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Abstract. Graph signal processing (GSP) is an emerging field which
studies signals lived on graphs, like collected signals in a sensor net-
work. One important research point in this area is graph signal recon-
struction, i.e., recovering the original graph signal from its partial col-
lections. Matrix inverse approximation (MIA)-based reconstruction has
been proven more robust to large noise than the conventional least square
recovery. However, this strategy requires the K-th eigenvalue of Lapla-
cian operator L. In this paper, we propose an efficient strategy for
approximating the K-th eigenvalue in this GSP filed. After that, the
MIA reconstruction method is modified by this proposed substitution,
and thereby accelerated. Consequently, we apply this modified strategy
into artificial graph signal recovery and real-world semi-supervised learn-
ing field. Experimental results demonstrate that the proposed strategy
outperforms some existed graph reconstruction methods and is compa-
rable to the MIA reconstruction with lower numerical complexity.
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Semi-supervised learning

1 Introduction

With massive production of irregularly structured signals, graph signal process-
ing (GSP) becomes an overwhelming research filed, which intends to extend
classical discrete signal processing tools into graph signal domain [1,2]. Recently
developed GSP technologies, like graph-based filtering, sampling and reconstruc-
tion on graphs, have been applied into various real-life data analysis, such as
transportation network monitoring, semi-supervised learning and recommenda-
tion systems [3–5].

Graph signal reconstruction attempts to recovery a smooth graph signal from
its partial observed samples (noiseless or corrupted). A noiseless bandlimited
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graph signal can be perfectly recovered by its samples if the sample size is larger
than its bandwidth [6]. Authors in [7,8] attempted to find out the analogous
Nyquist-Shannon sampling theorem for graph signals and proposed some instruc-
tive graph sampling and reconstruction strategies. Least square (LS) reconstruc-
tion was investigated in [9] for designing a sampling condition for unique recovery.
However, the classical LS method requires full eigen-pair decomposition of the
graph Laplacian operator and large matrix inversion. Authors in [10] proposed
an iterative least squares reconstruction (ILSR) algorithm based on projection on
convex sets theorem for detouring above complex computations. A generalized
ILSR algorithm was proposed in [11] based on frame theory, which has faster con-
vergence rate compared to conventional ILSR algorithm. Authors in [12] designed
a robust graph signal recovery strategy via truncated Neumann series, termed
as matrix inverse approximation (MIA) reconstruction, which approximates the
LS solution but without full eigen-decomposition or matrix inversion. Another
approach for recovering a graph signal is regularization, which makes use of the
inherited smoothness property of graph signals [13].

In this paper, we focus on designing an efficient strategy for accelerating the
existed MIA reconstruction which needs the K-th eigenvalue of Laplacian opera-
tor L. We propose an approximation method for computing this K-th eigenvalue
in the GSP filed. Then, the MIA reconstruction method is improved by using
this proposed substitution. In the sequence, we evaluate the performance of this
method by applying it to artificial graph signal recovery and real-world semi-
supervised learning field. Simulation results show that the proposed strategy is
superior to some existing methods and is comparable to the MIA reconstruction
with lower numerical complexity.

The remainder of paper is organized as follows. We first provide the prelimi-
nary background and MIA-based reconstruction strategy in Sect. 2 and propose
the accelerated MIA graph signal reconstruction algorithm based on fast eigen-
value approximation in Sect. 3. Section 4 presents simulation results. Conclusions
are presented in Sect. 5.

2 Notation and Background

A graph is represented as G = {V, E ,W}, where V and E denote the set of nodes
and edges, and weight W(i, j) = wi,j on edge (i, j) ∈ E represents the similarity
between node i and node j. The degree matrix D is defined by D = diag(d) in
which di = Σjwi,j . Then, the normalized graph Laplacian matrix can be writ-
ten as L = D−1/2LD−1/2, which is adopted as the variation operator in this
paper [14]. L is a symmetric and positive semi-definite matrix whose eigenval-
ues and eigenvectors are 0 = λ1 ≤ λ2 ≤ ... ≤ λN ≤ 2 and U = {u1,u2, ...,uN}
respectively. A graph signal is a function f : V → R, which can also be repre-
sented as a vector f ∈ R

N , where each element represents the function value on
its corresponding node. Analogous graph Fourier transform (GFT) of a signal
f is defined as f̂ = UT f and the inverse GFT is f = Uf̂ . A signal is called
bandlimited when there exists a number K ∈ {1, ..., N} so that its GFT satisfies
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f̂i = 0, for all i > K, and the smallest K is called bandwidth of a graph signal
f . Graph signals with bandwidth at most K are called K-bandlimited (K-BL)
graph signals and can be expressed as f = UK f̂K , where UK means the first K
columns of U. We use Sc to denote the complementary set of S. A restriction
of a matrix A to rows in set S1 and columns in set S2 is denoted by the sub-
matrix AS1S2 . ASS is abbreviated as AS . Moreover, we use Su to represent a
uniqueness set [15] in this paper, and Sr to represent a random sampling set. I
is a unit matrix whose dimension is determined by context.

Graph sampling is defined as a linear mapping fS = Cf , in which the sam-
pling operator C ∈ F

M×N is [16]

Cij =

{
1, j = Si

0, otherwise
(1)

where Si is the i-th sampling index, F
M×N is the set of sampling operators

corresponding to all sampling set S such that |S| = M .

2.1 Matrix Inversion Approximation-Based Reconstruction
Strategy

A sampled K-BL graph signal can be written as fS = CUKf̂K based on previ-
ously introduced notations. In noiseless condition, if rank(CUK) = K, a unique
and perfect reconstruction f̃ can be obtained via the LS solution [17]

f̃ = UK(CUK)†fS (2)

where (·)† denotes the pseudo-inverse operator.
According to proposition 1 in [12], this LS solution is equal to

f̃ = UK [(CUK)T CUK ]−1(CUK)T fS

= UK

∞∑
l=0

[I − (CUK)T (CUK)]
l
UT

KCTfS
(3)

After a series of derivations of (3), authors in [12] proposed the MIA recon-
struction strategy which requires neither full eigen-decomposition nor matrix
inversion:

f̃ = TVSΓ̃fS (4)

where T = UKUT
K and Γ̃ =

∑L
l=0 (IS − TS)l.

The ideal low-pass graph filter T has a kernel function as follows

h(λ) =

{
1, λ ≤ λK

0, λ > λK

(5)

h(λ) can be approximated by a truncated Chebyshev polynomial, thereby
T will be approached by TPloy =

∑N
i=1

(∑p
j=0 βjλ

j
i

)
uiu

T
i =

∑p
j=0 βjLj with-

out the information of UK . It is clear that λK is required for realizing the
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approximation of T, since it is the cut-off frequency of this ideal low-pass fil-
ter. Actually, the complexity for calculating λK is O(N3) in general. If Locally
Optimal Block Prec-conditioned Conjugate Gradient (LOBPCG) method [18] is
adopted for obtaining λK , its complexity is O ((|E| M + TM3

)
T1

)
[14]. Authors

in [12] stated that λK can be computed via a series of fast algorithms, under
which its complexity will be O(RN), where K < R � N . In order to reduce the
complexity for obtaining λK and simplify the caculation steps, we propose an
efficient strategy in this GSP field to approximate λK .

3 Accelerated MIA Graph Signal Reconstruction Based
on Fast Eigenvalue Approximation

In this section, we propose a simple method to calculate λK of L in the GSP field
based on the characteristics of cut-off frequency introduced in [19]. After that, we
use the approximated eigenvalue to modify the conventional MIA reconstruction
strategy.

3.1 Simple Strategy for Approximating λK of LLL in the GSP Field

A set Su ⊂ V is called a uniqueness set for the space PWω(G), any signal
f ∈ PWω(G) can be perfectly reconstructed from its noiseless samples fSu

[15].
Based on this definition and the work achieved in [8], the cut-off frequency of
Su can be estimated as

ωc(Su) = lim
j→∞

Ωj(Su) ≈ Ωk(Su) � (σ1,k)1/k (6)

where Ωk(Su) denotes an estimator of the ideal cut-off frequency and σ1,k denotes
the smallest eigenvalue of the submatrix (Lk)Sc

u
. It is obvious that Ωk(Su) tends

to provide a better estimate with larger k, while the complexity will correspond-
ingly increase. Moreover, as claimed in [19], the exact ωc(Su) actually can be
obtained by characterizing the uniqueness set in a different way, and the follow-
ing theorem is presented in that paper.

Theorem 1. ([19]) For a graph G with normalized Laplacian L with eigenvalues
0 = λ1 ≤ λ2 ≤ ... ≤ λN and corresponding eigenvectors u1, ...,uN ,the cut-off
frequency of a subset of nodes Su is given by

ωc(Su) = max{λi : dimN [u1, ...,ui,ej : j ∈ Sc
u] = 0} (7)

Hence Su is a uniqueness set for PWω(G) if and only if ω ≤ ωc(Su).

Let Su = {1, ..., N} − {j1, ..., jN−K}, then {ej : j ∈ Sc
u} = {ej1 , ...,ejN−K

}.
According to Steinitz exchange lemma, combined with the property that
u1, ...,uK are linearly independent, we can always find ej1 , ...,ejN−K

from stan-
dard basis of RN to make {u1, ...,uK ,ej1 , ...,ejN−K

} a basis for R
N . Based on
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theorem that for a matrix A ∈ R
M×N , rank(A) + dimN (A) = N, when i = K,

we can derive

dimN [u1, ...,ui,ej : j ∈ Sc
u]

= K + (N − K) − rank(u1, ...,uK ,ej1 , ...,ejN−K
)

= 0

This actually means ωc(Su) ≥ λK based on Theorem 1. In the same way,
when i = K + 1, we will have

dimN [u1, ...,ui,ej : j ∈ Sc
u]

= K + 1 + (N − K) − rank(u1, ...,uK+1,ej1 , ...,ejN−K
)

= 1 	= 0
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Fig. 1. Experimental result for evaluating equation (9), the estimated cut-off frequency
of a random set Sr with |Sr| = 50 and the exact solution λ50 of L.

which implies ωc(Su) < λK+1.
From Theorem 1, we know ωc(Su) must be one eigenvalue of L. Moreover,

we have clarified that ωc(Su) ≥ λK and ωc(Su) < λK+1, thus leading to an
important investigation in the GSP field that ωc(Su) = λK ||Su|=K . In fact, it
is empirically illustrated that picking randomly ej1 , ...,ejN−K

will always lead
{u1, ...,uK ,ej1 , ...,ejN−K

} to be a basis of R
N , which implies that a random

sampling set Sr = {1, .., N}−{j1, ..., jN−K} can also get this conclusion. There-
fore, the exact solution of the cutoff frequency of a random set Sr with |Sr| = K
can be solved by

ωc(Sr) = λK ||Sr|=K (8)

Equations (6) and (8) actually present an excellent method to compute λK in
this GSP field. After combining (6) and (8), we propose the following corollary:

Corollary 1. For a graph G with normalized Laplacian L whose eigenvalues are
0 = λ1 ≤ λ2 ≤ ... ≤ λN , its K-th eigenvalue λK can be approximate by

λK ≈ (σ1,k)1/k||Sr|=K (9)
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where Sr ⊂ V is randomly selected set with |Sr| = K, σ1,k denotes the smallest
eigenvalue of the reduced matrix (Lk)Sc

r
. k is an estimation parameter which

controls the trade-off between estimation accuracy and computational complexity,
as exhibited in (6).

In this paragraph, we perform a numerical experiment to illustrate Corol-
lary 1. We randomly generate a weighted graph with 500 nodes, where the con-
nection probability between each pair is 0.3 and the weights on edges are ran-
domly and independently generated from 0 to 1. Then we randomly select a
sample set Sr such that |Sr| = 50. With the increase of k, the approximate and
exact solutions of the eigenvalue converge to a same value. As shown in Fig. 1,
the larger k will make the (σ1,k)1/k closer to λ50.

Algorithm 1 Outline of the proposed A-MIA reconstruction algorithm
Input: Graph variance operator LLL, observed signal fS , bandwidth K , parameters L

and k
Output: Reconstructed graph signal f̃

1: Randomly select K nodes to constitute a set Sr

2: Approximate λK of LLL by λK = (σ1,k)1/k||Sr|=K

3: Calculate the truncated Chebyshev polynomial coefficients of ha(λ) in (11) and
then compute TPloy

a =
∑p

j=0 βjLj

4: Compute Γ̃a =
∑L

l=0

[
IS − (TPloy

a )S
]l

5: Return f̃ = (TPloy
a )VSΓ̃afS

3.2 A-MIA Reconstruction Algorithm and Complexity Analysis

As we discussed in Sect. 2.1, λK (L) is required to approximate the ideal low-
pass filter T. As discovered in Corollary 1, we can estimate λK (L) efficiently by
Eq. (9). According to (5) and (9), the kernel function can be approximated as

ha(λ) =

⎧⎪⎨
⎪⎩

1, λ ≤ (σ1,k)1/k||Sr|=K

0, λ > (σ1,k)1/k||Sr|=K

(10)

where ha(λ) denotes accelerated estimation of the original h(λ).
With this new kernel function ha(λ), we can compute its corresponding

Chebyshev matrix polynomial TPoly
a more efficiently, since the calculation of

λK is much simpler than the exact computation. Combining (4) and (10), we
formally propose the accelerated MIA (A-MIA) reconstruction and illustrate the
details of this modified MIA strategy in Algorithm 1.

f̃ = (TPloy
a )VSΓ̃afS (11)
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where Γ̃a =
∑L

l=0 [IS − (TPloy
a )S ]l.

If the bandlimited graph signal is recovered by LS method, as we can see from
Eq. (2), the eigenvector matrix U is required whose computation complexity is
O(N3) in general. While the conventional ILSR method doesn’t involve eigen-
pair decomposition, it is essentially an iterative algorithm whose complexity
and performance depends on the required steps for convergence. Both the MIA
and the A-MIA algorithm just need to compute λK of L. The computational
complexity of λK in the MIA method is O(RN) via a series of fast algorithms,
where K < R � N . As described in subsection D in section IV of paper [14], the
complexity of computing (σ1,k)1/k||Sr|=K , that is λmin

[
(Lk)Sc

r

]
, is O(kN) from

the Rayleigh quotient perspective, where k < K in general. In experiments, we
set k = 20 and K = 50, which means the A-MIA algorithm is theoretically faster
than the MIA method. Hence, we can safely claim that we propose a faster and
simplified way for getting λK . The performance of this estimator compared to
the exact one will be demonstrated in experiments.
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(b) Reconstruction MSE in G2.

Fig. 2. Simulation results for different reconstruction strategies where graph signals
are all sampled randomly.

4 Experiments

In this section, we conduct some experiments to evaluate the efficiency and
performance of the proposed reconstruction strategy. All experiments were per-
formed in Matlab R2016a, running on a PC with Intel Pentium(R) 2.9 GHZ CPU
and 8 GB RAM.

4.1 Artificial Graphs and Graph Signals

For artificial data-related simulations, we use the following models [14]:
Artificial graphs: (G1) Erdös-Renyi random graph (unweighted) with 1000
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nodes and connection probability 0.01; (G2) Unweighted Watts-Strogatz ‘small
world’ model [20] with 1000 nodes, degree 8 and rewriting probability ρ = 0.1.

Artificial signals: The true signal is noise-free and approximately bandlim-
ited with an exponentially decaying spectrum. The spectrum GFT coefficients
are randomly generated from N (1, 0.52), followed by using the following filter to

rescale h(λ) =

{
1, λ ≤ λK

e−4(λ−λK ), λ > λK

, where we choose K = 50.

Other Parameters : L is set to 10 and k is fixed at 20. The Chebyshev
function in the GSP-toolbox package [21] is adopted to realize the Chebyshev
polynomials approximation, where p = 10 and α = 8. Random sampling is used
for all reconstruction strategies.

As we analyzed in Sect. 3.2, the complexity of the proposed A-MIA algo-
rithm is theoretically lower than the conventional MIA algorithm. Moreover,
experimental results depicted in Fig. 2a, b demonstrate that the A-MIA algo-
rithm is superior to the LS and ILSR algorithm and achieves almost the same
performance as the MIA algorithm with lower complexity in both G1 and G2.

(a) Pixel images of handwritten digits.
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(b) Classification accuracy comparison.

Fig. 3. Performance comparison for different reconstruction strategies on the hand-
written digits dataset.

4.2 Application in the Semi-supervised Learning Field

We apply the proposed algorithm to a classification task on the USPS handwrit-
ten digits dataset [22]. This dataset consists of 1100 pixel images of size 16 × 16
for each digit 0 to 9. We randomly select 100 samples from dataset for each
digit to form a subset which will consist of 1000 feature vectors of dimension
256. For each instance, these selected feature vectors are used to constructed a
symmetrized κ-nearest neighbor graph via Gaussian kernel weighting function

W(i, j) =

{
exp

(
− [dist(i,j)]2

2σ2

)
, if dist(i, j) ≤ κ

0, otherwise
, where dist(i, j) = ‖fi − fj‖22,

and fi is the feature vector composed of pixel intensity values of the i-th image.
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We fix parameter σ = 1 and κ = 10. The bandwidth K of the graph signal is
approximately 50. We adopt the spectral proxies sampling algorithm [8] to select
the nodes to label, based on which different recovery strategies are evaluated via
reconstruction accuracy.

Figure 3a shows the pixel images of different handwritten digits. Figure 3b
compares the classification accuracy of different reconstruction methods in terms
of the percentages of labeled data. It depicts that our proposed method has
higher accuracy than the conventional LS and ILSR algorithm and achieves
almost the same performance as the original MIA reconstruction with theoret-
ically lower complexity. Both the MIA and A-MIA reconstruction algorithms
utilize an approximate low-pass filter TPloy which has a slowly decaying spectral
kernel. Therefore, they can catch more information of approximately bandlimited
graph signals, thus leading to superior performance when applied into real-world
tasks.

5 Conclusion

In this paper, we propose an efficient method for approximating the K-th eigen-
value of the Laplacian operator in the GSP filed, and modify the conventional
MIA reconstruction strategy by the approximate eigenvalue. Compared with
some existed methods, the modified strategy can achieve better performance in
both artificial datasets and real-world semi-supervised tasks with lower complex-
ity.

References

1. Shuman, D., Narang, S., Frossard, P., Ortega, A., Vandergheynst, P.: The emerging
field of signal processing on graphs: extending high-dimensional data analysis to
networks and other irregular domains. IEEE Signal Process. Mag. 30(3), 83–98
(2013)

2. Sandryhaila, A., Moura, J.: Big data analysis with signal processing on graphs:
representation and processing of massive data sets with irregular structure. IEEE
Signal Process. Mag. 31(5), 80–90 (2014)

3. Sakiyama, A., Tanaka, Y., Tanaka, T., Ortega, A.: Efficient sensor position selec-
tion using graph signal sampling theory. In: Acoustics, Speech and Signal Process-
ing, pp. 6225–6229 (2016)

4. Gadde, A., Anis, A., Ortega, A.: Active semi-supervised learning using sampling
theory for graph signals. In: Proceedings of 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 492–501 (2014)

5. Chen, S., Sandryhaila, A., Moura, J., et al.: Adaptive graph filtering: multiresolu-
tion classification on graphs. In: Proceedings of 2013 IEEE Global Conference on
Signal and Information Processing (Global SIP), pp. 427–430. IEEE (2013)
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