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Abstract. As the representative and most widely used content form of
Virtual Reality (VR) application, omnidirectional videos provide immer-
sive experience for users with 360-degree scenes rendered. Since only part
of the omnidirectional video can be viewed at a time due to human’s eye
characteristics, field of view (FoV) based transmission has been proposed
by ensuring high quality in the FoV while reducing the quality out of that
to lower the amount of transmission data. In this case, transient content
quality reduction will occur when the user’s FoV changes, which can be
improved by predicting the FoV beforehand. In this paper, we propose
a two-layer model for FoV prediction. The first layer detects the heat
maps of content in offline process, while the second layer predicts the
FoV of a specific user online during his/her viewing period. We utilize
a LSTM model to calculate the viewing probability of each region given
the results from the first layer, the user’s previous orientations and the
navigation speed. In addition, we set up a correction model to check and
correct the unreasonable results. The performance evaluation shows that
our model obtains higher accuracy and less undulation compared with
widely used approaches.
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1 Introduction

VR immerses the user into the virtual world by realizing free interaction, which
reshapes the consumption experience for users. Intensive attention is being
attracted from the industry and the academia [1]. Omnidirectional video is one
of the most typical application format in VR. Obviously, to get the same visual
perception quality as traditional videos, the whole omnidirectional videos cov-
ering 360-degree scenes will contain much more amount of data. However, due
to the restriction of human visual system (HVS), users can only see the content
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within their FoV at a time, and the size of FoV equipped by the head mounted
display (HMD) of HTC Vive system is about 110-degree in horizontal range.

To save the bandwidth while not sacrificing the quality of experience (QoE),
FoV-based transmission [9] of omnidirectional videos is widely recognized as a
effective scheme. The principle of this scheme is to transmit the content that
covers user’s FoV with high quality, while the other regions with lower quality
to avoid the blank screen [3]. Studies about FoV adaptation model finds that
the refinement duration affects the QoE of the user significantly [15]. After the
user switching the viewport by turning head, the quality within the new FoV
will decrease before the high quality content is received covering the new FoV.
While, this can be improved by FoV prefetching which has to be motivated by
accurate FoV prediction beforehand.

Recently, some researchers have investigated the very short-term FoV pre-
diction. Feng Qian proposed to utilize weighted linear regression algorithm in
the prediction based on previous viewing orientation information [2,12], and this
approach has been widely adopted in transmission improvement thanks to its
simplicity. Meanwhile, as a state-of-art technology, Convolutional Neural Net-
work (CNN) is also applied to improve the prediction [16]. Furthermore, content
features are being considered in prediction [5,13], while still limited to short-
term.

The navigation trajectory of a user keeps close relevance to the personal-
ized FoV prediction. We introduce the orientation and navigation speed which
reflects the user’s viewing status in our prediction model. In addition, content
attractiveness detection helps to build reliable prediction as users are often stim-
ulated to switch the viewport for certain objects. We propose a two-layer model
to work on the FoV prediction. The first layer is designed as an offline process
to detect the heat value of each region in the omnidirectional videos. Motion
features of the content is paid more emphasis, which proves to better comply
with this problem. In the second layer, FoV of the user is predicted in real time.
The previous orientation and navigation speed as part of the inputs illustrates
the short-term viewing trend and status. What’s more, we input the results from
the first layer related to short-term and long-term step into the second layer to
provide distinguish guidance to the prediction. In this layer, a LSTM module
is trained to learn the intricate connections in this problem, and a correction
module is designed to check and correct the unreasonable results at last.

This paper is organized as follows. In Sect. 2, we describe the overall frame-
work and concrete details of each step in our model. Experiment setup and
results are presented in Sect. 3. Finally, in Sect.4 we provide conclusions about
our research and look into the future work related.

2 Prediction Model

To predict the FoV of a specific user, we investigate the viewing behavior of users.
According to the research of Sitzmann, the viewing status can be divided into
focusing and browsing status [13]. Under the focusing status, users are attracted
by the specific content in the video. They switch the viewport to follow the
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targeted content or pay attention to the extended part of it. In this status, the
navigation speed appears to be lower than the average, and the heat region of
the content close to current FoV has a strong correlation with the viewport
switching. When the user is under browsing status, their movement shows great
irregularity, for they do not pay real attention to the content in omnidirectional
video, and the head rotation speed appears to be higher than the average. In this
status, the prediction should mainly focus on heat region of the video, which may
get the user$ attention later and change one’s viewing state into gazing status,
with wider range than the previous circumstances. Therefore, we propose a two-
layer FoV prediction model as shown in Fig. 1 considering above key factors to
adapt to different viewing status.

In order to save the computing resources and to predict faster during the
viewing process, the detection of the heat region of the video is completed offline
before viewed, which refers to the first layer in our model. By detecting the
saliency feature of each static frame and the moving object between frames, two
main kinds of feature maps are obtained. As people tend to focus on and follow
the moving objects when immerses in an omnidirectional video, we place extra
emphasis on the motion features when combine two features into heat maps.

Besides the heat value already detected, user’s orientation and navigation
speed on previous frames are tracked and feeded back into the data-driven LSTM
architecture during the user’ consumption. Furthermore, to make up the over-
sight of the FoV characteristics, a correction module is added as the final part
in second layer.

We adopt the tile-based transmission scheme in this paper [8], where a full
omnidirectional video is partitioned into many coding independent rectangular
tiles, so that each tile can be transmitted independently [6]. Our prediction
model is established on this transmission scheme as well.
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Fig. 1. Overview of the proposed two-layer FoV prediction model. The example of a
tile-based streaming scheme is shown.
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2.1 Layerl- User Attention Prediction

This layer is an offline process to detect the attractive regions in the content
with higher probability to be viewed. The heat value HT,,,n € N of N tiles are
obtained in this layer.

Saliency Detection. Image saliency map is obtained by detecting the objects
that show distinct differences in features of colors, textures, etc. from the sur-
roundings. The Fused Saliency Map (FSM) [4] is used for detection for it adapt
current detection models to omnidirectional image characteristics.

Motion Detection. People tend to be attracted by moving objects such as
moving animals or athletes in a sports game. This can be detected by analyzing
the features between consecutive frames. We utilize the Lucas-Kanade optical
flow approach to detect pixel-level motion features [14].

Content Feature Combination. We convolute the motion maps with a 2D
Gaussian filter so that the motion features can present overall impact on the
attractive region detection results. Pixel-wise heat maps are calculated as:

MP,, MP, > SP,
HP, = { MPk;-SPk.’ MP, < SP, (1)

HP, is the heat value of k' pixel,SP, and M P} are saliency value and fil-
tered motion value. Then tile-wise heat value HT is obtained by calculating and
normalizing the summation of the pixel-wise heat values H P within each tile.

2.2 Layer2- FoV Prediction

The second layer is an online process to predict the tiles to be viewed next.

LSTM Prediction Module. This module is to predict the probability of each
tile to be viewed by a specific user, which is based on the recurrent neural
network (RNN) architecture. This scheme presents high efficiency in temporal
sequential problems as realizing weight sharing in time domain. We choose Long
short-term memory(LSTM) [7,10] model replacing the ordinary node in network
by the memory cell to avoid gradient vanishing and explosion by adding a forget
gate towards the cell to rectify the long-term and short-term memory of the
node.

As the impact of inputs towards the prediction gradually changes (the relia-
bility of the head orientation in the sliding window gradually decreases), the out-
put of the prediction should also reflect this trend. When omnidirectional videos
are partitioned into N tiles, our model provides short-term prediction results
Predghort = {p} and additional long-term prediction results Prediong = {pI¥
to adapt to the variation of user’s FoV in the prediction window.
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The input to our LSTM model consists of the tile-wise heat maps of next
2% M frames including {H }ﬁflw related to short-term content and {H }fiﬁ%
related to long-term content, along with user’s orientation and navigation speed
of previous M frames {O}!_,,, {S}!_,,. The head orientation information
O(z,y, z) is expressed in the form of the position on the z,y,z coordinates;
and the navigation speed on sphere surface S(yaw, pitch, raw) is calculated as
the orientation change compared with the previous frame in rotation coordinates
yaw, pitch, raw.

We adopt two layer LSTM model with 256 neurons each layer, which presents
better performance compared with the other parameters we have tried. The
prediction results are obtained at the last time step, while inner results obtained
in each time step is retained in the form of state information and becomes the
input into the same neuron at the next time step to establish the association in
the time domain as shown in Fig. 2.

When training the LSTM module, learning rate is set to be 0.01, and a
dropout layers with 50% drop rate is added to prevent the overfitting. We adopt
the Adam Optimizer to minimize the cross-entropy loss. The sliding window is
set to be 1 second, as well as the size of short-term and long-term prediction
window. A down-sampling process is performed on frame rate of the input by 2
times to shorten the input length which accelerates the prediction as the content
and viewing features of adjacent frames has minor changes. We divide the dataset
into 80% and 20% for training and validation respectively. Different videos are
trained and validated separately, so that a unique prediction network is trained
for each video.
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Fig. 2. LSTM prediction module in our approach.

Correction Module. By setting an appropriate threshold, tiles are decided
whether to be covered by FoV. However, the separately judged tile-wise pre-
diction results cannot always compose a reasonable FoV region. We propose a
correction module with two steps to make sure the predicted FoV as an inte-
grated region with reasonable size.
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The first step is to make up the omitting error that a few tiles are misjudged
to be negative, while their surroundings are all judged to be covered by FoV.
This violate the integrity of FoV. When there is a wide range of misjudged
tiles, we believe that this situation does not belong to omitting error, but the
drawback of the prediction model which has been avoided in our model. We
scan the prediction results for each row of all tiles. When the predicted FoV
is partitioned to be at two side of the projected plane, we correct the negative
predicted tiles among the range of the frame edge and the farmost positive
predicted tiles away from the frame edge. Otherwise we find the edge tiles that
predicted to be viewed and make sure each misjudged tile among them is reset
as the positive tiles.

The second step is to determine the minimum range that the positive judged
tiles should cover. Equirectangular projection is widely used to project the omni-
directional video from spherical 3-Dimention (3D) to 2D plane, sampling uni-
formly on latitude. However, this approach causes the distortion of the content
near two poles. Equally partitioned tiles on projected 2D frames correspond to
spherical tiles with larger size near the equator and smaller size when approach-
ing poles. Therefore, during the playback of an omnidirectional video that has
been rendered as a spherical three-dimension video, the range of tiles falling
into the user’s FoV is not always the same.So that the FoV shows a changing
shape and size on the projected 2D plane video. We locate the center of the
predicted FoV by averaging the position of all tiles. The shape and range of
the FoV on the 2D projected video related to the above calculated center can
be obtained according to the projection relationship. Then we complement the
negative judged tiles around the center to fill in the range of FoV.

3 Performance Evaluation

The LSTM network of the prediction model has to be trained by the omni-
directional video dataset [11]. The dataset has ten omnidirectional videos all
lasting one minutes. All videos are of 4K resolution with 30fps. The videos are
projected with equirectangular projection. Each video is viewed by 30 viewers
wearing HMD and the orientation of each frame has been collected by Open
Track and presented in both Cartesian coordinates and Euler angles. The omni-
directional video is partitioned into 10720 tiles, which are labeled whether is
viewed by the user.

We evaluate the performance of our two-layer model of FoV prediction given
the pre-detected heat map and continuously collected user’s head movement
information related to the previous frames in sliding window.

We compare the performance of our model with the typical and widely used
prediction approach of weighted linear regression [12].

Table 1 provides the specific measurement of accuracy and F-score of the
prediction on each video. Accuracy presents the primary performance of the
prediction model by calculating the ratio of tiles correctly classified to all tiles.
F-score is the weighted mean of the precision and recall (precision is the ratio of
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Table 1. Performance of the model on each video.

Videos Training set Validation set
Accuracy | F-score | Accuracy | F-score
Mega coaster 89.53% |0.7312 |88.90% |0.7011
Roller coaster 90.08% |0.7270 |88.28% | 0.6693
Driving with the 360 | 79.08% |0.3719 |77.34% |0.2821
Shark shipwreck 83.46% |0.5097 |83.26% |0.5259
Perils panel 90.16% |0.7408 |89.12% | 0.7246
Kangaroo Island 84.53% |0.5735 |82.62% |0.5308
SFR spore 92.37% |0.8014 |89.29% |0.7282
Hog rider 80.29% |0.3544 |77.09% |0.2742
Pac-Man 88.74% |0.7151 |87.45% |0.6826
Chariot race 88.26% |0.6818 |87.79% | 0.6040
Average(ours) 86.65% |0.6207 |85.11% |0.5722
Average(w-reg) 73.00% |0.5352 |72.54 % |0.5155

tiles classified to be positive correctly to all positive classified tiles, and recall is
the ratio of tiles classified to be positive correctly to all viewed tiles).

The accuracy presents the primary performance of the prediction model. Our
model outperforms over the weighted linear regression approach with a consid-
erably increase of accuracy. Our prediction approach obtains balance between
precision and recall over most video sequences. The performance improvement
caused by our model is probably because (a) the newly introduced navigation
speed leads the model to be more sensible to different viewing status, (b) correc-
tion module in the second layer improves the prediction to be more reasonable,
and (c) our model predict both short-term FoV and long-term FoV to match the
user’s viewport switching in longer time (d) we synthetically utilize the content
features and viewing movement information with our two-layer model.

Moreover, we evaluate the fluctuation of the prediction approach on each
video sequence. As shown in the Fig. 3, our model obtains great stability com-
pared with the weighted linear regression approach. Maintaining the prediction
at a higher accuracy all the time during the user’s viewing period still proves
to be a great challenge. In the process of viewing most video sequences, the
prediction accuracy of our model is stable near the average value in spite of the
changeable viewing status of users. However, when our prediction model achieves
higher accuracy, the stability prediction reduces. In contrast, the weighted lin-
ear regression approach not only obtains low average accuracy, but also shows
strong instability. In other words, our approach capture the regularity of the
FoV switching better, and is able to be adaptive to various users and videos.
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Fig. 3. The prediction performance comparison of our approach against weighted linear
regression ap-proach on ten videos during the whole consumption period.

4 Conclusion

In this paper, we propose a two-layer model to predict user’s FoV on omnidirec-
tional video during one’s viewing. The user’s navigation speed is considered for
the first time with user’s viewing orientation and content features. LSTM model
is trained and used to predict the probability of each region to be viewed, which
is further optimized by a correction module. The experimental results show that
our prediction approach is superior to other conventional approaches, obtaining
great accuracy and stability improvement under different viewing status. In the
future, we will utilize our prediction model in our realistic multi-network system
to further evaluate the performance in real application.
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