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Abstract. Caching at the network edge has emerged as a promising
technique to cope with the dramatic increase of mobile data traffic. It is
noted that different types of video applications on mobile devices have
different requirements for cached contents, thus corresponding caching
policies should be developed accordingly. In hyper-dense heterogeneous
networks, due to the user mobility and limited connection duration, the
user often could not download the complete cached contents from an
associated SBS before it moves away, which makes the design of caching
strategy more challenging. In this paper, we propose two different caching
strategies to adapt to multimedia applications of different video con-
tents. For ordinary network video files, coded caching is used to increase
the efficiency of content access. The caching problem is formulated as
an optimization problem to minimize the average transmission cost of
cached contents. We first present an optimal caching strategy based on
the critical value of validity period of user requests. Then, for the valid-
ity period greater than its critical value, an iterative optimization on the
basis of the above optimal solution is performed. For typical streaming
video, uncoded video fragments is considered to be stored in the caches to
meet the needs of online viewing. The principle of the proposed caching
scheme is to cache data chunks in advance according to the sequences of
SBSs passed by the user based on the mobility prediction results. Simula-
tion results indicate that the proposed mobility-based caching performs
better than the existing popularity-based caching scheme.

Keywords: Mobility-aware caching · Video services · Transmission
cost · Heterogeneous networks (HetNets)

1 Introduction

With the popularization of smart terminals and the diversification of multime-
dia applications, mobile data traffic has exhibited unprecedented growth world-
wide. This traffic growth in mobile networks will result in higher transmission
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delay and energy consumption. To cope with the stern challenge, researchers
have proposed to deploy SBSs together with macro-cell base stations (MBSs) in
existing networks to boost the network capacity. However, the overloaded and
costly backhaul links connecting the SBSs with the core network becomes the
bottleneck in improving network performance.

Caching popular contents at the SBSs equipped with storage facility has
been proposed to relieve congestion in the backhaul links [1]. By storing the
frequently requested contents in SBSs cache in advance, this technique not only
avoids redundant file retrieval over the backhaul links, but reduces the user
experienced delay. Motivated by this, content caching have been widely studied
in small cell networks. However, many works do not consider user mobility [2,3].
In realistic environments, the users are not stationary and their association with
the SBSs may change during data transfer, which makes the design of caching
strategy more intractable.

In hyper-dense HetNets, the association between the user and the SBSs will
change more frequently. Reference [4] has shown that analyzing and exploiting
the mobility patterns of users, the mobility-aware caching can markedly improve
the efficiency of caching. In [5], the authors formulate the content caching in
small-cell networks as an optimization problem, with the goal of maximize the
caching utility. In [6], the authors first model the user sojourn time as a random
variable that obeys the exponential distribution, and then propose a file alloca-
tion strategy based on coded caching. In [7], the authors research the impact of
user mobility on content caching aimed at minimizing the load of the macrocells.
In [8], the authors develop a novel algorithm for content placement at the cache
based on estimated popularity.

Although these works have taken user mobility into account, most of them
assume that all data of requested file stored in the cache of connected SBS
can be downloaded, once the user established a connection with it. In practice,
the user may only get parts of the cached contents from the associated SBS
during each connection due to the limit of connection duration. Moreover, in
recent years, various multimedia applications are emerging endlessly to meet
the different user needs. We notice that different types of video applications
on user terminals have different requirements for cached contents. Therefore,
corresponding caching policies should also be developed.

In this paper, we propose two different caching strategies specific to different
video services. For ordinary network video files, coded caching is introduced to
increase the efficiency of content access. The caching problem is formulated as
an optimization problem to minimize the average transmission cost of cached
contents. We first present an optimal caching strategy at the critical value of
validity period of user requests. Then, for the validity period greater than its
critical value, an iterative optimization based on the aforementioned optimal
result is implemented to maximize the average amount of coded data delivered
by local caches. For typical streaming video, storing uncoded video segments at
SBSs is considered to meet the needs of online viewing. The idea of the proposed
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caching scheme is to cache data chunks in advance according to the sequences of
SBSs traversed by the user. Simulation results show that our proposed mobility-
based caching performs better than maximum popularity caching.

2 System Model

2.1 Network Model

Consider a heterogeneous network for video delivery like the one depicted in
Fig. 1, which consists of one MBS and a set N of N SBSs deployed in a macro-
cell. Each SBSn, n ∈ N is equipped with a cache of storage size Cn (bytes).
The coverage areas of the SBSs may overlap each other, and a user may be
concurrently covered by multiple SBSs. Since the SBS coverage area is relatively
small, the user may repeatedly move in and out of the small cells and thus
connect to different SBSs at different times.

Fig. 1. Graphical illustration of heterogeneous network and user trajectory.

User preference to content files can be learned by analyzing previous statistics
of user requests, and it is assumed to be known and fixed within a time period. We
consider that each user independently requests a item from the content library
F consisting of F video files, and file popularity follows Zipf distribution [9].

2.2 Video Service Model

Given the different requirements of multimedia applications, the cache space
of each SBS is divided into two areas to store different contents, thus provid-
ing mobile users with different video services. For ordinary network video files,
storing the encoded data of video files is considered to increase the efficiency
of content access. By appropriate coding, the requested file can be successfully
recovered when the total amount of downloaded coded data in any order is at
least the size of the original file [10]. For typical streaming video, in-order packet
delivery should be guaranteed. Since the storage buffers at the SBSs specific to
such applications is limited, only some video fragments are expected to be placed
in the cache to improve cache hit probability. We consider splitting each item into
some data chunks with the same size, each of which is identified by a sequence
number. The user collects data chunks sequentially from the encountered SBSs
to meet the needs of viewing streaming video online.



Mobility-Aware Caching Specific to Video Services in HetNets 483

2.3 Mobility Model

The user mobility is modeled from two dimensions of time and space. We first
divide time into identical time intervals, and each time interval corresponds to
the shortest duration that the SBS is accessed. Then, several important locations
that are frequently visited are identified in the macro-cell, e.g., crowded cross-
road, shopping center, stadium, etc. These important locations can be extracted
by using clustering algorithms from previous trajectories of the user, and each
location may be covered by multiple SBSs. Besides, there is also a non-important
location covered by all remaining SBSs.

In the coded caching, we consider delayed offloading scheme [11]. To meet
QoS requirements, we associate each user request with a period of validity. That
is, each request must be completely served within T time intervals by the encoun-
tered SBSs once it is initiated. We refer to the sequence of visited locations during
the validity period as movement pattern of the user, i.e. rw = {v1, v2, · · · , vT },
where vi represents the location visited at i-th interval. We denote the set of
all possible movement patterns with W. The probability that a user takes rw,
w ∈ W can be derived as follows:

qw = p(v1)
T−1∏

i=1

p(vi+1|vi) (1)

where p(v1) denotes the probability that the user appears in location v1 when ini-
tiating a video request, and p(vi+1|vi) denotes the transition probability between
vi and vi+1. These probabilities can be estimated by leveraging previous time
statistics.

In the chunk-based uncoded caching, our work focuses on utilizing either
the specified or the predicted mobility information to facilitate effective content
placement at SBSs. We refer to the sequence of SBSs accessed within the coverage
of the identified locations as movement trajectory of the user. We assume that
the prediction of user trajectory is performed by the mobility prediction entity
deployed at the MBS. In the following, two different kinds of caching strategies
are presented.

3 Proposed Coded Caching Strategy

3.1 Problem Formulation

We use X = {xn,i|n ∈ N , i ∈ F} to denote the caching strategy, where xn,i

indicates the amount of coded data of video file fi stored in the cache of SBSn.
Considering that there are differences between SBSs in the deployed bandwidth
and the average workload, Bn is used to represent the average amount of data
that SBSn can deliver to a user within a time interval. In a movement pattern
rw, a user may be connected to the same SBS multiple times. Let Nw represent
the subset of SBSs that are encountered in rw, and aw,n is introduced to denote
the number of time intervals that SBSn ∈ Nw is accessed in rw. During the j-th
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connection with SBSn, the non-redundant amount of coded data of file fi which
can be downloaded within this interval is given by

d
(j)
n,i = max{min{xn,i − (j − 1)Bn, Bn}, 0} (2)

For a user requesting file fi and taking movement pattern rw, the total
amount of coded data downloaded from the local encountered SBSs can be
expressed as follows:

ui,w = min{
∑

n∈Nw

aw,n∑

j=1

d
(j)
n,i, si} = min{

∑

n∈N
min{xn,i, Bnaw,n}, si} (3)

where si is the size of file fi. If ui,w is less than si, the remaining video segments
need to be downloaded from the remote server. Then, the amount of coded
data downloaded from the core network over backhaul link for file fi is equal to
si − ui,w.

Obviously, serving a user request from the SBSs cache and the remote server
will incur different levels of transmission costs to the operator, such as the energy
consumed at the SBSs or the traffic generated in the backhaul network. Suppose
that the cost of transmitting the unit of coded data volume from the cache of the
encountered SBSs is ω0, and the cost from the core network over backhaul link
is ω1 (ω1 > ω0). Then, in the case that the user takes the movement pattern rw,
the download cost of requested video file fi is given by (ui,wω0 + (si − ui,w)ω1).

Our goal is to find the optimal caching strategy to minimize the average
transmission cost of the requested items. The optimization problem can be for-
mulated as follows:

min
X

Ω(X ) =
∑

w∈W
qw

∑

i∈F
pi · (siω1 − ui,w(ω1 − ω0))

= ω1

∑

i∈F
pisi − (ω1 − ω0)

∑

w∈W

∑

i∈F
qwpiui,w

(4)

s.t. xn,i ∈ [0, si], ∀n ∈ N , ∀i ∈ F ;
∑

i∈F
xn,i ≤ C

′
n, ∀n ∈ N . (5)

where C
′
n denotes the capacity used to store MDS-encoded data of ordinary

video files in the cache of SBSn, satisfying C
′
n < Cn. Let Φ(X ) denote the average

amount of coded data delivered by the encountered SBSs, which is derived as
follows:

Φ(X ) =
∑

w∈W
qw

∑

i∈F
piui,w (6)

Since ω1 > ω0, minimizing the transmission cost of file download is equivalent
to maximizing Φ(X ).

3.2 Distributed Approximate Solution

Before solving the above optimization problem, we first discuss the period of
validity T of user requests. The critical value Tc of validity period is defined as
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smin/Bmax. In the case of T < Tc, it means that no matter which movement
pattern is taken, and no matter which video file is requested, successful recovery
of requested videos cannot occur. That is, there are hardly user requests that can
be completely served by the local SBSs, which is clearly not what the operator
would like to see. Thus, in this paper, we consider that the validity period of
user requests satisfies T ≥ Tc.

Next, we first present the optimal caching strategy when T = Tc, and then the
iterative optimization on the basis of this result is implemented to maximize the
average amount of coded data downloaded from local SBSs, thereby minimizing
the transmission cost. In the case of T = Tc, Eq. (3) can be simplified as follows:

ui,w =
∑

n∈N
min{xn,i, Bnaw,n} (7)

The Eq. (6) can be rewritten as follows:

Φ(X ) =
∑

n∈N

∑

w∈W
qw

∑

i∈F
pi · min{xn,i, Bnaw,n} (8)

Algorithm 1 Mobility-based Optimal Caching Algorithm (T = Tc)

1: Input: Bn, C
′
n, λk

n,i, si. Output: The optimal solution X ∗
n .

2: valkn,i ← λk
n,i, wgtkn,i ← si, i ∈ F , k ∈ {1, · · · , T}; xn,i ← 0, i ∈ F ;

3: D ← {1, · · · , F} × {1, · · · , T};
4: for i = 1, 2, · · · , F · T do
5: while C

′
n > 0 do

6: (i∗, k∗) = arg max
(i,k)∈D

valkn,i

wgtkn,i

; xn,i∗ ← xn,i∗ + min{Bn, C
′
n};

7: D ← D \ (i∗, k∗); C
′
n ← C

′
n − Bn;

8: end while
9: end for

From the structure of Φ(X ) and the aforementioned constraints (5), we can
observe that the caching strategy at one SBS does not affect the other SBSs.
Therefore, we can decompose this problem into N independent sub-problems
and solve them in a distributed way. For SBSn, the sub-problem Pn can be
expressed as follows:

max
Xn

∑

w∈W
qw

∑

i∈F
pi · min{xn,i, Bnaw,n}

=
∑

i∈F

T∑

k=1

∑

w∈Wn,k+

piqw · d
(k)
n,i =

∑

i∈F

T∑

k=1

λk
n,i · d

(k)
n,i

(9)

s.t. xn,i ∈ [0, si], ∀i ∈ F ;
∑

i∈F
xn,i ≤ C

′
n. (10)
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where Wn,k and Wn,k+ denotes the subset of movement patterns where the
number of time intervals that SBSn is accessed is equal to k and not less than
k, respectively. Thereinto, λk

n,i =
∑

w∈Wn,k+
piqw. It can be observed that the

objective function in Pn is a superposition of F monotonically increasing piece-
wise linear functions.

With respect to the optimization variables xn,i(i ∈ F), the objective function
and the constraints of this problem are linear, and thus it can be solved by using
linear optimization techniques. Specifically, we classify problem Pn as a class of
knapsack problems. The optimal solution of this knapsack type problem can be
obtained by the following scheme, that is, iteratively placing the item with the
highest ratio of value to weight into the knapsack until there is no space left.
The specific procedure is summarized in Algorithm 1.

When T > Tc, the amount of coded data ui,w downloaded from the SBSs
cache can’t be reduced to the form of Eq. (7), so we cannot obtain the optimal
caching strategy. Thus, an iterative optimization on the basis of the optimal
caching strategy X ∗

n is implemented to minimize the transmission cost of cached
contents. The criterion of cache optimization is mainly based on the popularity
of files. That is, if there are several video files that are stored with the same
amount of coded data, then we can consider decreasing the amount of coded
data corresponding to the less popular files, while increasing the amount of coded
data corresponding to the more popular files. Let Vin(i) and Vde(i) represent the
changes in the average transmission cost Ω(X ) when the amount of cached data
of the file fi is increased or decreased by Bn. When |Vin(i+)| > Vde(i−), the
cache optimization can be performed. The specific procedure is described in
Algorithm 2.

Algorithm 2 Mobility-based Approximate Caching Algorithm (T > Tc)
1: Input: Bn, X ∗

n . Output: The approximate solution Xn.
2: while true do
3: Initialize Fin ← ∅, Fde ← ∅, Vin(i) ← 0, Vde(i) ← 0, i ∈ F ;
4: x0 = max{xn,i, i ∈ F};
5: while x0 ≥ 0 do
6: i− = max{i|xn,i ≥ x0, i ∈ F};
7: if xn,i− > 0 then
8: Fde ← Fde ∪ {i−}; calculate the variation in average cost Vde(i

−);
9: end if

10: i+ = min{i|xn,i ≥ x0, i ∈ F}; Fin ← Fin ∪ {i+};
11: calculate the variation in average cost Vin(i+); x0 ← x0 − Bn;
12: end while
13: if | min{Vin(i+)}| > min{Vde(i

−)} then
14: i+m = arg mini+∈Fin

Vin(i+); x
n,i+m

← min{x
n,i+m

+ Bn, s
i+m

};

15: i−m = arg mini−∈Fde
Vde(i

−); x
n,i−m

← max{x
n,i−m

− Bn, 0};
16: else
17: break;
18: end if
19: end while
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4 Chunk-Based Uncoded Caching Strategy

Once a user initiates a video request, the associated SBS immediately informs
the MPE to forecast possible movement trajectories within the coverage of the
current location. Based on the predicted trajectories and corresponding sojourn
time (intervals), the MBS determines the set of SBSs where the cached con-
tents should be updated and the video fragments that they respectively need to
store. Upon the user leaves current location and enters the coverage of adjacent
location, the above steps are implemented again until the requested file is com-
pletely downloaded. The principle of the proposed caching strategy is to store in
advance the data chunks in the likely sequences of SBSs that are accessed by the
user at a higher probability, and these chunks are most probably downloaded at
each small-cell traversed.

The detailed caching scheme is presented as follows. Firstly, the first data
chunks of each video file are placed in the SBSs cache at the beginning. The size of
cached video fragments of file fi in the cache of SBSn is given by min{piC

′′
n , si},

where C
′′
n denotes the capacity used to store uncoded video fragments in the

SBSn cache, satisfying C
′′
n < Cn. Secondly, when a video file is requested by the

user, the MBS sorts the possible movement trajectories predicted by MPE in
descending order of occurrence probability, and then selects the most probable
trajectories so that the sum of their probabilities is not less than the threshold τ .
Finally, according to the predicted SBSs sequences and the sojourn time in the
corresponding small-cell, the data chunks of requested file that should be stored
in the cache of each SBS are determined. At the time of performing caching at
each SBS, the previous chunk and the latter chunk (if exist) of the decision result
should also be placed in the cache, so that the data can also be downloaded from
the local cache rather than remote server in the case that the movement speed
of the user changes slightly.

Considering that the predicted results cannot be completely accurate no mat-
ter what kind of mobility prediction model is adopted, so the several trajectories
is chosen instead of the most likely one. Because SBSs have limited storage space,
a cache replacement strategy is necessary to determine which data chunks should
be removed, in the case that the cache is full and new chunks should be cached.
Obviously, the video fragments that have already been delivered are the ones to
be evicted.

5 Simulation Results

In this section, we evaluate the performance of the proposed caching strate-
gies. The performance criterion we use is the average transmission cost of the
requested files denoted with Ω. In the case of T ≥ Tc, we compare the perfor-
mance of the approximate caching strategy in which iterative optimization is
implemented with the maximum popularity caching strategy and the optimal
caching strategy (T = Tc).
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In our simulation, we consider that there are F = 100 files with a size of
60 MB in the video library, and their popularity follows a Zipf distribution
with exponent γ = 1.0. There are N = 7 SBSs with the same cache capacity
C

′
n = 20% of the video library size used to store coded data in a macro cell to

achieve seamless coverage, and we consider that these SBSs respectively repre-
sent different locations. During the movement, the user moves to the adjacent
locations with equal transition probabilities. The validity period of user requests
and the amount of data delivered by SBSn are set to T = 5 time intervals and
Bn = 20 MB, respectively. In addition, we assume that the costs of serving a file
request from SBSs cache and remote server are 0 and 100.

Impact of Cache Capacity. We first investigate the impact of cache capac-
ity on the average transmission cost incurred by the presented algorithms, as
depicted in Fig. 2. In this experiment, the cache capacity of SBSs span a wide
range, from 10% to 50% of the entire video files library size. As expected, increas-
ing the cache capacity reduces the average transmission cost. Furthermore, we
can observe that the approximate caching algorithm always outperforms the
optimal caching algorithm, and they perform significantly better than the max-
imum popularity caching. This can be explained from the fact that maximum
popularity caching policy takes caching decisions considering only user demand,
ignoring the movement patterns of users.

Impact of Zipf Exponent. Figure 3 examines the relation between the aver-
age transmission cost and the exponent of Zipf distribution γ. We notice that
the approximate caching algorithm that performs iterative optimization consis-
tently outperforms the other algorithms, and the gap between their performances
diminishes with increasing the parameter of Zipf. As we know, the exponent γ
characterizes the correlation level of user requests. The larger the value of it,
the more the user preferences are concentrated on a few most popular video
files. That is, increasing the value of γ accordingly enhances the probability of
requesting files in the SBSs cache, thereby reducing the average transmission
cost of the requested contents.
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Fig. 2. Average transmission cost Ω
versus cache capacity C.
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Fig. 5. Average transmission cost Ω
versus amount of data delivered within
a time interval B.

Impact of Validity Period. We explore how the period of validity of user
requests impacts the results in Fig. 4. In this experiment, the validity period
T varies from 3 time intervals (corresponding to the critical value Tc) to 7
time intervals. It can be observed that the average transmission cost gradually
decreases for the proposed caching algorithms, since the user has more oppor-
tunities to contact with different SBSs. The amount of coded data downloaded
from the remote server over backhaul link is reduced. It is worth mentioning
that the performance of the maximum popularity caching remains unchanged,
because the most popular files have been completely replicated in the cache. The
change in T has no impact on the amount of data delivered by SBSs.

Impact of Transmission Rate. In Fig. 5, we analyze the impact of the amount
of data delivered by SBSs within a time interval on the performance of caching
algorithms. Specifically, the transmission rate B varies in {12, 15, 20, 30, 60}
MB per interval. As the transmission rate increases, it is expected that the
SBSs can transmit more data during connection with the user, thus reducing
the transmission cost. However, with the data rate continuous increasing, the
average cost no longer decreases, but instead starts to increase. In the case of
higher transmission rate, we need to store more coded data for each of the most
popular files that should be cached. Due to the limited cache capacity, this may
cut down the number of requests directly served by the caches.

6 Conclusion

In this paper, due to the different requirements of multimedia applications on
user terminals for cached contents, we present two different kinds of caching
policies. For ordinary network video files, the caching problem is formulated as
an optimization problem to minimize the average transmission cost of cached
contents. For typical streaming video, we consider storing uncoded video frag-
ments in the caches. The proposed caching scheme is to cache data chunks in
advance at SBSs passed by the user based on the mobility prediction results. The
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results of simulation reveal that the proposed mobility-based caching performs
significantly better than max-popularity caching.
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