidden SF consists of the events of each node in network, OF represents the mea-
surements of external behavior feature of each node in network. Thus, detecting
network events from network external behavior can be mapped to infer the hid-
den SF from a measured OF. In the follows, how to model the relationship
between hidden SF and OF and how to infer hidden SF based on a measured
OF are introduced in detail.
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2.2 Formulation of the Model

In network layer with N nodes, N denotes the set of nodes, xt,n ∈ E denotes the
nth(n ∈ N) node appearing at the tth time slot, where E includes the collection
of all xt,n for ∀(t, n), and |E| = |N| × T , where T denotes the number of time
slot. Let St,n denote the random variable of hidden state of xt,n, i.e., the type of
network event, and st,n ∈ S is an instance of St,n, where S is the set of all possible
states. Then S = {St,n|∀t ∈ [1, T ],∀n ∈ N} is a family of random variables
defined on the set E. Thus S can be used to describe the hidden SF, and s ∈ S
denotes a configuration of S, where S is the set of all possible configurations
of hidden SF. Use similar expressions, Let Ot,n denote the random variable of
observation of xt,n, i.e., the behavior feature of network node, and ot,n ∈ O

is an instance of ot,n, where O is the set of all possible observations. Then
O = {Ot,n|∀t ∈ [1, T ],∀n ∈ N} is a family of random variables defined on the set
E. Thus O can be used to describe the OF, and o ∈ O denotes a configuration
of O, where O is the set of all possible configurations of OF.

The goal of this work is detecting network events from the external network
behavior. This problem is equivalent to infer a configuration of hidden SF s given
a measured OF o. According to the maximum a posteriori criterion, seeking ŝ
given o satisfies Eq. (1), where Ω denotes parameters of the model.

ŝ = arg max
s∈S

{Pr[s|o,Ω]} (1)

Based on the Bayes theorem in Eq. (2):

Pr[s|o,Ω] ∝ Pr[o|s,Ω] · Pr[s|Ω], (2)

The likelihood probability Pr[o|s,Ω] in Eq. (2) describes the relationship between
OF and hidden SF. In this work the conditional independent assumption is
adopted to make the model solvable and tractable. Hence, Pr[o|s,Ω] can be
calculated by Eq. (3):

Pr[o|s,Ω] =
∏

(t,n)

Pr[ot,n|st,n, Ω]. (3)

For the typical Gaussian distribution, the random variables of OF have the
following probability density functions:

am(ot,n) = Pr[Ot,n = k|St,n = m, θm] =
1√

2πσ2
m

exp(− (k − μm)2

2σ2
m

), k ∈ O, m ∈ S,

(4)
with the parameters θm = (μm, σm), and k,m are the values of observation
and hidden state, respectively. Prior probability Pr[s|Ω] in Eq. (2) describes the
interaction of hidden states between network nodes. Pseudolikelihood and first-
order Markovianity are utilized to simplified the joint probability:

Pr[S = s|Ω] �
∏

(t,n)

Pr[st,n|sNS
t,n

, sNT
t,n

, λ], (5)
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where N
S
t,n denotes the spatial neighboring nodes of node xt,n, N

T
t,n denotes

the corresponding one-hop temporal neighbor of node xt,n. Based on the
Hammersley-Clifford theorem, the partial probability can be written as

bt,n(m) = Pr[st,n|sNS
t,n

, sNT
t,n

, λ] =
1

Zt,n(λ)
exp(−Ut,n(m|λ)),m ∈ S, (6)

where Zt,n(λ) =
∑

m∈S
exp(−Ut,n(m)) and Ut,n(m) are the marginal partition

function and marginal energy function, respectively. And Ut,n(m) has the form

Ut,n(m) = εt,n
∑

n′∈{NS
t,n,N

T
t,n}

Vt,n(m, sn′), (7)

where εt,n = 1/(|NS
t,n| + |NT

t,n|) denotes the normalized factor of node energy,
|NS

t,n| and |NT
t,n| are the number of spatial and temporal neighbor of node xt,n,

respectively. Potential function Vt,n(m, sn′) defined by

Vt,n(m, sn′) =

{
0, (sn′ = m)
β, (sn′ �= m)

, n′ ∈ {NS
t,n,NT

t,n}, (8)

where β denotes the parameter correspond to the pairwise interactions between
two nodes.

2.3 Algorithm

Infer hidden SF according to the MAP criterion satisfies Eq. (1), the pseudocode
is shown in Algorithm 1.

Algorithm 1 Infer Hidden SF Algorithm
1: function Infer Hidden SF(o, Ω)
2: Initialize : s(0);
3: for all xt,n ∈ E do
4: for all m ∈ S do
5: am(ot,n) = Pr[Ot,n = k|St,n = m, θm];
6: bt,n(m) = Pr[St,n = m|s

NS
t,n

, s
NT
t,n

, λ];

7: ξt,n(m) = am(ot,n)bt,n(m);
8: end for
9: st,n ← arg maxm∈S

ξt,n(m);
10: end for
11: ∀xt,n ∈ E : ŝt,n ← st,n;
12: return ŝ;
13: end function
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Input of the algorithm are the observation of network behavior o and param-
eter of model Ω, output is the hidden state of the network. In the initialization
process (2nd line), s(0) can be obtained by prior knowledge on OF and hidden SF.
For every node in network (3rd line), algorithm traverses all the potential hidden
states (4th line), then choose the state that has maximum probability as infer
result (9th line). Note that the probability of a potential hidden state includes
two parts based on Eq. (2), the first part is likelihood probability in Eq. (4),
denoted by am(ot,n) in algorithm (5th line), and the second part is partial prior
probability in Eq. (6), denoted by bt,n(m) in algorithm (6th line).

Similar to most machine learning-based applications, parameter learning is
required before using model. This work uses EM algorithm to estimate parame-
ters. The core of EM algorithm is Q function, which is defined by

Q(Ω|Ω(i)) = Es{ln Pr[o, s|Ω]|o,Ω(i)}, (9)

where Ω(i) and Ω denote the parameter sets obtained in the ith iteration and to
be estimated in the (i + 1)th iteration, respectively.

A computable form of Q function of this work is shown in Eq. (10), where
QA(μ(i+1)

m , σ
(i+1)
m ) and QB(β(i+1)) denote the first term and the second term on

the right-side of the second equal sign, respectively. Then the model’s param-
eters can be estimated by maximizing QA(μ(i+1)

m , σ
(i+1)
m ) and QB(β(i+1)) inde-

pendently since they are not related.

Q(Ω|Ω(i)) = Es{ln Pr[o, s|Ω]|o,Ω(i)}
=

∑

m∈S

∑

t,n

Pr[St,n = m|Ot,n = k,Ω(i)] · ln Pr[Ot,n = k|St,n = m,Ω]+

∑

m∈S

∑

t,n

Pr[St,n = m|Ot,n = k,Ω(i)] · ln Pr[St,n = m|Ω]

= QA(μ(i+1)
m , σ(i+1)

m ) + QB(β(i+1))

(10)

In this work, parameter β is obtained by empirical approach, and the parame-
ters Ω = {μm, σm},m ∈ S can be estimated by by maximizing QA, and obtained
by the following equation:

⎧
⎪⎨

⎪⎩

μ
(i+1)
m =

∑
t,n Pr(i) [st,n|ot,n]ot,n
∑

t,n Pr(i) [st,n|ot,n]

(σ(i+1)
m )2 =

∑
t,n Pr(i) [st,n|ot,n](ot,n−µ(i+1)

m )2
∑

t,n Pr(i) [st,n|ot,n] .
(11)
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Algorithm 2 Parameter Estimation Algorithm
1: function Parameter Estimation(o)

2: Initialize : i ← 0, Ω(i) ← {μ
(i)
m , σ

(i)
m , ∀m ∈ S}, L(i) ← 0, Cem;

3: repeat
4: s(i) ← Infer Hidden SF(o, Ω(i));
5: {μ̂m, σ̂m} ← Update(QA, Ω(i), s(i)), ∀m ∈ S;
6: i ← i + 1;
7: Ω(i) ← {μ̂m, σ̂m, ∀m ∈ S};
8: L(i) ← ∑

m

∑
t,n ln ξt,n(m|si−1, Ω(i));

9: until |L(i) − L(i−1)| ≤ Cem

10: Ω̂ ← Ω(i);
11: return Ω̂ ;
12: end function

Pseudocode of Parameter Estimation Algorithm is shown in Algorithm 2.
Input of the algorithm is historical observation of network nodes, i.e. the training
data of the model, output are the parameters of model. Parameters {μ̂m, σ̂m}
update (5th line) based on Eq. (11). Cem denotes the given convergence condition
for the iteration of algorithm, which measures the fitting degree of the model
to the training data. To control the iteration process of algorithm, let L =∑

s ln Pr[o, s|Ω] denote the overall logarithmic likelihood.

3 Experiment

In this section, three network scenarios are designed to validate GNB2A. The
scenarios are selected to demonstrate GNB2A is suitable from a wireless physical
network to a logical connected network.

In WSN scenario, GNB2A is applied to detect events in the environment
from the unreliable sensed data. The gradual depletion of the sensors’ energy or
sensors are compromised by attacker, the information transmitted by the sensors
is inevitably subject to a degree of unreliability and error. In this experiment,
WSN monitoring environmental variables (temperature here), 1000 sensor nodes
are randomly distributed in the environment, and the base temperature data
originates from the Intel Berkeley Research Lab1. A Gaussian noise is randomly
added to the temperature data to model external disturbance. Neighboring nodes
of node k consist of all nodes that are within a distance d from node k.

Events in this scenario defined as {high temperature, medium temperature,
low temperature}, i.e., the hidden states of nodes. The observation of a node is
the sensed data, due to the unreliability of sensed data, the real event may not
be perceived directly from the threshold based approach, as shown in Fig. 3(a),
three states are mixture in the environment. When applied GNB2A, the events
are detected, and the environment are divided into three temperature regions,
detection result is shown in Fig. 3(b). In this work, Accurate Rate and Macro

1 http://db.csail.mit.edu/labdata/labdata.html.

http://db.csail.mit.edu/labdata/labdata.html
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Fig. 3. Comparison of two approaches for detecting temperature events.

F1 are selected to evaluate the performance, Accurate Rate is the fraction of all
correctly estimated state instances to all instances, Macro F1 is the arithmetic
mean value of F1, the higher evaluation metric represents the better performance.
Performance comparison is shown in the Table 1, it indicates that GNB2A out-
performs the threshold based approach in WSN scenario.

Table 1. Performance comparison

Scenario
Approach

Performance
Accurate rate Macro F1

WSN Threshold based 72.6% 71.1%

GNB2A 92.7% 91.6%

Internet Kmeans 90.1% 89.2%

GNB2A 96.7% 96.0%

SN Kmeans 89.6% 89.6%

GNB2A 96.6% 96.6%

In training process, training data originates from the historical sensed data.
The parameters are convergent after 9 or 10 iterations, as shown in Fig. 4, it
indicates algorithm converges quickly. And the parameters Ω = {μm, σm},m ∈ S

in this scenario describe the attributed of event. From a statistical point of
view, observations can be expressed as a Gaussian mixed model, three Gaussian
distribution represent three types of temperature event, as shown in Fig. 5. Due
to the unreliability of sensed data, the sensed data of different temperature event
are overlapping, it can not be distinguished accurately by a threshold based
approach. By utilizing spatio-temporal context of network, GNB2A can achieve
better performance in detecting events.
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Fig. 5. Distribution of observations.

In Internet scenario, GNB2A is applied to detect network state during a
DDoS attack. DDoS attack is simulated in MATLAB. A small world network
with 128 nodes and 257 links is generated, some nodes are chosen as botnet,
sending packets to the victim simulates a SYN flood attack. The observation of
a node in this scenario is entropy of destination IP address and the arrival rate
of packets. Network events define as abnormal status of the traffic passing the
network node, three discrete states are used to describe the abnormal status of
traffic during a DDoS attack, i.e. {S1,S2,S3,}, S1 denotes the low abnormality,
and S3 denotes high abnormality.

The training data comes from synthetic traffic data, convergence of parame-
ters and distribution of observations are similar to WSN scenario. Table 1 shows
the performance comparison, it indicates that GNB2A outperforms Kmeans app-
roach. GNB2A can detect the abnormality of network nodes effectively. The
reason for the performance gain is that GNB2A combines spatial and temporal
neighbors’ states, which gets more information to detect network events.

In Social Network (SN) scenario, GNB2A is applied to detect the spammers.
Considering a Short Message Service (SMS) worm propagates in social network,
when a user gets infected (spammer), it sends SMS spam to others, and mean-
while the worm propagates via user’s contact list. In this scenario, a scale free
network with 128 nodes and 253 links is built, SMS worm propagation is mod-
eled by Susceptible-Infected (SI) model and a hierarchical infection probability
is used. The features of user according to the previous analysis [7], observation
of “average SMS text length” is selected, the hidden states of a user are defined
as {spammer, non-spammer}. Apply GNB2A, the worm outbreak is discovered
by inferring from users’ behavior.

Convergence of parameters and distribution of observations are similar to
WSN scenario. In test process, when applied Kmeans approach, it may not
be sufficient to estimate whether a user is spammer or not based on the user’s
behavior feature. While GNB2A combines user’s previous and neighboring users’
information to detect spammers, it gets more information and therefore better
performance, Table 1 shows the performance comparison. GNB2A can tract the
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Fig. 6. The propagation of social network worm.

dynamic propagation of worm, as shown in Fig. 6, GNB2A is approximate to
theoretical SI model in comparison to Kmeans approach. The result shows that
GNB2A outperforms the Kmeans approach.

4 Conclusion

This work focuses on detecting network events, GNB2A is proposed to solve this
problem, a hidden Markov random field is introduced to model the relationship
between behavior layer and event layer of network, correlation characteristics
between network events and time continuity of events are modeled by first-
order Markovianity. An expectation maximum algorithm is derived to estimate
parameters, and a maximum a posteriori criterion is utilized to detect network
events. Experimental results demonstrate the generality and practicability of
GNB2A.
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