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Abstract. Device-free localization (DFL) is an emerging and promising
technique, which can realize target localization without the requirement
of attaching any wireless devices to targets. By analyzing the shadow-
ing loss caused by targets on wireless links, we can estimate the tar-
get locations. However, for existing DFL approaches, a large number of
wireless links is required to guarantee a certain localization precision,
which may lead to high hardware cost. In this paper, we propose a novel
multi-target device-free localization method with multidimensional wire-
less link information (MDMI). Unlike previous works that measure RSS
only on a single transmission power level, MDMI collects RSS measure-
ments from multiple transmission power levels to enrich the measurement
information. Furthermore, the compressive sensing (CS) theory is applied
by exploiting the inherent spatial sparsity of DFL. We model the DFL
problem as a joint sparse recovery problem and adopt the multiple sparse
Bayesian learning (M-SBL) algorithm to reconstruct the sparse vectors of
different transmission power levels. Numerical simulation results demon-
strate the outstanding performance of the proposed method.

Keywords: Device-free localization · Wireless sensor network ·
Compressive sensing · Sparse Bayesian learning

1 Introduction

In the last decade, target localization has grasped great attention since it is piv-
otal in many location-based services (LBS). To address the localization problem
of multiple targets, an intense research work has been carried out by the scientific
community [1]. With the widespread usage of wireless networks, target location
estimation can be realized by analyzing the target-induced perturbations in the
radio frequency (RF) field. Based on this insight, the device-free localization
(DFL) [2,3] has been proposed, which do not require targets to carry any wire-
less devices, nor to participate actively in the localization process. It is attractive
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and promising for a wide number of applications, such as intrusion detection,
emergency rescue, healthcare, and smart spaces, etc. [4].

The DFL technique can enable existing wireless infrastructures (e.g., WiFi,
WSNs, Bluetooth, etc.) to have the ability of location awareness while, at the
same time, do not disturb the normal communication tasks. Received signal
strength (RSS) is a common signature of target location. In the literature, many
RSS-based multi-target DFL approaches have been developed. Based on how to
utilize the RSS measurements, there are three types of DFL approaches, includ-
ing geometry-based approaches, fingerprinting-based approaches, and radio
tomographic imaging (RTI)-based approaches. The geometry-based approaches
exploit the geometry information of shadowed links to locate targets [5].
However, they need a prior knowledge of the deployment of wireless nodes, and
suffer from low localization accuracy. The fingerprinting-based DFL approaches
can achieve an improved accuracy [6], whereas a labor-intensive and time-
consuming training process is required to build and update the radio map. The
RTI-based approaches [7] infer the target positions according to the principle of
computed tomography (CT). They use an empirical model to quantify the rela-
tionship between RSS variations and target locations. Unfortunately, a sufficient
number of wireless links is required to cover the area of interest.

As a new and promising technique, the compressive sensing (CS) [8] theory
asserts that a small number of measurements (undersampled) will suffice for
recovering signals that are compressible or sparse under a certain basis. Recent
works have shown the potential of applying the CS theory in multi-target DFL.
Compared to traditional DFL approaches, the CS-based DFL method demands
much less number of wireless links (or measurements). As a representative
CS-based DFL method, LCS [9] has proven that the product of the dictionary
obeys restricted isometry property (RIP) with high probability. Different with
LCS, E-HIPA [10] does not require a prior knowledge of target number. It adopts
an adaptive orthogonal matching pursuit algorithm to reconstruct the sparse
location vector. Moreover, in order to adapt to the changes in radio environ-
ments, DR-DFL [11] presents a dictionary refinement algorithm.

However, existing CS-based multi-target DFL approaches collect RSS mea-
surements from just one transmission power level. It is assumed that each wire-
less link can only provide one reading of the RSS. To enrich the measurement
information, MDMI proposes to collect RSS measurements from multiple trans-
mission power levels. By doing so, the performance of multi-target DFL can be
further improved with the assistance of power diversity. Hence, better localiza-
tion accuracy can be achieved without increasing the number of wireless links.
To leverage the advantage of CS in sparse recovery, we model the multi-target
DFL with multiple transmission power levels as a joint sparse recovery prob-
lem. The sparse vectors corresponding to different transmission power levels
share a common sparsity pattern. We reconstruct them by using the multi-
ple sparse Bayesian learning (M-SBL) algorithm [12], and estimate the number
and locations of multiple targets according to the reconstructed sparse vectors.
The rest of the paper is organized as follows: In Sect. 2, we give the signal model
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and model the DFL problem as a joint sparse recovery problem. The design and
implementation of the proposed MDMI method are illustrated in Sect. 3, and the
simulation results are shown in Sect. 4. Finally, conclusions are given in Sect. 5.

2 Problem Statement and Motivation

2.1 Problem Statement

Fig. 1. Illustration of multi-target device-free localization.

Suppose a wireless network is deployed in the area of interest. When multiple
targets entering into the area, some wireless links will be shadowed. As a con-
sequence, the RSS readings on these shadowed links may be different from the
measurements when no target is present. Our MDMI method attempt to leverage
the changes of RSS to realize target localization. For simplicity, an illustration
of the CS-based multi-target DFL is shown in Fig. 1. The wireless nodes are uni-
formly deployed around the perimeter of the monitoring area A, and K targets
are randomly distributed in it. We divide A into N equal-sized grids, thus the
target locations can be represented as

θ = [θ1, θ2, ..., θn, ..., θN ]T (1)

where θ ∈ R
N×1 denotes the location vector, θn ∈ {0, 1} denotes the n-th entry

of θ. If there is a target in grid n, we set θn = 1; otherwise θn = 0. In this
sense, K also represents the sparsity level of θ. The aim of the CS-based DFL
is equivalent to reconstruct θ by exploiting RSS measurements.

According to the shadowing model, the RSS measurement of link m with
transmission power level e can be given as

R (m, e) = G (m, e) + P (m, e) − L (m, e) − 10β lg dm − S (m, e) + ε (m, e) (2)

where G (m, e) denotes the receiver gain (dB), P (m, e) is the transmission power,
L (m, e) is the signal attenuation power of unit distance, β is the path-loss expo-
nent, and dm represents the length of link m. The above-mentioned parameters
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are constant with time. On the contrary, S (m, e) and ε (m, e) are time-variant
parameters. S (m, e) denotes the shadowing loss, which is caused by the tar-
gets that attenuate radio signals. ε (m, e) is the measurement noise. We denote
R0 (m, e) as the RSS measurement when A is vacant. Then, the change of RSS
corresponding to link m and transmission power level e can be written as

ΔR (m, e) = R (m, e) − R0 (m, e) ≈ −S (m, e) + ε (m, e) − ε0 (m, e) (3)

As mentioned earlier, A is divided into multiple grids. Hence, we approximate
S (m, e) by the summation of attenuation that occurs in each grid, i.e.,

ΔR (m, e) =
N∑

n=1

Δpn (m, e) · θn + Δε (m, e) (4)

where Δpn (m, e) denotes the shadowing loss on link m that contributed by a
target in grid n. Δε (m, e) is the change of measurement noise. Based on the
saddle surface (SaS) model [13], Δpn (m, e) can be calculated as

Δpn (m, e) =

(
1 − ρ

λ2
1

U2
m,n + ρ ·

(
1 − V 2

m,n

λ2
2

))
· γe (5)

where (Um,n, Vm,n) is the coordinate of grid n. According to the SaS model,
only the grids in the elliptical spatial impact area of link m will have a nonzero
Δpn (m, e), and Δpn (m, e) is very different at different locations within the
spatial impact area. In this model, ρ represents the shadow rate, which is defined
as the normalized shadowing effect in the midpoint of the line-of-sight (LOS)
path. γe denotes the maximum shadowing effect corresponding to power level e.
Based on (4), the RSS variations on M links can be expressed as

ye = Φe θ+ εe (6)

where ye ∈ R
M×1 is the measurement vector corresponding to power level e,

Φe ∈ R
M×N is a dictionary, and εe ∈ R

M×1 is the noise vector. We denote φe
m,n

as the (m,n)-th element of Φe, which is equal to Δpn (m, e).

2.2 Motivation

In fact, Δpn (m, e) can be decomposed as Δpn (m, e) =
(
φe

m,n/γe
) · γe. We

define we = γe · θ and φm,n = (φe
m,n/γe). It is assumed that we can collect RSS

measurements form E different transmission power levels. Thus, the CS-based
DFL can be reformulated as a joint sparse recovery problem as follows:

Y = ΦW + Ξ (7)

where Y ∈ R
M×E is the measurement matrix, and Y =

[
y1, ...,yE

]
. Ξ ∈ R

M×E

is the noise matrix, and Ξ =
[
ε1, ..., εE

]
. Φ ∈ R

M×N is a dictionary, whose
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(m,n)-th element is φm,n. W ∈ R
N×E is a coefficient matrix, whose e-th com-

ponent we is a K-sparse coefficient vector. W satisfies rd (W) = K, where

rd (W) �
N∑

n=1

I [‖Wn·‖ > 0] (8)

rd(·) represents a row-diversity measure, which counts the number of rows that
have nonzero values. I[·] denotes the indicator function. || · || is an arbitrary
vector norm, and Wn· is the n-th row of W. To reconstruct W, we formulate
the following relaxed optimization problem:

Ŵ = arg min
W

(‖Y − ΦW‖2
F + 
 · rd (W)) (9)

where || · ||F denotes the Frobenius norm, 
 is a tradeoff parameter, and rd (W)
is the regularization term. However, directly solving (9) is NP-hard, and the
optimal value of 
 is generally not available.

3 Joint Sparse Recovery

To bypass the requirement of estimating 
, we resort to a Bayesian probabilistic
approach. By applying an exp[−(·)] transformation, the optimization problem
in (9) can be viewed as a maximum a posterior probability (MAP) estimation
task, which is summarized as follows:

Ŵ = arg max
W

p (Y |W ) · p (W) = arg max
W

p (W |Y ) (10)

To solve the above problem, we resort to the M-SBL algorithm. Firstly, a Gaus-
sian distribution is imposed on the likelihood function for each ye and we, i.e.,

p (ye |we , σ) =
(
2πσ2

)−N
2 exp

(
−‖ye − Φwe‖2

2

2σ2

)
(11)

where σ2 denotes the noise variance. Secondly, to induce the sparsity of we, a
Gaussian prior is imposed on the n-th row of W, i.e.,

p (Wn·;αn) = N (0, αnI) (12)

where αn denotes the common variance of the elements in Wn·. Here, {α1, ..., αN}
is used for encouraging the joint sparsity of {w1, ...,wE}. Based on (12), the prior
distribution of W can be given as

p (W;α) =
N∏

n=1

p (Wn·;αn) (13)

where α = [α1, ..., αN ]T . Based on the likelihood function and the prior distri-
butions, the posterior of we can be written as

p (we |ye ;αn) =
p (we,ye;α)∫

p (we,ye;α) dwe
= N (μe,Σ) (14)
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where Σ denotes the covariance matrix. It can be given as

Σ = Cov [we |ye;α ] = Γ − ΓΦT Θ−1ΦΓ (15)

where Γ = diag (α) and Θ = σ2 I+ ΦΓΦT . The mean of W is

Π = [μ1, ...,μE ] = E [W |Y;α ] = ΓΦT Θ−1Y (16)

The e-th column of Π represents the mean vector of we. To find the optimal
value of α, we maximize the marginal likelihood with respect to α. Based on it,
the cost function can be expressed as

L (α) = −2 log
∫

p (Y,W)p (W) dW = E · log |Θ| +
E∑

e=1

(ye)T Θ−1ye (17)

From (17), the update rule of αn can be given as

α∗
n =

1
E

‖Πn·‖2
2 + Σnn, ∀n = 1, ..., N (18)

In the same way, σ2 can be updated as

(
σ2

)∗
=

1
E ‖Y − ΦΠ‖2

F
M − N +

∑N
n=1

Σnn

αn

(19)

We estimate the posterior of W and the parameters α and σ2 by maximizing
a marginal likelihood function via an iterative algorithm, which is summarized
in Algorithm 1. To estimate target locations, a sparse vector Π·ê is chosen from
Π. In step 10, a sparsity threshold ηth is adopted to filter out the negligible
but nonzero coefficients of Π·ê. Consequently, we can calculate the estimated
coordinates of targets based on θ̂, and estimate the target number as K̂ = ‖θ̂‖0.

Algorithm 1 Location Vector Estimation

1: Initialization:

2: γth = 10−3, τmax = 103, ηth = −10dB, γ = τ = 0.

3: while (γ � γth or τ � τmax) do

4: Calculate Σ and Π by using (15)–(16).

5: Update α and σ2 by using (18)–(19).

6: γ ← ‖Y − ΦΠ‖ , τ ← τ + 1.

7: end while

8: Choose ê that minimizes ‖ye − ΦΠ·e‖.

9: If 20 lg(Πnê/ max
i

|Πiê|) < ηth, set Πnê = 0 for all n.

10: Let the estimated location vector θ̂ = Π·ê.
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4 Numerical Results

4.1 Simulation Setup

In this section, we conduct numerical simulations to demonstrate the superior
performance of MDMI. For a typical scenario of CS-based multi-target DFL,
the monitoring area A is set as a 14 m × 14 m square region. A is divided into
N = 784 equal-sized grids, and the side length of each grid is 0.5 m. To locate
the targets, a wireless network with M = 28 wireless links is deployed in A. The
signal-to-noise ratio (SNR) is defined as SNR(dB) � 10 lg(‖Φθ‖2

2/Mσ2).
To evaluate the localization and counting performance, we define the fol-

lowing two metrics: (1) Average localization error (AvgErr), which denotes
the average Euclidean distance between the true and estimated target loca-
tions; (2) Correct counting rate (CoCoun), which represents the probability of
correctly estimating the target number (i.e., K̂ = K). In our simulations, we
compare the localization performance of MDMI with the CS-based multi-target
DFL approaches that adopt the following sparse recovery algorithms: orthogonal
matching pursuit (OMP) [10], basis pursuit (BP) [8], greedy matching pursuit
algorithm (GMP) [9], Bayesian compressive sensing (BCS) [14], and variational
EM algorithm [11].

4.2 Impact of the Number of Iterations
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Fig. 2. The performance of MDMI when τ varies from 102 to 2 × 103.

In the first simulation, we investigate the impact of the number of iterations on
the performance of MDMI. In Sect. 3, an iterative two-step procedure is adopted
to estimate the posterior of we and the parameters α and σ2. Intuitively, the
estimation accuracy is closely related to the iteration number τ . To verify this,
we test the performance of MDMI when τ varies from 102 to 2 × 103. As can
be seen from Fig. 2, AvgErr decreases rapidly as the increasing of τ . At the
same time, CoCoun is increased. The simulation results confirm our analysis.
Although we can achieve a better performance with a larger τ , it may result
in heavy computational load. For this reason, we set τmax = 103 as a tradeoff
between accuracy and complexity.



42 D. Yu et al.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of transmission power levels (E)

A
ve

ra
ge

 lo
ca

liz
at

io
n 

er
ro

r (
m

)

 

 

40

45

50

55

60

65

70

75

80

85

90

C
or

re
ct

 c
ou

nt
in

g 
ra

te
 (%

)

Fig. 3. The performance of MDMI when E varies from 2 to 30.

4.3 Impact of the Number of Transmission Power Levels

In the second simulation, we test the effect of the number of transmission power
levels on the target localization and counting performance. The key novelty of the
proposed MDMI is the utilization of the RSS measurements that collected from
multiple transmission power levels. If we increase the number of transmission
power level E, the power diversity of RSS measurements will be improved, and
more useful information will be provided. To validate the effectiveness of MDMI,
we conduct a quantitative analysis to investigate how the number of transmission
power levels affects the localization and counting performance. Figure 3 shows
AvgErr and CoCoun under different values of E. The simulation results confirm
the effectiveness of MDMI. However, it is noteworthy that AvgErr decreases
very slowly when E exceeds 20. When E > 20, the negative effect of increasing
the transmission power level will almost offset the positive effect contributed by
power diversity. In view of this, we choose E = 20 in the following simulations.

4.4 Localization Error vs. Number of Targets
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Fig. 4. Impact of the number of targets on average localization error.
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In the third simulation, we turn our attention to the impact of the number of
targets on localization accuracy. Figure 4 shows the performances of multiple
DFL approaches under different numbers of targets. When K increases from 1
to 10, the AvgErr for all approaches increase dramatically. It should be pointed
out that, with the increase in K, the joint sparsity level of {we}E

e=1 will decease
accordingly. In this case, the reconstruction accuracy of the location vector will
be degraded according to the principle of CS. Furthermore, owing to the aggre-
gating of multidimensional measurement information, MDMI can achieve the
lowest AvgErr among all approaches.

4.5 Localization Error vs. SNR
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Fig. 5. Impact of the signal-to-noise ratio on average localization error.

In the last simulation, the localization performances of DFL approaches under
different SNR is demonstrated. Figure 5 shows the results of the simulation. As
SNR increases from 5 to 40 dB, the AvgErr of all DFL methods experience a
greatly drop. We observe that the MDMI(E = 20) outperforms other DFL meth-
ods in most cases (SNR > 9 dB). In addition, when SNR < 30 dB, the difference
in AvgErr among MDMI(E = 5), MDMI(E = 10) and MDMI(E = 20) is rel-
atively high. This implies that we can mitigate the influence of measurement
noise by increasing the power diversity of RSS measurements.

5 Conclusion

In this paper, a novel CS-based multi-target DFL method (MDMI) is developed
to reduce the number of wireless links that required for multi-target DFL. Unlike
existing CS-based DFL methods for multiple targets which collect measurements
from just one transmission power level, MDMI proposes to exploit multidimen-
sional wireless link information from multiple transmission power levels. It mod-
els the CS-based multi-target DFL problem as a joint sparse recovery problem,
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and adopts the multiple sparse Bayesian learning (M-SBL) algorithm to recon-
struct the sparse vectors of different transmission power levels. To validate the
merits of MDMI, we perform an extensive simulation study compared with the
state-of-the-art CS-based multi-target DFL approaches. Simulation results con-
firm the effectiveness of the proposed method.
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