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Abstract. Spectrum sensing plays an important role in cognitive radio.
In this paper, a robust spectrum sensing method via empirical charac-
teristic function based on goodness-of-fit testing is proposed, named as
ECF detector. The test statistic is derived from the empirical charac-
teristic function of the observed samples, thus the secondary users do
not require any prior knowledge of the primary signal and the noise dis-
tribution. Extensive simulations are performed and compared with the
existing spectrum sensing methods, such as energy detector, eigenvalue-
based detector, AD detector and KS detector. The results show that, the
proposed ECF detector can offer superior detection performance under
both the Gaussian noise and the impulsive noise environments.

Keywords: Cognitive radio · Empirical characteristic function
Goodness-of-fit testing · Impulsive noise · Spectrum sensing

1 Introduction

Cognitive radio is a spectrum shared technology to alleviate the spectrum short-
age problem and to improve the spectrum utilization. In cognitive radio net-
works, the secondary users are able to access the licensed spectrum without
causing interference to the primary users. Spectrum sensing plays an important
role to detect the presence of the primary user.

Based on the local observations, a variety of spectrum sensing methods have
been proposed in [1–6]. The energy detector [1,2] is one of the most commonly
employed spectrum sensing schemes, since it does not require any prior informa-
tion of the primary signal. The problem of energy detector is that it requires the
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knowledge of the noise variance which is estimated by some estimation proce-
dure. The energy detector is fairly sensitive to the estimated error, named noise
uncertainty. To circumvent this difficulty, assuming no prior knowledge of the
primary signal and noise variance at the secondary users, some eigenvalue-based
spectrum sensing methods based on the generalized likelihood ratio test (GLRT)
paradigm [3–6] have been proposed which utilize the eigenvalues of the sample
covariance matrix of the received signal vector. However, the aforementioned
spectrum sensing methods are developed under the Gaussian noise assumption.
Their performance degrades substantially in the presence of non-Gaussian noise.

Although it is common to justify the Gaussian assumption on noise with the
central-limit theorem, it also frequently deals with noise environments where
the non-Gaussian (impulsive or heavy-tailed) nature of noise prevails in the
system. For instance, car ignition noise, moving vehicles, electromagnetic inter-
ference, man-made noise, and arc generating circuit components are impulsive
noise sources, which are encountered in metropolitan areas [7]. In indoor wire-
less communication, devices with electromechanical switches such as electrical
motors in elevators refrigerators units and printers are also considered as impul-
sive noise. Furthermore, microwave ovens, cash register receipt printers, gas-
powered engines produce impulsive noise on frequency bands which coincide
with the operating frequencies of current cellular and wireless local area net-
works [8,9]. Under such impulsive noise circumstances, the spectrum sensing
algorithms developed under Gaussian noise may be highly susceptible to a severe
degradation of the performance.

To cope with the impulsive noise, using the goodness of fit testing, robust
spectrum sensing methods have been proposed in [10–14]. They consider the
spectrum sensing as a nonparametric hypothesis testing problem. When there
is no primary signal, the local observations are a sequence of samples drawn
independently from the noise distribution. To detect the presence of the pri-
mary user, it is equivalently to test whether the observations are drawn from the
noise distribution. Depending on how to measure the distance between the sam-
ple distribution and noise distribution, Anderson-Darling(AD) detector [10,11]
and Kolmogorov-Smirnov(KS) detector [12–14] are developed for spectrum sens-
ing. Although they can work under both the Gaussian and the impulsive noise
environments, the performance of the AD detector degrades significantly when
uses the empirical cumulative distribution function (CDF) to instead of the real
CDF. In addition, the performance of the KS detector depends on the number
of noise-only samples and observations.

The motivation of this work is to provide a robust spectrum sensing method
for cognitive radio under both Gaussian noise and impulsive noise environments.
The secondary users do not require any prior knowledge of the primary signal
and the noise distribution. A common model that is symmetric α−stable (SαS)
distribution is used for the impulsive noise with Gaussian noise as special case. In
this paper, another goodness-of-fit testing method based on empirical character-
istic function (c.f.) is applied, then an ECF detector is proposed, which is avail-
able under both Gaussian noise and impulsive noise environments. Moreover,
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an ECF-based moment estimator is employed to estimate the noise parameters.
Thus, the ECF detector does not require the prior information of primary sig-
nal and noise parameters. The performance of the method is evaluated through
Monte Carlo simulations. It is shown that the proposed spectrum sensing method
outperforms the exist detectors.

The remainder of this paper is organized as follows. In Sect. 2, the spec-
trum sensing problem and the SαS distribution for impulsive noise model are
introduced. In Sect. 3, an ECF detector is proposed for spectrum sensing, and a
moment estimator based on ECF is developed to estimate the impulsive noise
parameters. In Sect. 4, simulation results are illustrated to compare the proposed
ECF detector with some existing spectrum sensing methods. Finally, the paper
is concluded in Sect. 5.

2 System Model and Preliminary Knowledge

2.1 Spectrum Sensing Problem

In cognitive radio, the secondary users require to detect whether the primary
user exists or not based on the local observed samples. The spectrum sensing
problem can be formulated as the following binary hypothesis test:

H0 : y(n) = ν(n)
H1 : y(n) = hs(n) + ν(n), n = 0, 1, ..., N − 1 (1)

where y(n) is the observed samples at the secondary user. N is the number of
the observations. s(n) denotes the primary signal, ν(n) is a class of impulsive
noise including Gaussian noise as a special case. Without loss of generality, the
signal and the noise are assumed to be complex-valued. h denotes the channel
coefficient between the primary user and the secondary user, which is assumed
to be constant during the sensing interval.

2.2 SαS Distribution

For the impulsive noise, the SαS distribution, which is a generalization of
Cauchy, Lévy and Gaussian distribution, has been proved to be the most accu-
rate model [15]. A real-valued SαS random variable with zero mean, denoted by
Sα(γ, 0), has a characteristic function given by [16]:

φα,γ(ω) = e−γ|ω|α , (2)

where α is the characteristic exponent, and γ is a quantity analogous to variance
called dispersion. The characteristic exponent α in (2) controls the heaviness of
the pdf tails (0 < α ≤ 2), a small positive value of α indicates severe impulsive-
ness, while a value of α close to 2 indicates a more Gaussian type of behavior.
Although the characteristic function of SαS has a simple form, there are only
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two distributions-Gaussian (α = 2) and Cauchy (α = 1)-for which the proba-
bility density function (pdf) can be expressed in terms of elementary functions.
For all other α

′
s, the pdf does not have a closed form.

For complex-valued SαS random variables, the original definition can be
found in [16,17]. For simplicity, the equivalent and explicitly expression is
given by

ν = νR + jνI (3)

where νR and νI are independent and identically distributed (i.i.d.) random
variables with Sα(γ

2 , 0) distribution. Then, ν follows complex SαS distribution
denoted by ν ∼ CSα(γ, 0). The noise parameters θθθ = (α, γ) are not known prior
for the secondary users, thus are required to estimate for spectrum sensing.

2.3 Goodness-of-Fit Testing

From a mathematical statistics point of view, the classical detection algorithms
such as energy detector, matched filter detector and cyclostationarity feature
detector fall into the category of parametric hypothesis testing. If the assumption
about the parameters related to the known patterns is invalid or not accurate,
their performance will deteriorate. Thus, to improve the detection performance,
goodness-of-fit testing, a nonparametric hypothesis testing method, is employed
for spectrum sensing [10–14].

EDF-Based Goodness-of-Fit Testing Empirical distribution function
(EDF) test is a widely used goodness-of-fit testing in statistics. EDF test mea-
sures the distance between two distributions FY (y) and F0(y), which are CDF
of the observations and the noise respectively. Some EDF-based goodness-of-fit
tests have been proposed in the literature of mathematical statistics, including
the AD test and KS test.

The AD test is a generalization of the Cramer-von Mises test and defined by

DAD
Y = N

∫ +∞

−∞
(FY (y) − F0(y))2Φ(F0(y))dF0(y) (4)

where Φ(F0(y)) is a nonnegative weight function given by Φ(F0(y)) = (F0(y)(1−
F0(y)))−1. In [10,11], an AD detector is proposed based on the AD test, the test
statistic is

A2
c = −

N∑
n=1

(2n − 1)(ln Zn + ln(1 − ZN+1−n))

N
− N (5)

where Zn = F0(yn), yn is the observed sample at the secondary user. From (5),
it is seen that the secondary user requires the closed form of noise CDF F0(y)
for AD detector. However, for impulsive noise, the SαS distribution does not
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have a closed form of the CDF except for Gaussian and Cauchy distribution. To
make the AD detector be available, it has to use the empirical CDF instead of
the real CDF, i.e., Zi = F̂0(yi).

The KS test first forms the empirical CDF from (z1, z2, ..., zN ) and the noise-
only samples (ν1, ν2, ..., νN0) as follows,

F̂1(z) � 1
N

N∑
n=1

I(zn ≤ z)

F̂0(ν) � 1
N0

N0∑
n=1

I(νn ≤ ν) (6)

where zn is the function of the observed samples yn.
The KS test statistics is the largest absolute difference between the two CDFs

given by
DKS

Y = max |F̂1(zn) − F̂0(zn)| (7)

In [12], two types of KS detector are proposed for spectrum sensing. One
is the KS-mag detector, in which zn is the magnitude of the observations, i.e.,
zn = |yn|. The other is KS-qua detector, in which zn is formed by the real part
and the imaginary part of yn, i.e., zi = �[yn], zN+n = �[yn].

ECF-Based Goodness-of-Fit Testing Similar to EDF tests, empirical c.f.
(ECF) tests measure the distance between the empirical c.f. of the observations
and the noise c.f.. The advantages of ECF-based goodness-of-fit testing includes
the mathematical tractability of the SαS distribution and favorable properties
such as strong consistency and asymptotic normality [18]. Thus, an ECF detector
will be proposed according to the ECF-based goodness-of-fit testing in this paper.

3 Proposed ECF Detector for Spectrum Sensing

3.1 ECF Detector

According to the ECF-based goodness-of-fit testing, the spectrum sensing prob-
lem in (1) can be reformulated as:

H0 : φy(ω;θθθ) = φν(ω;θθθ)
H1 : φy(ω;θθθ) �= φν(ω;θθθ) (8)

where φy(ω;θθθ) and φν(ω;θθθ) represent the characteristic functions of the obser-
vations and the noise respectively. For a complex-valued y and ω = ωR + jωI ,
the characteristic function of the observations is defined by [19]

φy(ω;θθθ) = E{ej�[ω̄y]} = E{ej(ωR�[y]+ωI�[y])} � C(ω;θθθ) + jS(ω;θθθ) (9)

where ω̄ is the conjugate of ω. Similarly, the characteristic function of the noise
is

φν(ω;θθθ) = E{ej(ωRνR+ωIνI)} � Cν(ω;θθθ) + jSν(ω;θθθ) (10)
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where �(·) and �(·) represent the real and imaginary part of y. C(ω;θθθ) and
S(ω;θθθ) denote the real and imaginary part of the c.f.

For N i.i.d. observations y1, ..., yN , the empirical c.f. is

φ̂y(ω) =
1
N

N∑
n=1

ej�[ω̄yn] =
1
N

N∑
n=1

ej(ωR�[yn]+ωI�[yn]) � CN (ω) + jSN (ω) (11)

where

CN (ω) = �[φ̂y(ω)] =
1
N

N∑
n=1

cos(ωR�[yn] + ωI�[yn]),

SN (ω) = �[φ̂y(ω)] =
1
N

N∑
n=1

sin(ωR�[yn] + ωI�[yn]).

Since φ̂y(ω) is the consistent estimate of φy(ω;θθθ), it holds that E[CN (ω)] =
C(ω;θθθ), E[SN (ω)] = S(ω;θθθ).

For m points ω̄̄ω̄ω = [ω1, ..., ωm], according to (10) and (11), we define

ξξξ0(θθθ)T = [Cν(ω1;θθθ), ..., Cν(ωm;θθθ), Sν(ω1;θθθ), ..., Sν(ωm;θθθ)]

ξξξT
N = [CN (ω1), ..., CN (ωm), SN (ω1), ..., SN (ωm)] (12)

Then

ξξξN − ξξξ0(θθθ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

CN (ω1) − Cν(ω1;θθθ)
...

CN (ωm) − Cν(ωm;θθθ)
SN (ω1) − Sν(ω1;θθθ)

...
SN (ωm) − Sν(ωm;θθθ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

Let ΩΩΩ(ω̄̄ω̄ω) be the covariance matrix of
√

2N(ξξξN − ξξξ0(θθθ)), it is derived that
ΩΩΩ(ω̄̄ω̄ω) contains the following elements,

Ωjk(ω,θθθ) =

⎧
⎪⎪⎨

⎪⎪⎩

C(ωj + ωk;θθθ) + C(ωj − ωk;θθθ) − 2C(ωj ;θθθ)C(ωk;θθθ) (1 ≤ j, k ≤ m)

C(ωj − ωk;θθθ) − C(ωj + ωk;θθθ) − 2S(ωj ;θθθ)S(ωk;θθθ) (m + 1 ≤ j, k ≤ 2m)

S(ωj + wk;θθθ) − S(ωj − wk;θθθ) − 2C(ωj ;θθθ)S(ωk;θθθ) (1 ≤ j ≤ m, m + 1 ≤ k ≤ 2m)

(14)
where ωj = ωj−m for m + 1 ≤ j ≤ 2m. Since CN (ω) and SN (ω) are consistent
estimate of C(ω;θθθ) and S(ω;θθθ), Ωjk(ω,θθθ) can be replaced by Ω̂jk(ω) which is
defined in terms of CN (ω) and SN (ω), that is

Ω̂jk(ω) =

⎧
⎪⎪⎨

⎪⎪⎩

CN (ωj + ωk) + CN (ωj − ωk) − 2CN (ωj)CN (ωk) (1 ≤ j, k ≤ m)

CN (ωj − ωk) − CN (ωj + ωk) − 2SN (ωj)SN (ωk) (m + 1 ≤ j, k ≤ 2m)

SN (ωj + wk) − SN (ωj − wk) − 2CN (ωj)SN (ωk) (1 ≤ j ≤ m, m + 1 ≤ k ≤ 2m)

(15)
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According to [20], an ECF detector is proposed, the test statistic is given by
the following quadratic form:

TN = 2N(ξξξN − ξξξ0(θθθ))TΩΩΩ−1(ω̄̄ω̄ω)(ξξξN − ξξξ0(θθθ))
H1

≷
H0

τ (16)

where τ is the threshold selected according to the given false alarm probability η.

Pr[TN > τ |H0] = η (17)

However, it is observed that ξξξ0(θθθ) is dependent on the unknown noise param-
eters. Thus, it is required to develop an estimation procedure to obtain the
information of the noise parameters before spectrum sensing.

3.2 Noise Parameters Estimation Based on the Empirical c.f.

To estimate the noise parameters, it requires a sequence of noise-only samples.
Essentially, this is the same requirement as the energy detector and the KS
detector. For the energy detector, it needs to estimate the nose variance. Since
the pdf of SαS is not expressible in closed form, the conventional methods such
as the maximum likelihood estimation (MLE) cannot be applied. Based on the
empirical c.f., some methods was proposed in mathematical literatures [21–23],
of which Press’s method, named as moment estimator, can offer an explicit esti-
mator while only need minimal computation. In this paper, the Press’s method
is extended to the complex SαS random variables.

Assume that N0 independent noise-only samples {νi}N0
i=1, the empirical c.f.

is given by

φ̂ν(ω) =
1

N0

N0∑
i=1

ej�[ω̄νi] =
1
N

N0∑
i=1

ej(ωR�[νi]+ωI�[νi]) (18)

Note that for any ω, |φ̂ν(ω)| is bounded above by unity. Hence, all moments
of |φ̂ν(ω)| are finite. Moreover, for any fixed ω, φ̂ν(ω) is the sample average of
i.i.d. random variables. Thus, by the law of large numbers, φ̂ν(ω) is a consistent
estimator of φν(ω,θθθ). Based on the empirical c.f., consistent estimator can be
developed to estimate the noise parameters θθθ.

For all α, γ, log |φν(ω,θθθ)| = −γ|ω|α. Choose two different nonzero values
ωa, ωb,

− γ|ωa|α = log |φν(ωa, θθθ)|
− γ|ωb|α = log |φν(ωb, θθθ)| (19)

Since φ̂ν(ω) is consistent estimate of φν(ω;θθθ), it can use φ̂ν(ωa), φ̂ν(ωb) to
replace φν(ωa, θθθ) and φν(ωb, θθθ) respectively. Solving these two equations simul-
taneously for α and γ, it gives
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α̂ =
log

∣∣∣ log |φ̂ν(ωa)|
log |φ̂ν(ωb)|

∣∣∣
log

∣∣∣ |ωa|
|ωb|

∣∣∣ (20)

γ̂ = elog(− log |φ̂ν(ωa)|)−α̂ log |ωa| or γ̂ = elog(− log |φ̂ν(ωb)|)−α̂ log |ωb| (21)

In order to improve the accuracy of the estimation, one can choose multiple
couples of (ωa, ωb), by averaging, a more accurate estimation value θ̂̂θ̂θ = (α̂, γ̂)
can be obtained. Then, ξξξ0(θθθ) in (16) can be calculated by ξξξ0(θ̂̂θ̂θ).

Therefore, the ECF detector involves the following two phases.

Estimation phase: the secondary user employs N0 independent noise-only sam-
ples (ν1, ..., νN0) to estimate the noise parameters (α, γ) using (20) and (21).

Spectrum sensing: the secondary user collects N observed samples (y1, ..., yN ),
computes ξξξN − ξξξ0(θ̂θθ) in (13) and ΩΩΩ−1(ω̄̄ω̄ω) in (15), then forms the corresponding
test statistics according to (16). The threshold τ is determined by (17). If TN > τ ,
it declares the primary users’ presence; otherwise no primary user is present.

4 Simulation Results and Discussion

In this section, the performance of the proposed ECF detector is presented and
compared with the energy detector, eigenvalue-based detector, AD detector and
KS detector under both the Gaussian noise and the impulsive noise environ-
ments.

Simulation parameters setup: In the sequel, the parameters of the complex impul-
sive α−stable noise are set to γ = 1, α = 1.5, the complex Gaussian noise is zero
mean unit variance, which is equivalent to γ =

√
2
2 , α = 2. The noise parameters

are not known prior and required to estimate. The desired false alarm probabil-
ity is fixed to η = 0.05. The primary users employ 16-QAM modulated signal.
For the impulsive noise, the average SNR is defined as the ratio of the transmit
power of the signal to the dispersion of the impulsive noise, i.e. SNR = Ps

γ

[24]. The independent flat Rayleigh fading channels are simulated between the
transmitter-receiver pairs.

The choice of ω̄̄ω̄ω: In [23,25,26], it is shown that the estimate accuracy and detec-
tion performance are dependent on the choices of ω. In [26], the authors have
demonstrated that the optimal choice of ω is (0.8, 0.9, 0.85, 0.95) by simulations.
Thus, we also choose the complex value of ω̄̄ω̄ω = (0.8 + j0.8, 0.9 + j0.9, 0.85 +
j0.85, 0.95 + j0.95).

Performance analysis of the ECF detector under impulsive noise: In Figs. 1
and 2, the detection performance of the proposed ECF detector are demonstrated
under nonfading and Rayleigh fading scenarios. The numbers of the noise-only
samples for estimation and the observations for detection are N0 = 500, N = 500.
The average SNR is −9dB. Figure 1 shows the ROC curves (Pd versus Pf ). It is
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seen from the simulation results, the sensing performance over Rayleigh fading
channel is worse than that over nonfading environment as expected.

The detection performance of the ECF detector versus exponential parameter
α are shown in Fig. 2. It is observed that the detection probability becomes larger
as α increasing. Since α characterizes the impulsiveness, α close to 2 indicates
a more Gaussian of behavior. This implies that the ECF detector can achieve
better detection performance under Gaussian noise, while worse performance for
severe impulsive noise.

Performance comparison with other methods under impulsive noise: In Fig. 3, the
detection performance of the proposed ECF detector is compared with the energy
detector, eigenvalue-based detector and AD detector under both the Gaussian
noise and the impulsive SαS noise environments. In order to make a fair com-
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Fig. 1. ROC curves of the proposed ECF detector over nonfading and Rayleigh fading
channel, with N0 = 500 noise-only samples and N = 500 observations, the average
SNR is = −9dB, impulsive noise parameters γ = 1, α = 1.5
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Fig. 2. Detection probability of the ECF detector versus noise parameter α over non-
fading and Rayleigh fading channel, with γ = 1, N0 = 500 noise-only samples and
N = 500 observations, Pf = 0.05, SNR= −9dB, 16-QAM modulated signal.
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parison, the ED is performed based on the estimated noise parameters. For the
eigenvalue-based detector, the noise-only samples are also employed for detec-
tion. The observations y1, ..., yN are divided into L groups with M samples.
Assume that N0/M = δ is an integer, all of the noise-only samples and the
observations can form a (L + δ) × M -Dimension signal matrix. Then making
eigen-decomposition on the sample covariance matrix and computing the ratio
of the maximum eigenvalue to the minimum eigenvalue, the test statistic of the
detector, denoted by EV-MME detector, is obtained. As shown, although the
EV-MME detector outperforms the ECF detector under the Gaussian noise,
while the ED and the EV-MME detector exhibit a severe degradation of per-
formance, even become too weak to detect the primary signal when the noise is
impulsive. Moreover, for the AD detector, it is also inferior to the ECF detector
in performance under both Gaussian noise and impulsive noise. Thus, the ECF
detector is more robust than the above methods under the impulsive environ-
ment.

−10 −8 −6 −4 −2 0 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR: dB

Pd
: p

ro
ba

bi
lit

y 
of

 d
et

ec
tio

n

EV−MME detector
ECF detector
Energy detector
AD detector
ECF detector
AD  detector
EV−MME detector
Energy detector

Gaussian noise

impulsive α−stable noise

Fig. 3. Detection performance comparison among the proposed ECF detector, energy
detector, EV-MME detector and AD detector under Gaussian noise and impulsive
noise, with parameters γ = 1, α = 1.5, with N0 = 500 noise-only samples and N = 500
observations, 16-QAM modulated signal

The detection performance comparison between the ECF detector and the
KS detector is shown in Figs. 4 and 5. For two sample KS detector, it needs noise-
only samples to compute the empirical CDF F̂0, while for ECF detector, these
noise-only samples are employed to estimate the noise parameters. Since 16-QAM
signal is complex-valued, in [12], two kinds of KS detector: KS-mag detector and
KS-qua detector are proposed for spectrum sensing. For the Gaussian noise, it is
seen from Fig. 4 that the detection performance of the ECF detector is between
the KS-mag detector and the KS-qua detector when the observed samples is N =
500. As the increasing of the samples, the detection performance is improved.
When N = 1500, the ECF detector outperforms the two KS detectors, which
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implies that the detection performance of the ECF detector is improved more
quickly than the KS detectors as the increasing of the observed samples. For the
impulsive noise, as shown in Fig. 5, the detection probability of the ECF detector
is also higher than those of the KS detectors when N = 1500. Therefore, the ECF
detector is better than the KS detector with large number of samples. Moreover,
the threshold of the ECF detector can be easily calculated from Pf , thus more
extensive Monte Carlo simulations are avoided.
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Fig. 4. Detection performance comparison between the proposed ECF detector and
KS detector with N0 = 500 independent noise-only samples under Gaussian noise
environment. Observation samples: (a)N = 500, (b)N = 1500
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are γ = 1, α = 1.5.
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5 Conclusion

In this paper, a robust ECF detector is proposed in the presence of impulsive
noise. Extensive simulations are performed and compared with other methods.
Among the comparisons between the ECF detector and other detectors, it is
shown that the eigenvalue-based detector and the energy detector which are
proposed under Gaussian noise cannot be available under the impulsive noise
environment. Using goodness-of-fit testing, the AD detector, KS detector and
ECF detector can provide relatively robust detection performance under both
the Gaussian and impulsive noise environments. However, the ECF detector has
strong advantages including higher performance and mathematical tractability
of the impulsive noise modeled by SαS distribution. Therefore, the ECF detector
are more powerful than the EDF based detector involved the AD and the KS
detector.
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