l‘)

Check for
updates

Software Defined Industrial Network:
Architecture and Edge Offloading
Strategy

Fangmin Xu', Huanyu Ye!®™) Shaohua Cui?, Chenglin Zhao!,
and Haipeng Yao!

! Key Laboratory of Universal Wireless Communications, Ministry of Education,
Beijing University of Posts and Telecommunications, Beijing 100876, China
huanyuyebupt@gmail.com
2 China Petroleum Technology and Development Corporation (CPTDC), Beijing
100028, China
shcui@163.com

Abstract. The integration of the internet and the traditional manufac-
turing industry has identified the “Industrial Internet of Things” (IIoT)
as a popular research topic. However, traditional industrial networks con-
tinue to face challenges of resource management and limited raw data
storage and computation capacity. In this paper, we propose a Software
Defined Industrial Network (SDIN) architecture to address the existing
drawbacks in IToT such as resource utilization, data processing and sys-
tem compatibility. The architecture is developed based on the Software
Defined Network (SDN) architecture, combining hierarchical cloud and
edge computing technologies. Based on the SDIN architecture, a novel
centralized computation offloading strategy in industrial application is
proposed. The simulation results confirm that the SDIN architecture is
feasible and effective in the application of edge computing.

Keywords: Software defined industrial network - Industrial internet of
things - Edge computing + Computing offloading + Time delay

1 Introduction

Intelligent manufacturing (IM), which has been driven by Information and com-
munication technologies (ICT), greatly improves the automation level, pro-
duction quality and efficiency of manufacturing industry. These information

Supported by Key Program of the National Natural Science Foundation of China
(Grant No 61431008) and Project of intelligent manufacturing integrated standard-
ization and new model application.

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019
Published by Springer Nature Switzerland AG 2019. All Rights Reserved

X. Liu et al. (Eds.): ChinaCom 2018, LNICST 262, pp. 46-56, 2019.
https://doi.org/10.1007/978-3-030-06161-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06161-6_5&domain=pdf
https://doi.org/10.1007/978-3-030-06161-6_5

Software Defined Industrial Network: Architecture 47

and communication technologies (ICTs) provide reduced Capital Expenditure
(CAPEX) and Operating Expense (OPEX) with higher efficiency and effective-
ness. However, owing to the inherent limitations and complex network protocols
in traditional industrial networks, traditional industrial Ethernets cannot man-
age distributed resources flexibly. Moreover, collected raw data are becoming
increasingly more granular and voluminous.To address these drawbacks, bring-
ing the cloud computing resources nearer to the underlying networks is attractive
and promising.

In [1], the authors proposed a low latency mobile edge computing (MEC)
framework based on the SDN architecture. Security and privacy are two of the
main challenges to the IoT; hence, [2] proposed solutions and models for secur-
ing IoT devices and communications using the SDN architecture. Meanwhile,
the performance of SDIN using in data offloading and edge computing in sev-
eral scenarios including cloud server and mobile tasks was discussed in [3-5].
Computation offloading technology as discussed in [6,7]. In [8] and [9], mobile
devices can extend the standby time by computation offloading.

Other previous research addressed special purposes such as energy saving
and real-time communication; however, they did not focus on the details of the
entire system architecture and operation. Therefore, we present a new software
defined industrial network (SDIN) architecture that is the combination of Soft-
ware Defined Networking (SDN) and IIoT. Industry network intelligence and
control are logically centralized in SDIN to provide greater processing perfor-
mance and avoid the majority of the aforementioned drawbacks. Particularly,
our contributions are as follows:

— We propose a new SDIN architecture, and analyze the control and manage-
ment process.

— Based on the SDIN architecture and the characteristics of industrial comput-
ing tasks, we propose a hybrid centralized edge computing offloading strategy.

The remainder of this paper is organized as follows. Section 2 identifies the
architecture of SDIN. Section 3 analyses the application of SDIN in solving the
computing offloading problem and the unique features. The system model, prob-
lem formulation, and solutions are provided in Sect. 4. We present a performance
simulation in Sect. 5. Finally, Sect. 6 concludes the work.

2 Software Defined Industrial Network

We propose an SDIN architecture as displayed in Fig. 1. The SDIN architecture
contains four layers: field devices layer, data transport layer, distributed control
layer and cloud platform. Field devices include the basic infrastructures such as
robot arms, conveyor belts, lathes and deployed sensors, etc.

(1) Data Transport Layer
This layer is composed of SDN switches, wireless access points (APs). The APs
emphasize authentication where IoT devices access the network and for data

48 F. Xu et al.

Service User 6

Cloud Platform

Manufacture
Cloud Platform

Distributed Control b
omain
Layer Controlle

Southbound
Interface

Data Transport @ @ @
Layer (BV /1/ M, Ga(ewa)\“g Switch
: X 2

Field devices Layer

Robot Arm Hoist Computer Numerical Control Conveyer Belt

Fig. 1. Proposed software defined industrial network architecture

transporting. Data plane devices receive commands from control plane through
southbound interface, such as computing decisions.

(2) Distributed Control Layer

The distributed SDN controllers are responsible for the centralized management
of the edge computation servers and the authorization of multiuser access. Con-
trollers receive requests from devices in the data transport plane and execute
the offloading decision algorithm considering both the mission requirements and
status of the edge computation servers. As displayed in Fig. 1, two-tier hetero-
geneous controller structure (domain controller and super controller) is one of
the typical deployment solutions in large scale manufacture enterprise.

(3) Cloud Platform
The cloud platform includes a series of cloud service applications composed of
industry application systems (Such as MES (Manufacturing Execution System),
EPR (Enterprise Resources Planning)). The super controller places emphasis on
resource management and the authorization of the distributed SDN controllers.
Besides, edge computing servers are more powerful than the local computing
nodes in field devices. Due to the edge servers are located near the factories
and production lines, it can provide lower and more stable latency than cloud
computing server.

Software Defined Industrial Network: Architecture 49

3 Computing Task and Offload in Industrial Scenario

In the concept of the intelligent factory, there are many computing tasks dur-
ing the production process, such as Automatic Guided Vehicle (AGV) navi-
gation, operation control of mechanical arms, and the identification of product
imperfection. These services and applications can require significant computation
resources and constrained time delay. However, the computational capabilities
of the field devices are limited owing cost and size limitations.

3.1 Industrial Computing Task

After investigation, the industrial computing task has following unique features:

(1) Stringent computing delay tolerant

In industrial internet, the distributed sensors, actuators, machines, and other
computing devices need to collaborate together to achieve real-time operation
or complete the production tasks. In order to minimize the influence to the
production line, the latency-sensitive industrial applications require delay from
tens of milliseconds to hundreds of milliseconds.

(2) Diverse computing factors
As mentioned before, typical computing tasks in modern factory could be clas-
sified into following types with diverse characteristics and QoS requirements.

— Image or video recognition (such as quality inspection).
Characteristic: huge amounts of raw input data, small size of computing
result data.

— Localization and mapping (such as welding robot positioning guide).
Characteristic: high computing accuracy, huge computing resource.

— Production planning and scheduling.
Characteristic: multiple data sources, complex computing, low frequency.

To study the effects of the computation task characteristics on the design of
offloading schemes, we classify the tasks into I types. Each type of computing
task has various QoS requirements. According to computation task types, the
field devices can be correspondingly classified into I types. Let us assume that
one field device only generates one type of computing task.

(3) Regular task pattern

Generally, the computing tasks originate from the production line which has a
fixed production cycle. For instance, the cycle of one product line is five products
per minute, therefore the cycle of product imperfection identify task is also five
times per minute.

To simplify the analysis, the arrival of single industrial computing task is
modeled as regular arrival. However, considering the asynchronism of different
field devices and production lines, the arrival of tasks at the edge server could
be treated as poisson flow.

50 F. Xu et al.

3.2 Computing Offload Procedure Based on the SDIN Architecture

The decision of whether local computing or offloading the computing task to
the edge server is an important and difficult procedure. Figure2 displays the
computing decision process. The normal working process includes two stages:
maintenance and update. In the maintenance stage, domain controllers broadcast
the domain offloading strategy (the offloading probability of each computing task
type, denoted as &;, i € I = [1,2,...1]) to field devices (D in Fig. 2). Field devices
generate a random number between 0 and 1. If this number is less than &;, then
the computing will be offloaded to the edge server. Otherwise, the computing
will be implemented in local computing unit. Update stage is trigged by the
change of manufacturing environment and other factors, such as the increasing
of computing task frequency, adjust of production scheduling. It contains three
parts: requests collection, mode decision, computing, as follows:

Edge Domain

Field Device Controller

and Local Unit Computing Unit

&

(Strategy Distribution
Generate random
number and compare ®Load Report

Maintenance

Stage
®Update Request
Update Offloading
Strate
Strategy Distribution =
Update
Stage

Generate random
number and compare
@Computing data and code
=
Load Report

®Computing Results

Fig. 2. The computing offloading decision process

(1) Update Request

The devices collect update data (information of computing tasks) and send it to
the data transport plane through the APs. Then the update request message is
send to its domain SDIN controller by southbound interface (@) in Fig. 2).

(2) Mode Decision
The domain controller exacts the computing capability parameters from the
latest update request message and edge computing server (from the load report

Software Defined Industrial Network: Architecture 51

message, as @ in Fig.2), then it will execute the decision algorithm described
in Sect.4 and return the domain offloading strategy (the offloading probability
of each computing task type, &;).

(8) Computing

Similar with the maintenance stage, field devices decide whether offloading the
task to the edge server or not after received the domain offloading strategy. For
instance, if the device chooses the remote computing, field device will upload
the necessary data and code to the edge server (@ in Fig.2), and receive the
computing result from the server afterward (® in Fig. 2).

4 System Model and Offloading Algorithm

Considering most of computing devices in current factory are powered with elec-
tricity instead of batteries, the energy consumption of computing and data trans-
fer is not a great issue. Therefore, the computing offload policy only considers
the goal of minimizing computing delay.

The computing latency is divided into the following five aspects for decision
analysis: local computing delay Dy cq1, data transmission delay from the local to
the edge server Tryqns, task queuing delay for the edge computing server Dgyeue,
edge computing server calculation delay Dpgemote, and computing result return
delay from the edge server to the local devices Dgesuit-

We denote the computing tasks of type i by I, = (D;, C;,T;), where D;
denotes data size, C; represents the size of computation data involved in the
number of CPU cycles required to complete the type-i task, and T; represents
the maximum delay tolerance of the type-i task.

According to their computation task types, the proportion of the field devices
with type-i tasks is given by 7;, where i € I, and), ., m; = 1.

4.1 System Model

The local computing unit capability is defined as f!, and fI represents the CPU
computation cycles per second that the edge server can provide. We assume that
the transmission bandwidth is not constrained. Infinite buffer exists in the edge
servers, and at most one computing task is served by the edge server simultane-
ously. Then the latency components could be calculated as (1)—(4).

DLocal(i) = % (1)
DRemote(i) = % (2)
TTrans(i) - % (3)
DResult(i) = Z = KZCl (4)

52 F. Xu et al.

where r; represents the transmission rate between the local node and the edge
server node (either uplink or downlink), the unit is Kbps; DI represents the size
of computation result for type-¢ task. In general, its size is proportional to the
amount of computation data C;, the proportion factor is a constant K.

The queue delay Dgyeye is estimated by multiple class M/D/1 queue theory.
Here we consider two typical cases: FIFO with equal priority (EP in short) and
Non-preemptive priority queue (NPP in short). Denoted the arrival rate of all
type-i tasks by \;, which is usually a known parameter at the domain controller.
Therefore, the real arrival rate of type-i tasks at the edge server is &;\;

The mean service time of type-i E(S;) is deterministic, and equals to
Dgyeue(i). We define the probability that the server is busy and busy with a
type-i task as p and p; respectively. Obviously

pi = ENE(S)) = @'?f' (5)
p=> pi= Z MGy (6)
el el Z

C;
(7)
;Ezejgz 1 Zzze[&)\ fr
Case A: Equal Priority (EP):
Based on Little theory and PASTA (Poisson arrivals see time averages) prop-
erty, the average queueing latency is equal to the average queueing latency of
each class, which could be estimated by

E(D):ZM”Z 70 et a” (8)

Case B: Non-preemptive priority (NPP)

If type 1 has non-preemptive priority over type 2, then a type 2 task cannot
be preempted once it enters service. Type 1 task still have priority over any type
2 task that are waiting but not being served. Let us assume that if ¢ < j, then
type ¢ has non-preemptive priority over type j.

For type 1 task,

B(S; £idi(Ci)?
E(Dqueue()) = Cier P25 Yier iy (9)
ueue - — - £ C
R

For type i > 1, again using little and PASTA,

Zzel Pi E(S)
(1- Zk 1o6) (1 — 22:1 Pk)

E(S;
Zze[Pi ()
(1 _ l 1 EkAkck)(Zk) EkAka)

E(DQueuc(t)) =
(10)

Software Defined Industrial Network: Architecture 53

Therefore, the average computing latency for each type of task could be
obtained as:

E(L’L) = (1 - §i>DLocal(i)+ (11)
Ei(DRemote(i) + TData (Z) + E(DQueue(Z)) + TResult (Z))

4.2 Offloading Policy

The optimization goal is minimizing the total computing latency of all computing
units, including the edge offloading units and local computing units under the
constraints of allowed maximum delay tolerant of each unit T}, the optimization
problem is mathematically modeled as:

Y oel (12)
It is known from [8] that the optimization problem above is convex optimiza-

tion. Thus, one can use the block coordinate descent (BCD) approach to deal
with it as in the following iterative algorithm.

Algorithm 1 Proposed iterative algorithm based on BCD

1: Initiate : random choose (&;,i € I)

2: Repeat

3: foriel

4: update & with all &; (for all j # 4) fixed by

5: & :fi—sz‘ZieI miE(L;)

6: Until |3, ;crmiB(Li) — 3¢, jep miE(Li)| < €, or maximum number of iterations
is reached.

End Repeat

8: Return (&;,i € I)

=

5 Simulation and Result Analysis

In this section, we use MATLAB simulation to evaluate the performance of pro-
posed edge computation offload scheme. The computation tasks of field devices
are classified into four types with the probabilities 7 : {0.1,0.3,0.4,0.2}.

The incoming computing flow of each type obeys poisson distribution of
parameter . Other parameters are listed in Table 1. In addition, the computa-
tional capability f! = 2GHz, fI = 10 GHz, ; = 20 Mbps, K; = 10~°. The link
bandwidth bottleneck and transmission error are ignored.

54 F. Xu et al.

Table 1. Parameters of various computation tasks

Parameter | Value Unit

D {0.2, 0.5, 3, 6} Mbits
C {10%, 2% 108, 3% 10%, 5 10%} | Cycles
T {0.05, 0.1, 0.2, 0.4} Seconds

Figure 3 evaluates the percentage of various types of the tasks that are off-
loaded under different computing task density A in equal priority case. Because
the tasks of higher priority are more sensitive to the delay constraints, the equal
priority case cannot improve the probability of processing for high-priority tasks.
We found that the offloading percentage of the type-1 and the type-4 tasks is
nearly 0% and 100% in all the A values, respectively. With the increase of task
density, the offloading percentage decrease due to higher queuing latency at the
edge server.

[T

08 o Type 2|l
09 [
08 X B

Offloading Percentage (%)
Offloading Percentage (%)
°
&

02
01t H o1
0 ’_“ L ol |_|\
1 2 1 2 3 4 5

Computing Task Arrival Ratet), Equal Priority Computing Task Arrival Ratef.), Non-Preemptive Priority

Fig. 3. EP offloading percentage Fig. 4. NPP offloading percentage

Figure 4 shows the offload probability for each type of tasks under different
computing task density A in non-preemptive priority case. Compared with EP
case, type-2 tasks will increase the offload probability slightly due to higher pri-
ority in high load region. Priority is given to high-priority tasks, which have
less impact on the delay of subsequent tasks and easier to be flexibly chore-
ographed.So Non-preemptive priority case can improve the service rate of high-
priority tasks and further reduce average delay overall service.

Figure 5 depicts the average delay of proposed central offloading scheme, All-
local computing and All-remote computing scheme in EP case. Figure 6 shows
the probability of outage (The probability that the computing latency larger than
the maximal allowed latency) of those schemes in EP case. The delay and outage
probability prove the feasibility of proposed offloading scheme. With the growing

Software Defined Industrial Network: Architecture 55

220 - 1
& Proposed scheme Proposed scheme
210 : Al Local Computing [09 —=— All Local Computing [{
: *+— All Remote Computing —+— All Remote Computing
_ 200 ; i a 08 3
£ 0 (RSSO SHUSUUIS SHUUOUR SO /_ o7 ; ; : ; : : : j i
g - g
g . : g
T 180 e : £ 086
e 7 2
ER - gos
£ : ‘/,/ o
S 160f- ¥ go4
g | 3
S 15017t : 03 :
2 —
< 140 : S : 02 R i = o _
¢ & e
1304 01 AT
A
120 1 L L 1 L L 1 = 2 0 — i i o I — — 4]
2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Arrival rate(s) Arrival rate()
Fig. 5. Average delay Fig. 6. Outage probability

of computing load, the performance of All-remote computing solution will grow
worse due to the increasing queuing delay. The offloading scheme proposed in
the paper can greatly reduce the computing latency and improve the computing
QoS for different users.

6 Conclusion

In this paper, we propose a new SDIN architecture and a kind of centralized
computing offloading strategies based on our SDIN architecture. The simula-
tion results have indicated that the proposed SDIN architecture is feasible and
effective in computing offloading. And to a certain extent, our architecture can
provide traditional industries a better resource management solution and more
flexible production scheme which means the production efficiency can possibly
be improved.

References

1. Schweissguth, E., Danielis, P., Niemann, C., Timmermann, D.: Application-aware
industrial ethernet based on an SDN-supported TDMA approach. In: 2016 IEEE
World Conference on Factory Communication Systems (WFCS), Aveiro, Portugal
(2016)

2. Aggarwal, C., Srivastava, K.: Securing IoT devices using SDN and edge computing.
In: 2016 2nd International Conference on Next Generation Computing Technologies
(NGCT), Dehradun, India (2016)

3. Sun, X., Ansari, N.: EdgeloT: mobile edge computing for the internet of things.
IEEE Commun. Mag. 54(12), 22-29 (2016)

4. Dama, S., Pasca, T.V., Sathya, V.: A feasible cellular internet of things enabling
edge computing and the IoT in dense futuristic cellular networks. IEEE Consum.
Electron. Mag. 6(1), 66-72 (2017)

5. Pengfei, H., Ning, H., Qiu, T.: Fog computing based face identification and resolution
scheme in internet of things. IEEE Trans. Ind. Inf. 13(4), 1910-1920 (2017)

56

6.

7.

F. Xu et al.

Li, D., Zhou, M.-T., Zeng, P.: Green and reliable software defined industrial network.
IEEE Commun. Mag. 54(10), 30-37 (2016)

Zhao, P., Tian, H., Qin, C., Nie, G.: Energy-saving offloading by jointly allocat-
ing radio and computational resources for mobile edge computing. IEEE Access 5,
11255-11268 (2017)

Miettinen, A.P., Nurminen, J.K.: Energy efficiency of mobile clients in cloud com-
puting. HotCloud 10, 4-4 (2010)

Li, M., Richard Yu, F., Si, P., Yao, H.: Energy-efficient M2M communications with
mobile edge computing in virtualized cellular networks. In: 2017 IEEE International
Conference on Communications (ICC), Paris, France (2017)

	Software Defined Industrial Network: Architecture and Edge Offloading Strategy
	1 Introduction
	2 Software Defined Industrial Network
	3 Computing Task and Offload in Industrial Scenario
	3.1 Industrial Computing Task
	3.2 Computing Offload Procedure Based on the SDIN Architecture

	4 System Model and Offloading Algorithm
	4.1 System Model
	4.2 Offloading Policy

	5 Simulation and Result Analysis
	6 Conclusion
	References

