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Abstract. Nowadays, lots of technical challenges emerge focusing on
user association in ever-increasingly complicated 5G heterogeneous net-
works. With distributed multiple attribute decision making (MADM)
algorithm, users tend to maximize their utilities selfishly for lack of coop-
eration, leading to congestion. Therefore, it is efficient to apply artificial
intelligence to deal with these emerging problems, which enables users to
learn with incomplete environment information. In this paper, we pro-
pose an adaptive user association approach based on multi-agent deep
reinforcement learning (RL), considering various user equipment types
and femtocell access mechanisms. It aims to achieve a desirable trade-off
between Quality of Experience (QoE) and load balancing. We formulate
user association as a Markov Decision Process. And a deep RL app-
roach, semi-distributed deep Q-network (DQN), is exploited to get the
optimal strategy. Individual reward is defined as a function of trans-
mission rate and base station load, which are adaptively balanced by
a designed weight. Simulation results reveal that DQN with adaptive
weight achieves the highest average reward compared with DQN with
fixed weight and MADM, which indicates it obtains the best trade-off
between QoE and load balancing. Compared with MADM, our approach
improves by 4% ∼ 11%, 32% ∼ 40%, 99% in terms of QoE, load balanc-
ing and blocking probability, respectively. Furthermore, semi-distributed
framework reduces computational complexity.

Keywords: Heterogeneous networks · User association · Multi-agent
Deep Q-network

1 Introduction

In order to meet the demand of surging traffic, 5G heterogeneous networks (Het-
Nets) have emerged as an essential solution, especially through the deployment
of lower-power small cell base stations (BSs). Compared with traditional cel-
lular networks, HetNets differ primarily in maximum transmit power, coverage
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area and spatial density. A survey demonstrates serious penetration losses of the
buildings degrade quality of service (QoE) [1]. Hence, femtocells with different
access mechanisms have been proposed, where subscribers of femtocells are the
users registered in it and nonsubscribers are the users not registered in it [2].

– Closed access: Closed access femtocells only provide services for subscribers,
which guarantee privacy and security.

– Hybrid access: Resources of hybrid access femtocells are reserved for sub-
scribers, who may get higher rate than nonsubscribers.

– Open access: Open access femtocells are available to all users.

It is hard to cope with user association because of network heterogeneity
and limited resources, which leads to user competitions and network conges-
tion [3]. Due to incomplete information interactions and dynamic environment
changes, emerging artificial intelligence method turns into an efficient tool for
user association. A network-assisted approach was proposed with Q-learning to
derive network information and satisfaction-based multi-criteria decision-making
method was used to guide user behavior [4]. In [5], context-aware multiple radio
access technology (multi-RAT) was studied. It made double decision on which
exact RAT and access point to occupy with ant colony algorithm. However,
complicated centralized algorithms have high requirements for the central con-
troller’s computational ability. In [3], the evolutionary game and Q-learning were
implemented to help distributed individuals make decisions independently. It
pursues high QoE without taking load balancing into consideration, which may
bring about congestion. Moreover, users tend to maximize their utilities selfishly
for lack of cooperation, such as distributed multiple attribute decision making
(MADM), which results in the one-sidedness of user decisions [6]. The above
related works didn’t take into account QoE, load balancing and computational
complexity simultaneously when dealing with user association. Therefore, one of
the crucial goals for user association in HetNets is to achieve a desirable tradeoff
between QoE and load balancing with an appropriate user association algorithm.

In [7], a deep RL method, termed a deep Q-network (DQN), was proposed.
In complex and dynamic HetNets, users can learn optimal strategy from high-
dimensional state and action space using DQN. In this paper, we propose an
adaptive user association approach based on multi-agent DQN. The main con-
tributions include:

– Our approach aims to obtain the desirable trade-off between QoE and load
balancing. Considering user equipment (UE) types and femtocell access mech-
anisms, we exploit semi-distributed multi-agent DQN framework to achieve
the optimal strategy. It can transfer the main calculations from central con-
troller to UEs and reduce computational complexity.

– We formulate user association as a Markov decision process (MDP). And
we define the individual reward as a weighted function of transmission rate
and BS load. The weight is designed into the action. Such reward provides
evaluative feedback for each user to make decision adaptively.
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– Simulation results show that the proposed approach converges well and
achieves the best trade-off between QoE and load balancing. It yields gains
in terms of QoE and load balancing and significantly decreases the blocking
probability compared with MADM.

2 System Model

We focus on the downlink (DL) transmission scenario of two-tier HetNet. The
system model, including information sharing and distributed association scheme,
is shown in Fig. 1. We consider a macrocell and N femtocells. The set of
users is denoted as U = {u|u = 1, 2, . . . ,K}. And the set of BSs is denoted as
Φ = {m|m = 0, 1, . . . , N}, where macrocell is indexed by 0.

Fig. 1. System model.

The two-tier HetNet uses orthogonal spectrum with an assumption of co-tier
interference [2,8]. Every femtocell is equipped with open access or hybrid access
signed by 0 and 1 respectively. Therefore, the set of access mechanisms for BSs
is X = {0, 1}. Each BS consists of M sub-bands with bandwidth b, which are
referred to time-frequency radio blocks (RBs). Hence the total bandwidth for
BS is denoted as W = Mb. Besides, transmission power is uniformly allocated
to each sub-band [8].

The spatial distribution of femtocells and users is modeled by homogeneous
Poisson Point Process (PPP) with density λf and λu respectively [9]. Each user
can be associated with one BS simultaneously. UE type includes registration
attribute and service type. The registration attribute set is A = {0, 1}, where
subscribers are marked by 0 and nonsubscribers by 1. We consider two kinds of
service types as V = {0, 1}, where data traffic is indexed by 0 and voice calls by 1.
The set of required RBs for different service types is denoted as B = {βs|s ∈ V}.
Therefore, the bandwidth that BS m allocates to each user u with service type s
can be denoted as ϕm,u = η(x, y)bβs, where η(x, y) ∈ (0, 1]. η(x, y) is the match
factor between registration attribute x and access mechanism y, and x ∈ A and
y ∈ X . If nonsubscribers associate with hybrid access femtocells, resources allo-
cated to them will be reduced by η(x, y) < 1.
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Load factor υm is defined as the ratio of the allocated bands to the total
bandwidth in Eq. (1), which indicates the BS load. Im is the initial resource
utilization of BS m. BS is overloaded when υm ≥ 1 and under-loaded when
υm < 1. When BS is overloaded, it will randomly block some users until it is
under-loaded. Such users are regarded as blocked users, marked by set O.

υm =
Im +

∑

u∈U
ϕm,u

W
. (1)

The received signal-to-noise-plus-interference-ratio (SINR) is formulated as

γm,u =
ϕm,u

W Pmgm,u|xm,u|−α

ϕm,uN0 + IΦ̄f
u

, (2)

where gm,u is the exponentially distributed channel power with unit mean. |xm,u|
indicates the distance from BS m to user u. Pm is the transmit power of BS m, α
denotes the path loss exponent, and N0 is regarded as the power spectral density
of white Gaussian noise. The interference of user u is

IΦ̄f
u

=
∑

n∈Φf
u\m

δn
ϕn,u

W
Pngn,u|xn,u|−α. (3)

When IΦ̄f
u

= 0, the SINR degenerates into signal-to-noise-ratio (SNR). And
the feasible BS set of user u is Φf

u = {m|SNRm,u ≥ γth}, where γth is the SNR
threshold. The interference probability of BS n detected by an arbitrary user is
scaled by a thinning factor δn = min

(
ln
W , 1

)
, where ln is the resource utilization

of BS n [9]. δn indicates that the interference probability is related with the
sub-bands occupied. That is, if sub-bands are fully occupied, δn = 1, and the
interference from BS becomes larger than that of δn < 1.

3 Adaptive User Association Based on Multi-agent DQN

In this section, we first formulate the problem as a MDP and elaborate the state,
action and reward. Next, we review the basic conception of DQN adopted in this
paper. Finally, we show the semi-distributed multi-agent DQN framework, then
we get the optimal strategy using our proposed approach.

3.1 Problem Formulation

The BS environment consists of macrocell and femtocells in HetNet. In our
proposed approach, users play the role of agents and interact with the BS envi-
ronment. The parameters are defined as follows.

State. su indicates the state of agent (user) u with BS m selected, which is
defined as su = (wu, gm,u, ϕm,u, υm). wu ∈ Ω is the weight of transmission rate
discretized into F levels. Ω = {ω|ω = 1Δ, 2Δ, . . . , (F − 1)Δ} is the set of weight
and Δ = 1

F . And the state profile can be formulated as s = (s1, s2, . . . , sK).
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Action. Due to the indeterminacy of the weight, wu ∈ Ω has been designed
into the action. Current action of agent u can be denoted as au = (cu, wu),
where cu ∈ Φf

u and wu ∈ Ω. The action profile can be formulated as
a = (a1,a2, . . . ,aK).

Reward. Ru(su, s′
u,au) indicates the feedback received when agent u takes the

action au and turns out to be state s′
u from su [10]. The transmission rate of

agent u refers to Shannon formula, which is formulated in Eq. (4).

Uu(su, s′
u,au)=

{
ϕm,u(s′

u)log(1 + γm,u(s′
u)), u /∈ O(s′

u)
0, u ∈ O(s′

u) . (4)

Conclusions as a result, we draw the following reward as a function of trans-
mission rate and BS load as shown in Eq. (5).

Ru(su, s′
u,au) = wu(s′

u)
Uu(su, s′

u,au)
∑

u∈U
Uu(su, s′

u,au)
+ (1 − wu(s′

u))(1 − υm(s′
u)). (5)

There is a trade-off problem between transmission rate and BS load, which
are balanced by the designed weight wu. To seek high transmission rate, agent
sets large wu, which negatively affects BS load. Therefore, by such reward, each
agent can discover actions in a more effective way, in order to contribute to the
trade-off between QoE and load balancing.

3.2 Deep Q-Network

The main modification to online Q-learning in DQN module is to use a separate
target network Q̂u with weight θ−

u for generating the target action-value in
learning update [7]. Evaluation network Qu with weight θu is updated every
step while Q̂u is assigned by θu every H step. DeepMind has proposed the DQN
with the temporal-difference goal

yt
u = Ru(su, s′

u,au) + τmax
a′
u

Q̂u(s′
u,a′

u; θ−
u ), (6)

where agent takes action a′
u in the next step. t indicates current training step

and τ is a discounted factor. Therefore the update of θu can be formulated as

θt+1
u = θt

u + ρ{yt
u − Qu(su,au; θu)}∇Qu(su,au; θu), (7)

where ρ is the learning rate.

3.3 Proposed Algorithm

The proposed semi-distributed multi-agent DQN framework is illustrated in
Fig. 2. This figure shows the interactions between agents and BS environment.
After agents take actions, the information sharing scheme is executed. Then
agents transform to next states, get the reward feedbacks and perform updates.
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Fig. 2. Semi-distributed multi-agent DQN framework.

Algorithm 1 Multi-agent DQN Based Adaptive User Association
Initialize:

τ , ρ, ε, K, D with capacity M for every agent, replace iter H, training steps T ,
initial state profile s, Q with random weights θ, Q̂ with weights θ− = θ

Output:
Optimal strategy πopt

1: for t = 1 to T do
2: for u = 1 to K do
3: Observe state su
4: if rand() < ε then
5: Select a random action au

6: else
7: Select au = arg max

au

Qu(su,au; θu)

8: end if
9: Execute au, share ΓUL

u and acquire ΓDL
u

10: Share Uu and acquire UDL
u

11: Observe s′
u and acquire Ru(su, s′

u, au)
12: Store transition (su,au, Ru, s′

u) in Du, then sample minibatch from Du

13: Set yt
u according to Eq. (6) and perform a gradient descent on

(yt
u − Qu(su,au; θu))2 with respect to θu according to Eq. (7)

14: Set su = s′
u and reset Q̂u = Qu every H step

15: end for
16: Decrease ε
17: end for

Make a final optimal strategy πopt = a

The pseudo-code of multi-agent DQN based adaptive user association algo-
rithm is shown in Algorithm 1. D = (Du, u ∈ U) are the replay memories for
users. Q = (Qu, u ∈ U) with weights θ = (θu, u ∈ U) are evaluation networks
for users. And target networks for users are Q̂ = (Q̂u, u ∈ U) with weights
θ− = (θ−

u , u ∈ U).
At decision epochs, after current state su observed, every agent takes action

au, by exploration or exploitation (Line 3–8). In exploration mode, agent takes
action randomly with probability ε (Line 4–5). However, in exploitation mode,
agent takes action by maximum Q-value based on the previously learned Qu

(Line 6–7). Once agents take actions, they share ΓUL
u = (cu, ϕm,u) on the UL and
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acquire others’ information ΓDL
u = (ΓUL

i , i ∈ Ūu) on the DL, where Ūu indicates
users except for current agent u (Line 9). Next, agents share Uu on the UL
and acquire others’ transmission rates UDL

u = (Ui, i ∈ Ūu) on the DL (Line 10).
After that, agent u transforms to next state s′

u and gets evaluation feedback
Ru(su, s′

u,au) to drive the next more correct decision (Line 11).
By experience replay, we store the agent experiences, (su,au,Ru, s′

u) tran-
sition, into memory Du with finite capacity M . If the memory buffer of Du is
full, we overwrite with recent transitions. Next, with full replay memory, sample
uniformly minibatch from Du (Line 12). Then, with temporal-difference goal yt

u,
perform a gradient descent step on evaluation network Qu by RMSProp algo-
rithm (Line 13). It’s important to copy Qu to target network Q̂u every H step.
Q̂u is used for calculating yt

u for the following H steps (Line 14). The policy
during training is ε-greedy with ε annealed linearly. ε decreases with training
steps until there is no exploration process (Line 16). Finally, after each agent
repeats the above procedures T times, we get the optimal strategy πopt for all
users.

4 Performance Evaluation

Simulation results are presented in this section. The details of parameter setting
are shown in Table 1. The access mechanisms of femtocells, registration attributes
and service types of users are assigned randomly. If x=1 and y=1, match factor
η(x, y) = 0.6, otherwise η(x, y) = 1. We consider MADM as baseline approach.
Its utility function is formulated in Eq. (8) with fixed weight and users take
actions by maximum Ru,m.

Ru,m = wu
Uu,m∑

j∈Φf
u

Uu,j
+ (1 − wu)(1 − υm). (8)

All results are averaged with P Monto Carlo simulation epochs and evaluated
by four metrics. They are average reward, average transmission rate, standard
deviation of resource utilization rate and blocking probability, respectively. And
we consider fixed weights, w1,u = 0.2, 0.5, 0.8, in order to investigate the effects
of adaptive weight.

Figure 3a plots the convergency under user density λu=6 × 10−6, 9 × 10−6

and 1.3 × 10−5. It shows the average reward varying with the training steps.
Fluctuation of average reward indicates that the exploration probability ε works.
When ε decreases with training steps, reward tends to rise first and then con-
verges to a relative stable value within a certain range. It suggests that our
proposed approach converges well.

Figure 3b plots average reward varying against user density. The trade-off
performance is evaluated by average reward. When user density increases, aver-
age reward decreases because of higher blocking probability. As seen in this
figure, the proposed approach achieves the highest average reward compared with
any other approach, which indicates it obtains the desirable tradeoff between
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Table 1. Parameter setup.

Parameter Value

Area radius 500 m

Bandwidth W 20 MHz

Transmit power of two-tier HetNet {46, 20} dBm

Power spectral density of white Gaussian noise N0 −174 dBm

Path loss α 4

Femtocell density λf 4 × 10−6

Initial resource utilization of network Uniform distribution

Location of N femtocells PPP

Location of K users PPP

Sub-band bandwidth b 180 kHz

Required RBs B B = {10, 20}
Weight discretized level F 5

Monte Carlo simulation epochs P 300

Training steps T 20 K

SNR threshold γth 9.56 dB

Discounted factor τ 0.9

Learning rate ρ 0.05

Replace iter H 200

Exploration probability ε 0.2

Capacity M of replay memory Du 2000

(a) Average reward vs. training
step under DQN with adaptive
weight.

(b) Average reward vs. user den-
sity under different approaches.

Fig. 3. Average reward.

QoE and load balancing. DQN approaches have better performance than MADM
approaches. It shows that by information sharing and learning, users make better
decisions. MADM gets optimal strategy according to current network situation
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without cooperation, which leads users to simultaneously select low-load BSs
that can provide high transmission rate.

Figure 4 shows the comparison of QoE and load balancing. Figure 4a plots
average transmission rate against user density, which reflects QoE of users.
Figure 4b investigates the standard deviation of resource utilization rate among
BSs, which reflects load balancing of network. In Fig. 4a, QoE decreases when
user density increases. It is due to limited resources BSs can offer and larger inter-
ference probability from other BSs. This figure shows that DQN with w = 0.8
gains the best QoE because of large weight of transmission rate. Our approach
gains the second best QoE, by 4 ∼ 11% improvement than MADM. In Fig. 4b, as
the user density rises, the standard deviation decreases among DQN approaches
while increases slowly among MADM approaches. Lower standard deviation rep-
resents better load balancing. DQN with adaptive weight outperforms MADM
approaches from the perspective of load balancing by 32 ∼ 40% improvement.

Comparing Fig. 4a with Fig. 4b, for DQN with fixed weight, weight can con-
trol the optimal strategy to focus more on QoE or load balancing. It can be
seen that DQN with w = 0.2 gets the worst QoE in Fig. 4a. However, In Fig. 4b,
DQN with w = 0.2 has the lowest standard deviation, which suggests that it per-
forms well in load balancing because of large weight of the load. For DQN with
w = 0.8, we observe that seeking high QoE has a negative impact on load balanc-
ing. Thus, we can infer that DQN with adaptive weight intelligently selects the
appropriate weight and gets a desirable trade-off strategy. Moreover, the QoE of
MADM with w = 0.2 decreases with user density more slowly than MADM with
w = 0.5 and w = 0.8. And for DQN approaches, the gap of QoE is decreasing
with user density. It shows that we urgently need to consider load balancing in
the case of high user density, in order to maintain the QoE level.

(a) Average transmission rate
vs. user density.

(b) Standard deviation of re-
source utilization rate among B-
Ss vs. user density.

Fig. 4. Comparison of QoE and load balancing under different approaches.

In Fig. 5, the ordinate axis is logarithmic. As user density increases, block-
ing probability rises because BSs with limited resources could not accept more
requests from users. MADM approaches get the worse blocking probability owing
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to its decision way, while DQN approaches improve by 99% compared with
MADM.

Fig. 5. Blocking probability vs. user density under different approaches.

The computational complexity of our approach depends on the number of
state, action of each UE and the amount of information sharing, while by cen-
tralized algorithm it depends on the number of the cartesian product of state
and action among users. It offloads the main calculations to UEs, which reduces
computational complexity.

5 Conclusion

In this paper, we have studied user association problem in HetNets, considering
femtocell access mechanisms and UE types. We have proposed multi-agent DQN
based adaptive user association approach, aiming to jointly solve the trade-off
problem from the perspective of QoE and load balancing. We formulate the prob-
lem as a MDP and adopt semi-distributed multi-agent DQN to get the optimal
strategy. The reward is defined as a weighted function of transmission rate and
BS load, which enables users to maintain QoE and contribute to load balancing.
Therefore, by our approach, users can set their weights adaptively and select BSs
intelligently to obtain the desirable trade-off strategy. Simulation results verify
that the average reward of our approach outperforms DQN with fixed weight and
MADM, which indicates it obtains the best trade-off between QoE and load bal-
ancing. In terms of QoE, load balancing and blocking probability, our approach
improves by 4% ∼ 11%, 32% ∼ 40%, 99% respectively, compared with MADM.
This is because our approach addresses user association adaptively by coopera-
tion. The computational complexity depends on the number of state, action of
each UE and the amount of information sharing. It is a relatively significantly
improvement over centralized algorithms.
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