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Abstract. In industrial Wireless Sensor Networks (WSNs), the trans-
mission of packets usually have strict deadline limitation and the problem
of task scheduling has always been an important issue. The problem of
task scheduling in WSNs has been proved to be an NP-hard problem,
which is usually scheduled using a heuristic algorithm. In this paper,
we propose a task scheduling algorithm based on Q-Learning for WSNs
called Q-Learning Scheduling on Time Division Multiple Access (QS-
TDMA). The algorithm considers the packet priority in combination with
the total number of hops and the initial deadline. Moreover, according
to the change of the transmission state of packets, QS-TDMA designs
the packet transmission constraint and considers the real-time change
of packets in WSNs to improve the performance of the scheduling algo-
rithm. Simulation results demonstrate that QS-TDMA is an approximate
optimal task scheduling algorithm and can improve the reliability and
real-time performance of WSNs.
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1 Introduction

In recent years, the flexibility and cost efficiency of wireless networks have
become the main motivations for adopting wireless communications in indus-
trial environments. Various network specifications such as WIA-PA [16], Wire-
lessHART and ISA 100.11a [13] have been used to meet strict industrial require-
ments like real-time and reliability.

One of the major approaches to improve network performance is to use
TDMA-based scheduling algorithm. The classic scheduling algorithms of WSNs
based on TDMA are mainly the Earliest Deadline First (EDF) [15] and the
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improvement of EDF algorithm [9]. But the problem of packet transmission
scheduling in WSNs has been proved to be an NP-hard problem [4,10]. It is dif-
ficult to achieve an optimal or approximate optimal scheduling scheme by using
the traditional methods.

In this context, many researchers have turned their attention to the field of
machine learning [1]. Many novel methods based on machine learning have been
applied to many aspects of scheduling tasks. The role-free clustering with Q-
Learning for Wireless Sensor Networks (CLIQUE) is introduced in [6]. CLIQUE
allows each node to investigate its capabilities as a cluster head node by combin-
ing the Q-Learning algorithm with some dynamic network parameters. A task
scheduling algorithm for wireless sensor networks based on Q-Learning and shar-
ing value function(QS) to solve the problem of frequent exchange of cooperative
information in WSNs is introduced in [14]. QS can ensure that the nodes com-
plete the application functional requirements while performing good cooperative
learning. Considering that the real-time scheduling problem in multi-hop wire-
less network, a markov decision process of the packet transmission is proposed
in [8]. All the above papers proved superiority of solving problems related to
WSNs based on machine learning. However, few of them research on scheduling
algorithms that improve the real-time and reliability of the network.

In this paper, We propose QS-TDMA algorithm for real-time scheduling of
WSNs with strict deadline limitation in the form of flow. The algorithm uses Q-
Learning [5] to achieve an approximate optimal scheduling scheme and improves
the real-time and reliability of WSNs under the packet transmission constraint.

2 System Model

2.1 Data Flow Model

The transmission process of the generated packet sent from the source node to
the destination node defined as a data flow. We consider that a set of M flows
F = {f1, f2, · · · , fM} are arranged in a single frequency band, The flow fi is
defined as follows:

fi = (Ti,Di, φi,Hi) (1)

Where 1≤ i ≤ M , Ti represents the packet generation period of flow fi;
positive discrete variable Di represents the deadline for each packet generated
from the source, and Di ⊂ {h∗

i , h
∗
i + 1, · · · ,D∗

i }, h∗
i denotes the total number

of hops required for the flow fi to be transmitted from the source node to the
destination node, and the value of D∗

i is large enough; φi represents the route of
the flow fi; Hi represents the length of fi.

The packet transmission state on the flow fn is defined as (tn, hn), tn denotes
the remaining deadline of packet transmission to the destination node, and hn

denotes the remaining hops of packet transmission from the current node to the
destination node. If tn > hn, it means that the packet can be transmitted to the
destination theoretically. If fn is assigned to a time slot, the current transmission
state of fn is changed to (tn −1, hn −1), and the transmission state on the other
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flows changes to (tn − 1, hn). If tn = 0, a new packet will be generated and
entered into the flow to wait for transmission scheduling, and the packet state
will be changed to the initial state (Dn, hn).

2.2 Q-Learning Model

Reinforcement learning is a branch of machine learning. By identifying opti-
mal strategies, each state is mapped to actions that the system should take in
these states in order to maximize the numerical target reward over time [2].
Figure 1 illustrates the reinforcement learning model for task scheduling. It per-
forms actions in WSNs and uses the reward feedback of a specific environment
as a new learning process for the next experience.

Fig. 1. Reinforcement learning model

As a popular method of reinforcement learning, Q-Learning can learn the
usefulness of each task in the system and the benefit value of task execution in
a certain environment over time to achieve the best adaptation to the current
environment. Before the packet transmission, the system will give an immediate
reward for the current action and make an evaluation. Before the end of the
current transmission, the cumulative reward in the finite-state space is calculated
by the value function and the Q-value evaluation is given. In the process of
system learning, considering the flow transmission and constraints in the actual
application scenario, we make the following assumptions:

– Only one flow per slot performs packet transmission;
– The packet generated on the flow has a strict deadline, assuming that the

packet generation period is equal to the deadline;
– The probability of successful transmission from node i to node j through

wireless communication will be affected by many physical factors such as
transmission power, coding method, and modulation scheme. In this paper,
we only consider the effect of the scheduling of node time slots, the probability
that the node successfully transmitted to the next node p = 1.

Q-Learning algorithm can be seen as a random expression of the value iter-
ative algorithm. The value iteration can be expressed by the action value func-
tion [12], and V π(S) represents that under the strategy π, the system performs
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the action f with the probability P (S′|S, f) from the state S to the next state
S′. The action value function of the state S is defined as follows:

V π(S) = max
f∈F

[R(S′|S, f) + γ
∑

S′∈S

P (S′|S, f)V π(S′)] (2)

Where P (S′|S, f) represents transition probability of the system when the
agent select the flow f to perform from state S to state S′; R(S′|S, f) represents
the average reward for state transitions and γ is the discount factor, γ ∈ (0, 1).
The optimal strategy is to obtain the execution action that maximizes the value
function. The optimal strategy π∗(S) in the state S defined as follows:

π∗(S) = arg V ∗(π)(S) = arg max
f∈F

[R(S′|S, f) + γ
∑

S′∈S

P (S′|S, f)V π(S′)] (3)

In our Q-Learning model, the Q-value function of time slot t is defined as
follows:

Qt(St, f) = R(S′|S, f) + γ
∑

S′∈S

P (S′|S, f)max
f∈F

Qt(St, f) (4)

Where Qt(St, f) represents the Q-value corresponding to the flow f selected
by the state S in the two-dimensional table of state actions; maxQt(St, f) rep-
resents that at the t time slot, the system moves from state S to the next state
S′ of all flows that may perform packet transmission tasks and selects one of the
actions that maximizes its Q-value. The Q-value update of the system is defined
as follows:

Qt(St, f) ← (1 − α)Qt(St, f) + α[R(S′|S, f) + γ
∑

S′∈S

P (S′|S, f)max
f∈F

Qt(S′|S, f)] (5)

Where α ∈ (0, 1) represents the learning rate factor. The larger α is, the
more the system learning process relies on reward function and value function,
the smaller α is, the more the system relies on accumulated learning experience
and the slower the learning rate is.

3 QS-TDMA Scheduling Algorithm

3.1 System Space

In order to implement the task scheduling problem for M flows, the system
needs to select a flow to perform the task in a hyper-period scheduling table.
Hyper-period is usually defined in the industrial environment as the least com-
mon multiple of the packet generation periods of the field devices [15]. In this
paper,we define the hyper-period as the least common multiple of the time slots
to the deadlines of all flows. Therefore, the action space of the system is to
determine which flow is assigned at each time slot, that is, the action space is
A = {f1, f2, · · · , fM}. Each time slot of the hyper-period is mapped to the state
space of the system, the state space is S = {1, 2, · · · , T}.
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3.2 Reward Function

The reward function reflects the value of rewards and punishments for the exe-
cution of the task, including two ways proposed in [11,14], respectively. Liter-
ature [11] adopts the mutative reward mechanism to achieve the applicability
prediction to control the task executions during the learning process, while Lit-
erature [14] defines different fixed reward value for each task according to the
priority of task execution in the application. In this paper, we consider the imme-
diate reward of real-time flows allocated to the time slots, represented by r, and
the influence of other flows not assigned to the time slots, represented by RL.
The combination of two factors reward function is defined as follows:

R(S, f) = r + RL (6)

The immediate reward r is composed of the total number of hops of the flow
and the initial deadline. The smaller the total number of hops, the longer the
initial deadline, and the smaller the value, the lower the priority of the current
flow. The immediate reward r defined as follows:

r = k1
h

t
+ k2

1
t − h + 1

(7)

Where h
t reflects the urgency of the packet; t−h reflects the effect of the actual

remaining time, which is not reflected in h
t ; t ≥ h, k1, k2 satisfy 0 < k1, k2 < 1

and k1 + k2 = 1.
RL denotes the feedback of the action, which reflects the negative reward.

When the system in the state Si and select f i to perform in slot i, assume that
there are Li0 flows in all flows satisfies ti−hi = −1, Li1 flows satisfies ti−hi = 0,
and Li2 flows satisfies ti − hi = 1 before entering the next state Si+1. Then we
can define RL as follows:

RL = −(ρ1Li0 + ρ2Li1 + ρ2Li2) (8)

Where ρ1, ρ2, ρ3 is the relevant discount parameters, 0 < ρ1, ρ2, ρ3 < 1,ρ1 >
ρ2 > ρ3, and ρ1+ρ2+ρ3 = 1. Combining Eqs. (6)–(8) to get final reward function
as follows:

R(s, f) = k1
h

t
+ k2

1
t − h + 1

− (ρ1Li0 + ρ2Li1 + ρ2Li2) (9)

Local separation and combination of reward parameters and reward factors
allow the reward function to be adjusted for external weights. And hence the
behavior of the overall system is up to the initial states and the reward feedback
of all flows.

3.3 Exploration-Exploitation Policy

In the trial and error process of the system, the relationship between explo-
ration and exploitation needs to be balanced. The general ε − greedy strategy
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is prone to converge rapidly. Developing in a situation where exploration is not
adequate can result in a short learning process and serious learning biases. In this
paper, we introduce the Metropolis Criterion (MC) in the Simulated Annealing
[3,7] method into the flow selection in our exploration and exploitation, which
can better solve the problem of excessive convergence and the balance between
exploration and exploitation. The exploration probability εt is defined as follows:

{
εp = exp[− |(Q(S, ar) − Q(S, ao))| /KTk]

εt = max{εmin, εp}
(10)

Where Q(S, ar) represents the Q-value that randomly selects an action in
the state S; Q(S, ao) represents the Q-value that selects an optimal action in
the state S; Tk is a fixed value, K is a coefficient, and K = λe, decline factor
λ ∈ (0, 1), e is the number of learning, as e increases, the value of εp will become
smaller and smaller, and the entire exploration process will become stable; εt

is the exploration probability based on MC, which is maximum value of εp and
εmin; εmin is the minimum exploration probability given, which is the lower
bound of exploration.

3.4 Q-Value Function Update

The definition of Q-value function update can be known from formula (5). In
the formula, P (S′|S, f) denotes the probability that the system selects flow f
from the state S to the next state S′. P (S′|S, f) is usually unknown, but the
Q-Learning algorithm is obtained by replacing R(S,f)+

∑

S′∈S

P (S′|S,f)max
f∈F

Qt(S
′|S,f)

by its simplest unbiased estimator built from the current transition Rt+1 +
max
f∈F

Qt(S′|S, f), In this way, the final Q-Learning algorithm Q-value function

update formula is obtained:

Qt(St, f) ← (1 − α)Qt(St, f) + α[R(S′|S, f) + γ max
f∈F

Qt(S′|S, f)] (11)

3.5 Algorithm Description

The process description of our Q-Learning task scheduling algorithm can be
obtained from the above two parts, the system model and the QS-TDMA
scheduling algorithm. But in industrial environment, we have to consider the
packet transmission scheduling process of WSNs is subject to a strict deadline
limitation. For packets whose remaining time is less than the remaining trans-
mission hops, it is impossible to be sent to the destination node theoretically
and the packet will be lost. If we continue to allocate time slots for these flows,
it is undoubtedly a waste of resources, and it will lengthen the entire process
of learning and exploring. Therefore, we add selection constraints in the pro-
cess of trial and error, and we do not allocate time slots for the flows that
lose the meaning of theoretical transmission. By this way, the efficiency of the
exploration-exploitation policy and the accuracy of system convergence can be
improved.
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In the process of learning, the system always has MDP feature in the face
of external environment, and gradually rewards the flow with a small number of
packet losses to perform packet transmission task, and finally obtains an approx-
imate optimal scheduling algorithm. Specific algorithm description is shown in
Table 1.

Table 1. QS-TDMA algorithm description

Algorithm 1 QS-TDMA algorithm description

1. Initialize Qmatrix, T , α etc;

2. Episode start;

Initialize state Si = 1, i = 1;

3. If the number of episode reaches the requirement, repeat 7, otherwise

select the task f t to be performed according to

the exploration-exploitation strategy in time slot i;

3.1: Produce a random number a(a ∈ (0, 1));

3.2: Select the optimal task fp;

3.3: Produce a random task fr, calculate εt;

3.4: If a < εt, f t = fr, otherwise f t = fp;

3.5: If the state of the packet f t is tft < hft , repeat 3.1;

4. Execute task f t, obtain reward Rt;

5. According to (9) and (12), update the Q-value;

6. If St < T , the system goes to the next state St+1, i = i + 1, repeat 3,

otherwise repeat 2;

7. End.

4 Simulation Analysis

In this paper, we simulate the performance of the algorithm and give the exper-
imental results. The basic parameters are set as follows: the learning rate and
discount factor α = γ = 0.9; the weight of the two influencing factors of the
immediate reward function k1 = k2 = 0.5; the influence parameters of flows that
are not assigned to time slots ρ1 = 0.5, ρ2 = 0.4, ρ3 = 0.1; The constant term in
the exploration-exploitation policy Tk = 1000, λ = 0.9 and εmin = 0.01.

We use the number of lost packets in a hyper-period as the criterion to mea-
sure the performance of the scheduling algorithms. We assume that the ‘Optimal’
algorithm (OP) in literature [8] is achievable and we compare QS-TDMA with
other three strategies, respectively, as OP, EADF and RB. Analyze the network
performance of QS-TDMA and other three algorithms in the number of different
flows and different deadlines.

In Table 2, we consider two flows like [8], the total number of hops for the
two flows with H1 = H2 = 2, the deadlines with D1 = 2,D2 = 6 and the
hyper-period with T = 1000. The hyper-period takes a long enough value to
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offset the effect of randomness. In the following experiment, the hyper-period
take the same value. Although the result of the QS-TDMA is good enough, but
the result of learning has minimal fluctuations. The simulation data here take
the average of 10 results, later comparisons will also be compared in the same
way. As shown in the Table 2, the results of the QS-TDMA are close to the OP
and the performance is much better than EADF and the RB. The scheduling of
the RB is the worst in the feasible algorithms.

Table 2. The number of lost packets in the scheduling algorithm

Algorithm QS-TDMA OP EADF RB

Number of lost packets 176 166 251 500

Number of successful packets 490 500 415 166

Loss rate (%) 26.4 24.9 37.7 75.1

In Fig. 2, we consider the change in the number of lost packets for QS-TDMA,
EADF, RB and OP as the flows increase. The number of selected flows increase
from 2 to 6 in sequence. We consider three sets of symmetric flows. The deadline
of the flow is randomly generated, and the flow deadline is one to three times the
total hop count. The total number of hops for the flow is 2, 2, 3, 3, 5, 5, and the
corresponding deadline is 2, 6, 6, 9, 10, and 15. As we can see in the figure, with
the number of flows increase, the average number of lost packets for the four
methods is increasing. Considering that only one flow can be sent for each time
slot in a single frequency band, this result is in line with the actual situation.
At the same time, it can be found that the OP is the optimal scheduling with
the least theoretical packets loss. The QS-TDMA is close to OP, EADF is the
second, and RB loses most packets. Moreover, with the increase in the number
of flows, the result of RB is worse.
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Fig. 2. The total number of lost packets with the increase of flows



A Task Scheduling Algorithm Based on Q-Learning for WSNs 529

In Fig. 3, we consider three flows with a total number of hops of H1 = 1,H2 =
H3 = 3, and the deadline for the three flows is the same. We analyze the number
of lost packets for the four algorithms when the deadline increases from 3 to 8.
It can be seen from Fig. 3 that with the increase of the deadline, the OP has
always been the optimal result. When the deadline increases from 3 to 6, EADF
and RB have the same number of lost packets, and performance of the EADF
is worse than that of the RB when the deadline reaches 7. This is because the
EADF is scheduled based on the principle of minimum average deadline first.
The performance of EADF decreases with the same deadline for each flow. The
overall performance of QS-TDMA is stable with the increase of deadline, and
the performance is better than EADF and RB.
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Fig. 3. The total number of lost packets with the increase of deadlines

5 Conclusion

In this paper, we proposed a TDMA-based task scheduling algorithm for wireless
sensor networks. The algorithm combined the two factors of priority and real-
time change of the packets. Under the given packet transmission constraints,
an approximate optimal scheduling scheme is achieved by rewarding feedback
and value iteration of system scheduling. The next step of the paper, we will
consider how to improve the real-time and reliability of WSNs in the case of
allowing concurrent data.
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