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Abstract. Recently, energy detection (ED) has been investigated in
massive single-input multiple-output (SIMO) systems, where transmit
symbols can be decoded by averaging the received power across all receive
antennas. In this paper, we concentrate on the performance of non-
coherent massive SIMO in the presence of antenna correlation. Specifi-
cally, closed-form expressions of symbol error rate (SER) and achievable
rate are derived. Furthermore, asymptotic behaviors of SER and achiev-
able rate in regimes of a large number of receive antennas, high antenna
correlation and large signal-to-noise ratio (SNR) are investigated. Inter-
estingly, the results show that antenna correlation poses a great impact
to SER, but has little effect on the achievable rate. Numerical results are
presented to verify our analytical results.
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1 Introduction

Massive multiple-input multiple-out (MIMO) systems, which deploy a large num-
ber of antennas at base station (BS) to serve a relatively small number of users,
has become a promising technology due to its increased degrees of freedom [1,2].
Besides, massive MIMO is energy efficient since the transmit power scales down
with the number of antennas at BSs. However, non-orthogonal pilots among
adjacent cells would deteriorate the system performance as channel estimates
obtained in a given cell will be corrupted by pilots transmitted by users in the
other cells.

Non-coherent communications systems based on energy detection (ED),
which require no knowledge of instantaneous channel state information (CSI)
at either the transmitter or receiver, have attracted a great attention [3,4]. In
spite of a sub-optimal performance, non-coherent receivers enjoy the benefits
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of low complexity, low power consumption and simple structures compared to
coherent communications systems [5]. Specifically, for an ED-based non-coherent
massive single-input multiple-output (SIMO) system, the average symbol-error-
rate (SER) is derived with channel statistics, based on which a minimum dis-
tance constellation is presented in [6]. An asymptotically optimal constellation
is proposed with varying levels of uncertainty in channel statistics [7]. Also, it is
proved that non-coherent massive SIMO system satisfies the same scaling law as
its coherent counterpart [8]. More importantly, given that the number of receive
antennas is asymptotically infinite, the ED-based non-coherent massive SIMO
system can provide the same error performance as that of the coherent system.

In real applications, deploying a large number of antennas leads to inadequate
antenna separation. Thus, a new challenge emerges as the correlation between
antennas could adversely affects the communications systems performance and
capacity. The impact of antenna correlation on conventional MIMO has been
investigated thoroughly. In [9] and [10], the effects of spatial correlation and
mutual antenna coupling are studied when an increasing number of antennas is
fitted in a fixed physical space. Furthermore, it is shown that energy efficiency
does not increase unboundedly in massive MIMO system when antennas are to
be accommodated within a fixed physical space [11]. The analysis of antenna cor-
relation is not restricted to the popular separable correlation model, but rather
it embraces a more general representation [12] and closed-form expressions for
the capacity of correlative channel based on the eigenvalues of input covariance
and channel matrix are proposed in [13].

The aforementioned studies validate that antenna correlation has an adverse
impact in coherent MIMO systems. However, for non-coherent massive SIMO
systems, whether the antenna correlation influences the capacity or error perfor-
mance is still not clear. Inspired by this, this paper presents a thorough perfor-
mance analysis of non-coherent massive SIMO systems with ED-based receivers.
In this work, we derive analytical expressions of ergodic rate and the SER for
non-coherent massive SIMO systems with receive antenna correlation. For the
SER, when antenna correlation is large enough, increasing the number of anten-
nas cannot further reduce the error probability. Conversely, antenna correlation
has little impact on the achievable rate.

2 System Model

We consider a massive SIMO configuration with one transmit antenna and a
large number of receive antennas. The flat-fading channels of different transmit-
receive pairs are assumed to be mutually independent. The received signal vector
is represented by

y = hx + n (1)

where y ∈ C
M×1 is the received signal at the multi-antenna receiver, n ∈ C

M×1

indicates a complex Gaussian noise vector with elements ni ∼ CN (0, σ2
n),

h ∈ C
M×1 refers to the channel realization with hi ∼ CN (0, σ2

h), x denotes the
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transmit symbol drawn from a certain non-negative constellation P =
{√

p1,
√

p2, . . . ,
√

pK}, K indicates the constellation size and M the number of
receive antennas. The channel statistics is supposed to be known to the receiver
instead of the instantaneous CSI.

In the case of one transmit antenna, the spatially correlated channel can be
characterized by the well-known Kronecker model [14]

h = Φ1/2
r g (2)

where g ∈ C
M×1 is an uncorrelated complex channel vector whose entries are

independent identically distributed (i.i.d.) with gi ∼ CN (0, 1). Φ1/2
r indicates

the deterministic receive correlation matrix, which depends on the angle spread,
antenna beamwidth and antenna spacing.

For the structure of Φr, the exponential correlation model are often utilized
to quantify the level of spatial correlation [14]. Specifically, according to the
exponential model, the receive correlation matrix can be constructed utilizing a
single coefficient ρ ∈ C, namely

Φij =
{

ρ|j−i|, i � j(
ρ|j−i|)∗

, j < i
(3)

where | · | denotes the absolute value operation and Φij the (i, j)th entry of Φr,
ρ = aejθ is the correlation coefficient with 0 ≤ a < 1. Note that the eigenvalues
of Φr only depend on a, while θ decides the eigenvectors of Φr. Because only
the eigenvalues of Φr will be used in the following analysis, we assume ρ = a
throughout this paper. Also, Φr is supposed to be known as a prior, since it is
supposed to be less frequently varying than the channel matrix.

3 ED-Based Receiver Using a Finite Number of Antennas

Based on the ED principle, after the received signal having been filtered, squared
and integrated, the decision metric for symbol decoding can be written as

z =
‖y‖22
M

. (4)

We assume that the knowledge of channel and noise statistics is available at
the receiver, this is achieved by sending a sequence of training symbols before
data transmission [9]. First, the decision metric with a finite number of antennas
can be expanded as

z =
1
M

[hHΦrh]x2 +
1
M

nHn +
2
M

�
(
nHΦ1/2

r h
)

x. (5)

From [15], the first component of (5) can be expressed as

1
M

[hHΦrh]x2 =
1
M

[hHUΛUHh]x2

=
1
M

[vHΛv]x2
(6)
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where the eigendecomposition is employed to translate Φr into Φr = UΛUH ,
Λ is a eigenvalue diagonal matrix and U is a unitary matrix consisting of corre-
sponding eigenvectors. v = UHh follows the identical distribution with UH and
the entries of v are mutually independent [15].

The third component in (5) can be expanded in the same way. Therefore, the
decision metric is transformed into

z =
1
M

[vHΛv]x2 +
1
M

nHn +
2
M

�
(
qHΛ1/2v

)
x

=
x2

M

M∑
i=1

λi|vi|2 +
1
M

M∑
i=1

|ni|2 +
2x

M

M∑
i=1

λ
1
2
i � (qivi)

(7)

where q = UHn, 2|vi|2 and 2
σ2

n
|ni|2 are chi-square variables with 2 degrees of

freedom, qivi is a product of two Gaussian variables. Although 2
M � (

qHΛ1/2v
)
,

1
M nHn and 1

M [vHΛv] are not mutually independent, the asymptotic indepen-
dence can be validated among them [16]. Thus, it is assumed the elements in (7)
are mutually independent in the following analysis.

Lemma 1. If the number of antennas M grows large, the following approxima-
tions are attainable thanks to Lyapunov Central Limit Theorem (CLT).

M∑
i=1

λi|vi|2 ∼ N
(

M∑
i=1

λi,
M∑
i=1

λ2
i

)
,

M∑
i=1

|ni|2 ∼ N (
Mσ2

n,Mσ4
n

)
,

M∑
i=1

λ
1
2
i �(qivi) ∼ N

(
0,

σ2
n

2

M∑
i=1

λi

) (8)

where
M∑
i=1

λi = M,

M∑
i=1

λ2
i = M + 2

M−1∑
i=1

(M − i)ρ2i = M + f(ρ) (9)

with

f(ρ) = 2
ρ2M+2 + M(ρ2 − ρ4) − ρ2

(1 − ρ2)2
, 0 ≤ ρ < 1. (10)

Since 0 ≤ ρ < 1, the above equation is further simplified as

f(ρ) =
2M(ρ2 − ρ4) − 2ρ2

(1 − ρ2)2
, 0 ≤ ρ < 1. (11)

where 0 � f (ρ) < M2 − M ,
∑M

i=1 λi is equal to the trace of Φr and
∑M

i=1 λ2
i is

the trace of Φ2
r. Obviously, f(ρ) is an increasing function of ρ.

Applying Lemma 1 and with some straightforward mathematical manipula-
tions, it is shown that the decision metric z follows a real Gaussian distribution,
namely z ∼ N (μz, σ

2
z). The corresponding mean and variance are given below

μz = x2 + σ2
n → μ(pk) = pk + σ2

n

σ2
z =

1
M

(
x2 + σ2

n

)2
+

f(ρ)
M2

→ σ2(pk) =
1
M

(
pk + σ2

n

)2
+

f(ρ)
M2

(12)
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where μ(pk) and σ2(pk) are mean and variance of z when
√

pk is the transmit
symbol.

4 Performance Analysis

In this section, a closed-form expression of the SER is presented. The asymptotic
behaviors of infinite number of antennas and high SNRs are taken into consid-
eration. Afterwards, a closed-form expression of the achievable rate is given.

4.1 SER Analysis

Given multiple decoding regions {dk}K−1
k=1 , z can be decoded by

x̂ =
√

pk : dk−1 � z < dk. (13)

Proposition 1. With a finite number of receive antennas, the SER of the ED-
based massive SIMO system with antenna correlation is given by

Pe = 1 − 1
K

K∑
k=1

P (pk)

= 1 − 1
2K

K∑
k=1

(
erf

(
Δk,L√
2σ(pk)

)
+ erf

(
Δk,R√
2σ(pk)

)) (14)

where Δk,L = μ(pk) − dk−1 and Δk,R = dk − μ(pk).

Proof. Since z is a Gaussian variable that has been proved, the correct proba-
bility of each pk can be obtained as follows

P (pk) = Pr(dk−1 � z < dk)

=
1
2

(
erf

(
μ(pk) − dk−1√

2σ(pk)

)
+ erf

(
dk − μ(pk)√

2σ(pk)

))
.

(15)

The error probability is Pe(pk) = 1 − P (pk), thus the average error probability,
Pe, is equal to 1

K

∑K
k=1 Pe(pk), Proposition 1 is proved.

It is worth noting that the expression in (14) is a generalized result suitable
for a variety of non-negative constellations. Given variance σ(pk) and decod-
ing regions, one can obtain the error probability. Moreover, the result in (14)
reveals how antenna correlation affects the error performance. When M , SNR
and constellation size are fixed, σ2(pk) grows with a larger ρ. Since SER is an
increasing function of σ2(pk), the error probability will increase if channels of
different transmit-receive pairs are more correlated. In the limit of ρ → 1 and
SNR → ∞, the following results is obtained

lim
ρ→1

Δ2
k,R

σ2(pk)
=

(dk − μ(pk))2

2
. (16)

lim
σ2

n→0
σ2(pk) =

1
M

p2k +
f(ρ)
M2

. (17)
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It is readily observed from (16) that no matter how large the number of receive
antennas is, it will not be helpful to reduce SER. On the other hand, as long
as ρ is not that large, increasing M can reduce error rate. From (17), it can be
found that σ2(pk) will not converge to zero even if SNR → ∞, which means that
an error floor appears in high SNR regions.

4.2 Achievable Rate Analysis

Proposition 2. The SNR of received signal at BS can be represented as

γ ∼ X1

X2
(18)

where X1 and X2 are independent real Gaussian random variables, namely

X1 ∼ N (
μX1 , σ

2
X1

)
,X2 ∼ N (

μX2 , σ
2
X2

)
(19)

where

μX1 = p2
k

(
1 +

M + f(ρ)

M2

)
, μX2 = σ4

n

(
1 +

1

M

)
+

2pkσ2
n

M
,

σ2
X1 = p4

k

(
2 + M + f(ρ)

M2
+

4Mf(ρ) + 2f2(ρ)

M4

)
, σ2

X2 = 2σ8
n

(
1 + 2M

M2

)
+

8p2
kσ4

n

M2
.

Proof. From (7), the SNR of received signal at BS is defined as

γ =

(
1
M

M∑
i=1

λi|vi|2
)2

x4

(
1
M

M∑
i=1

|ni|2
)2

+

(
2
M

M∑
i=1

λ
1
2
i �(qivi)

)2

x2

. (20)

At first, 1
M

∑M
i=1 λi|vi|2 follows a non-zero mean Gaussian distribution when

M is large according to Lemma 1. Therefore, the numerator of (20) is a non-
central Chi-square random variable. When the variance of a non-central Chi-
square distribution is small enough, it can also be approximated as a Gaussian
distribution [9]. In the same way, the denominator of (20) is able to be considered
as a Gaussian variable too.

From Proposition 2, the achievable rate with respect to the kth constellation
point is able to be computed by averaging over X1 and X2

Rk = EX1,X2

{
log2

(
1 +

X1

X2

)}
. (21)



454 W. Xu et al.

Proposition 3. In the presence of antenna correlation, the achievable rate when√
pk is transmitted is given by

Rk =
log2e√

π

n∑
i=0

Wi ln(1 + vi)K(vi)

− log2e
m

√
π

m−1∑
i=1

ln
(

1 +
i

m

)
K

(
i

m

)
− 1

2m
√

π
K(1)

+
log2e√

π

n∑
i=0

Ai

2
√

si
ln

(
μzμX2 +

√
2μX2σz

√
si

μzμX2 +
√

2μzσX2

√
si

)

+
log2μz

2
erfc

(
− μz√

2σz

)
− log2μX2

2
erfc

(
− μX2√

2σX2

)

(22)

where

μz = μX1 + μX2 , σ2
z = σ2

X1
+ σ2

X2
(23)

K(x) =
μz√
2σZ

e
−

(
μZ√
2σz

x
)2

− μX2√
2σX2

e
−

(
μX2√
2σX2

x

)2

(24)

and the value of Wi and vi are derived from Gauss–Legendre quadrature formula,
the value of Ai and si is derived from Gauss–Laguerre quadrature formula. 1/m
is the step in compound trapezoid formula.

Proof. The proof is omitted because of the length constraint.

The average achievable rate can be simply calculated by R = 1
K

∑K
k=1 Rk.

5 Numberical Results

Monte Carlo simulations are performed to illustrate the effect of antenna correla-
tion and verify our analysis. We assume that the non-negative PAM is employed
and the channel is Rayleigh fading with a correlation matrix Φr.

Figure 1 shows SER versus SNR for different numbers of receive antennas,
where K = 4 and ρ = 0.5. As expected, when M increases, the SER decreases as
a consequence. However, there exists a distinct discrepancy between simulation
and analytical results. This is attributed to the CLT approximation, where the
tail of Gaussian distribution shows a slight difference with actual distribution.
Although it is small in absolute value, the logarithmic representation in Fig. 1
will amplify this difference. However, the tendency of simulation and analytical
curves is quite similar. Beside, Pe will converge to a non-zero error floor with
SNR growing. Generally, there are two approaches to reduce the error floor,
one is to employ more the number of antennas, and the other is constellation
optimization.

The impact of antenna correlation on the error rate can be further verified
in Fig. 2, where K = 4 and SNR = 6dB. This figure clearly demonstrates the
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adverse effect of antenna correlation on error performance. Meanwhile, the per-
formance gain provided by massive antenna array would be counteracted by
spatially correlated channels.

Figure 3 plots the relationship between the achievable rate and SNR in the
presence of antenna correlation, where K = 4 and ρ = 0.5. The numerical results
are obtained by performing simulation using (20), while analytical results are
computed with (22). Unlike the situation of SER comparison, the numerical
and analytical results of achievable rate fit each other very well. Furthermore,
since there is no interference in the considered system model, the achievable rate
increases unboundedly with growing SNRs.

-3 0 3 6 9 12

SNR (dB)

0

1

2

3

4

5

6

S
um

 R
at

e

Simulation
Analysis

9
3.8

4

4.2

4.4

4.6

M = 50, 100, 200, 400

4-PAM, ρ = 0.5

Fig. 3. Achievable rate versus SNR at
various antenna correlation with K = 4
and ρ = 0.5 (Gaussian distribution).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Antenna Correlation

4.55

4.6

4.65

4.7

4.75

4.8

4.85

4.9

4.95

S
um

 R
at

e

Simulation
Analysis

M = 800

M = 400

M = 200

M = 100

4-PAM, SNR = 10dB

Fig. 4. Achievable rate versus antenna
correlation at various number of anten-
nas with K = 4 and SNR = 10 dB
(Gaussian distribution).



456 W. Xu et al.

Figure 4 shows how the achievable rate varies with antenna correlation, where
K = 4 and SNR = 10dB. The remarkable gap between analytical and numerical
results at M = 100 arises because the number of antennas is insufficient and
resulting Gaussian approximation by using CLT is not accurate enough. Most
importantly, for a large range of antenna correlation, the sum rate almost remains
unchanged, especially when M > 200.

6 Conclusion

Non-coherent receivers are attractive in massive SIMO systems, due primarily
to their low complexity and cost. This paper presents a through performance
analysis of non-coherent massive SIMO systems over spatially correlated chan-
nels.

We have derived the approximated analytical closed-form expression of the
average SER based on CLT. Simultaneously, the achievable rate is given accord-
ing to Gaussian distribution approximation. Both analytical and numerical
results indicate an error floor of Pe will appear at high SNRs, which can be
reduced by constellation optimization or increasing the number of receive anten-
nas. Interestingly, the simulation results report that the antenna correlation has
far less impact on the achievable rate than the error probability.
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