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Abstract. A convex combination adaptive filter based on maximum
correntropy criterion (CMCC) was widely used to solve the contradic-
tion between the step size and the misadjustment in impulsive interfer-
ence. However, one of the major drawbacks of the CMCC is its poor
tracking ability. In order to solve this problem, this paper proposes an
improved convex combination based on the maximum correntropy cri-
terion (ICMCC), and investigates its estimation performance for sys-
tem identification in the presence of non-Gaussian noise. The proposed
ICMCC algorithm implements the combination of arbitrary number of
maximum correntropy criterion (MCC) based adaptive filters with differ-
ent adaption steps. Each MCC filter in the ICMCC is capable of track-
ing a specific change speed, such that the combined filter can track a
variety of the change speed of weight vectors. In terms of normalized
mean square deviation (NMSD) and tracking speed, the proposed algo-
rithm shows good performance in the system identification for four non-
Gaussian noise scenarios.

Keywords: Convex combination · Maximum correntropy criterion
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1 Introduction

Due to the low computational complexity and ease of implementation of the
least mean square Algorithm (LMS), it is widely used in signal processing, sys-
tem identification, acoustic echo cancellation, blind equalization, and so on [1].
However, the output of the LMS filter is not only sensitive to the amount of
scaling of the input [2,3], but also degrades under non-Gaussian noise [4–6].
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Therefore, the least mean fourth (LMF) algorithm [7,8], least mean p-norm
algorithm (LMP) [9], and recursive least p-norm algorithm (RLP) [10] based on
the gradient algorithm are proposed to improve the performance degradation
under non-Gaussian noise. Recently, a more robust adaptive algorithm from
the information theoretic (IT) has been proposed by Principle and et al, where
the algorithm includes entropy [11], mutual information [12], and correntropy
[13]. Due to its simplicity and robustness to non-Gaussian environments, the
maximum correntropy criterion (MCC) [14] and the minimum error entropy
(MEE) [15] have been paid attention in recent years. Although the performance
of MCC and MEE is similar, the computational complexity of MEE is relatively
high compared to MCC.

Recently, MCC has been used as an adaptive criterion for non-gaussian signal
processing in [4]. At the same time, the tracking analysis and steady-state mean
square error analysis of MCC were proposed in [16,17]. The steady-state error of
the MCC algorithm depends mainly on the step size, and its convergence speed
is mainly based on step length and kernel width. When the step length is fixed,
the contradiction between convergence speed and steady-state mean square error
can be overcome by changing the kernel width. In [18], Weihua Wang et al. pro-
posed a switch width based on maximum correntropy. In [19], Yicong He et
al. proposed a new adaptive algorithm based on generalized correntropy, using
generalized Gaussian density instead of traditional width. When the width is
certain, the step length is inversely proportional to the misalignment. In [20],
Ren Wang et al. proposed a variable step maximum correntropy adaptive filter.
In [21], the convex combination is introduced into an MCC-based adaptive filter,
so that the combination filter simultaneously gets the fast convergence speed of
the filter with large step size as well as the low misadjustment of the filter with
small step size. However, in the convex combination of maximum correntropy
criterion (CMCC) filter, the tracking and convergence performance of the com-
bined filter are reduced. Therefore, an improved convex combination filter based
on maximum correntropy criterion (ICMCC) is presented in this paper. Com-
pared with the CMCC, ICMCC not only has fast convergence speed and low
misalignment, but also can track the optimal value fast in any weight coefficient
changes.

The rest of the paper is organized as follows. we review briefly MCC-
based algorithms in Sect. 2. Then, ICMCC, adding weight transfer algorithm
to enhance convergence rate, is proposed in Sect. 3. The simulation results are
given in Sect. 4, and the conclusion is presented in Sect. 5.

2 MCC-Based Algorithms

Correntropy is a measure of local similarity between two random variables, and
can also be used as a cost function in adaptive filtering [22]. Considered X and
Y two random variables, the correntropy is [23]

v(X,Y ) = E[k(X,Y )] =
∫

k(X,Y ) dFXY F (x, y), (1)
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where κ(·, ·) is a shift-invariant Mercer kernel, and FXY denotes the joint dis-
tribution function of (X,Y ). The most widely used kernel in correntropy is the
Gaussian kernel

k(X,Y ) = Gσ(e) =
1√
2πσ

exp(
−e2

2σ2
), (2)

where σ is the kernel width, and e = x−y. The MCC algorithm finds the optimal
value by maximizing the correntropy.

According to the stochastic gradient principle of adaptive algorithm, the
updating equation of weight coefficient based on maximum correntropy is [21]

w[k] = w[k − 1] + λ exp(
−e[k]2

2σ2
)e[k]X[k], (3)

where λ is the step size and X[k] is the input at the moment k.

3 Improvement of MCC-Based Adaptive Filter

CMCC adaptive filtering algorithm is the latest development based on the max-
imum correntropy criterion in the contradiction between convergence speed and
misalignment. This method combines two adaptive filters by convex combina-
tion, thus obtaining the fast convergence speed of large step and the low offset of
small step length. But this method has a major challenge, that is, the tracking
ability of the combinational filter is reduced. In this part, we first introduce the
CMCC algorithm, and then extend the method to arbitrary number adaptive
filters through the maximization of the correntropy of the combined filter to
improve the tracking ability and convergence speed of the combined filter.

3.1 CMCC Algorithm

The implementation of the CMCC first requires two filters with different step
sizes, and then the two filters update their own weights according to their own
criteria and errors. However, the update criterion of the mixing coefficient is to
maximize the correntropy of combined filter. The combination weight of CMCC
can be expressed as [25]

w[k] = v[k]w1[k] + (1 − v[k])w2[k], (4)

where the mixing coefficient v[k] can be denoted as v[k] = sgmα[k] = 1/(1 +
e−α[k]). w1[k] and w2[k] are the weights of large step and small step respectively,
and they are expressed as wi[k] = wi[k − 1] + λi exp(−ei[k]

2

2σ2 )ei[k]X[k], i = 1, 2.
And ei[k] = d[k]− yi[k], i = 1, 2 is the error incurred by the component adaptive
filter. Similarly, the combined filter output can be obtained and expressed as

y[k] = v[k]y1[k] + (1 − v[k])y2[k], (5)
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where y1[k] = XTw1[k] and y2[k] = XTw2[k] represent the output of a large
step filter and a small step filter, respectively. The parameter α[k] is used to
indirectly adjust the mixing coefficient, and updated by gradient algorithm that
maximizes the correntropy of the combined filter, that is [21]:

α[k + 1] = α[k] + μασ2 ∂exp(−e2[k]
2σ2 )

∂α[k]

= α[k] + μαv[k](1 − v[k])(y1[k] − y2[k]) exp(
−e2[k]
2σ2

)e[k],

(6)

where μα represents the step size of the parameter α[k]. In order to ensure that
the adaptive speed of the combined filter is faster than that of the large step
filter, μα must be larger than μ1. In order to prevent the v[k] from approaching
0 or 1, the range of α[k] is limited to [−4, 4] [25].

Following [20], when the fast filter is significantly better than the slow filter,
we can accelerate the convergence performance of the algorithm by the following
formula. The modified small step filter can be expressed as [21]

w2[k] = βw2[k − 1] + λ2 exp(
−e22[k]
2σ2

)e2[k]x[k] + (1 − β)w1[k], (7)

where β is the transfer coefficient.

3.2 ICMCC Algorithm

In order to improve the disadvantage of poor tracking performance of CMCC,
this paper makes a convex combination of arbitrary number filters with different
steps and obtains the ICMCC algorithm. When the number of L adaptive filters
based on MCC is combined, the weight of the combined filter is obtained as
follows [25]:

weq[k] =
L∑

i=1

vi[k]wi[k], (8)

where wi[k] represents the weight of the component filter whose the step size is
denoted by μi (μ1 > μ2 > · · ·μL). Each filter updates its weight based on its own
error and can be expressed as wi[k] = wi[k − 1] + λi exp(−ei[k]

2

2σ2 )ei[k]X[k], i =
1, 2 · · · L. vi[k] is the mixing coefficient and satisfies

∑L
i=1 vi[k] = 1.

In the case of combining arbitrary number of filters, the L auxiliary parame-
ters αi[k] were updated with stochastic positive gradient method to adjust the L
mixing parameters. We use softmax activation function to define the relationship
between vi[k] and αi[k] to ensure the stability of vi[k]. vi[k] can be expressed as
[25]

vi[k] =
exp(αi[k])∑L

j=1 exp(αj [k])
, (9)
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By multiplying both sides of formula (8) by XT [k], it is concluded that the
output of ICMCC filter is a convex combination of all filter outputs.

yeq[k] =
L∑

i=1

vi[k]yi[k], (10)

where yi[k] = XTwi[k], i = 1, 2 · · · L is the component filter output.
As for the CMCC filter, the parameter αi[k] is updated using MCC rules to

maximize the overall correntropy

αi[k + 1] = αi[k] + μαvi[k](yi[k] − yeq[k]) exp(
−e2[k]
2σ2

)e[k]. (11)

In (11), We must qualify μα larger than the step size of any component filter.
To prevent the ICMCC algorithm from stopping, we usually limit |vi[k]| < 0.95.
Since vi[k] is regulated by αi[k], the range of αi[k] is |αi[k]| ≤ 0.5 ln(19(L − 1)).

Algorithm 1 ICMCC ALGORITHM
Initialization:
1. Parametres: μα, β, σ, L, γ, μi, i = 1, · · ·L
2. Initialize αi[0] = 0, vi[0] = 1/L, wi[0] = 0, i = 1, · · ·L
Update:
for k = 0, 1, 2, · · ·.
yi[k] = wT

i [k]X[k], i = 1, · · ·L
ei[k] = d[k] − yi[k], i = 1, · · ·L
yi[k] = ΣT

i=1w
T
i [k]X[k], i = 1, · · ·L

e[k] = d[k] − yeq[k]

αi[k + 1] = αi[k] + μαvi[k](yi[k] − yeq[k]) exp(−e2[k]
2σ2 )e[k]

vi[k] = exp(αi[k])∑L
j=1 exp(αj [k])

if γi ≥ cor(e2[k])/cor(e2i [k])

wi[k] = βwi[k − 1] + μi exp(
−e2i [k]

2σ2 )ei[k]X[k] + (1 − β)weq[k]
else
wi[k] = wi[k − 1] + λi exp(−ei[k]

2

2σ2 )ei[k]X[k]
end
End

In order to increase the tracking performance of the combined filter, we can
determine whether to accelerate by calculating the ratio of the estimated cor-
rentropy of each component filter to the estimated correntropy of the combined
filter. The estimated correntropy of the component filter and the combined filter
are

cor(ei[k]) = 0.98cor(ei[k − 1]) + 0.02 exp(
−e2i [k]
2σ2

), (12)

cor(e[k]) = 0.98cor(e[k − 1]) + 0.02 exp(
−e2[k]
2σ2

). (13)
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When γ ≥ cor(e2[k])/cor(e2i [k]), γ > 1, we transfer a certain proportion of
the combined filter to component filters that are worse than the combined filter.
The modified adaption rule for wi[k] becomes

wi[k] = βwi[k − 1] + μi exp(
−e2i [k]
2σ2

)ei[k]x[k] + (1 − β)weq[k], (14)

where β is the transfer coefficient. The condition for using Eq. (14) is that
the large step size filter is significantly better than the small step size. Through a
large number of experiments, γ and β were selected to be 2 and 0.8 respectively,
to achieve the best transfer effect. The closer the choice of β is to 1, the more
likely it is that the convex combination filter does not have a transfer coefficient.
The pseudocodes of the proposed ICMCC are presented in Algorithm 1.

4 Simulation Results in System Identification Scenarios

In this section, we simulate the non-stationary system identification under non-
Gaussian noise to verify the tracking performance of CMCC and ICMCC, and
quantify each algorithm by normalized mean square deviation (NMSD) calcula-
tion which is expressed as NMSD = 10 log10 (‖ wi − w0 ‖2)/(‖ w0 ‖2).

The length of the unknown system is 10, which is the same length as the
adaptive filter, and the input signal is a Gaussian signal with zero-mean and
unit power. At the output of the plant we add measurement noise N [k], we
give four different distributions for measurement noise including (1) uniform
noise, where the uniform noise is distributed over [−1, 1]; (2) Laplace noise,
where the probability density function of Laplace noise is p(n) = 1/π(1 + n2);
(3) binary noise, where the binary noise is either -1 or 1 (each with probability
0.5); (4) mixed Gaussian noise, where the mixed Gaussian noise is N [k] = (1 −
θ)N(ζ1, δ21)+(θ)N(ζ2, δ22) (ζi and δ2i represent mean and variance, respectively).
In this paper, the parameter is set to (0, 0, 0.001, 10, 0.1).

For the sake of simplicity, L = 4 MCC filters with step sizes μ1 = 0.1,
μ2 = 0.03, μ3 = 0.01 and μ4 = 0.002 are considered as component filters.
Simultaneously, the two steps in the CMCC algorithm are selected as μ1 = 0.1
and μ4 = 0.002. The step size μα of the parameter α[k] is fixed at 30. The
initial value of unknown system is random values between −1 and 1, and the
random-walk model introduces different rate of change of weight vectors. The
random-walk model can express as:

w0[k + 1] = w0[k] + q[k], (15)

where q[k] is an i.i.d. vector, with autocorrelation matrix Q = E{q[k]qT [k]}.
Tr(Q) is a measure of the speed of the weight vector. In this paper, we consider
that q[k] is an independent Gaussian distribution.

In order to better embody the tracking performance of ICMCC, we choose
Tr(Q1) = 10−6 and Tr(Q2) = 10−7 two different speed of change for weighting
coefficients in 5000 < k < 10000 and 15000 < k < 20000 respectively. From
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Fig. 1. Comparison of the convergence curve of a ICMCC filter and a CMCC filter
with uniform noise.
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Fig. 2. Comparison of the convergence curve of a ICMCC filter and a CMCC filter
with Laplace noise.

Figs. 1, 2, 3 and 4, when k < 5000, the adaptive filter of μ1 has the fastest
convergence speed but the highest amount of offset; μ4’s adaptive filter has the
lowest amount of offset, but the slowest convergence rate. Although the CMCC
adaptive filter has a fast convergence rate and a slow offset amount, the tracking
performance is not as good as that of the ICMCC. When 5000 < k < 10000 and
15000 < k < 20000, since the two weight coefficients of Tr(Q1) and Tr(Q2) are
added to change the speed, the optimal value of the weight coefficient changes.
Compared to the CMCC, the ICMCC not only quickly tracks the optimal value,
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Fig. 3. Comparison of the convergence curve of a ICMCC filter and a CMCC filter
with binary noise.
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Fig. 4. Comparison of the convergence curve of a ICMCC filter and a CMCC filter
with mixed Gaussian noise.

but also maintains a lower amount of misalignment. In summary, ICMCC gathers
fast convergence speed, low misalignment and good tracking ability.

Simultaneously, we can study the tracking ability of ICMCC from four vari-
ations of the mixing coefficients. As shown in Fig. 5, the change process of the
ICMCC four mixed parameters is indicated. We can see that in 5000 < k < 10000
and 15000 < k < 20000, ICMCC will use the hybrid coefficient adaptive filter to
select the optimal performance as the primary role. Therefore, ICMCC shows the
same performance as the optimal partial filter at any given moment. Therefore,
ICMCC has good tracking performance and tracks a variety of changes.
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Fig. 5. Evolution of the mixing coefficients v1(i), v2(i), v3(i) and v4(i)

5 Conclusions

In this paper, arbitrary number convex combination technique is employed to
improve the tracking performance of CMCC filters. The improved algorithm not
only has fast convergence speed and low offset, but also can track a variety
of weight vector changes. Compared with the original CMCC algorithm, the
improved algorithm is more suitable for system identification scenarios with
non-Gaussian noises and abrupt change. The proposed adaptive filter can be
applied to signal processing, system identification, noise cancellation, automatic
equalization, echo cancellation and antenna array beamforming.
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