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Abstract. With the development of brain-computer interface (BCI) technology,
fast and accurate analysis of Electroencephalography (EEG) signals becomes
possible and has attracted a lot of attention. One of the emerging applications is
eye state recognition based on EEG signals. A few schemes like the K* algo-
rithm have been proposed which can achieve high accuracy. Unfortunately, they
are generally complex and hence too slow to be used in a real-time BCI
framework such as an instance-based learner. In this paper, we develop a novel
effective and efficient EEG based eye state recognition system. The proposed
system consists of four parts: EEG signal preprocessing, feature extraction,
feature selection and classification. First, we use the ‘sym8’ wavelet to
decompose the original EEG signal and select the 5th floor decomposition,
which is subsequently de-noised by the heuristic SURE threshold method. Then,
we propose a novel feature extraction method by utilizing the information
accumulation algorithm based on wavelet transform. By using the CfsSub-
setEval evaluator based on the BestFirst search method for feature selection, we
identify the optimal features, i.e., optimal scalp electrode positions with high
correlations to eye states. Finally, we adopt Random Forest as the classifier.
Experiment results show that the accuracy of the overall EEG eye state recog-
nition system can reach 99.8% and the minimum number of training samples
can be kept small.

Keywords: Electroencephalogram (EEG) -+ Eye state identification
Feature extraction -+ Wavelet transform -+ Information accumulation
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1 Introduction

A brain-computer interface (BCI) [1] is a direct communication system between the
human brain and the external world, which supports communication and control
between brain and external devices without use of peripheral nerves and muscles. By
using BCI, people can directly express ideas or bring them to actions only through their
brains. For instance, BCI can enable disabled patients to communicate with the outside
world and control external devices. As a new kind of human-computer interaction, BCI
has attracted intensive attention in the field of rehabilitation engineering and biomedical
engineering in recent years. EEG based eye state recognition is one of the most
important research fields of BCI, which has been investigated for many applications,
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particularly in human cognitive state classification. For example, EEG based eye state
classification has been successfully applied to fatigue driving detection [2], epileptic
seizure detection [3], human eye state detection, recognition of infant sleep state [4],
classification of bipolar affective disorder [5], human eye blinking detection, etc. These
phenomena demonstrate the importance of studying eye state recognition based on
EEG.

Previous studies on EEG based eye state recognition can be classified into two
categories: improving the accuracy and shortening the computing time. In the first
category, one of the most representative works is by Rdser and Suendermtann [6],
which develops a system to detect a person’s eye state based on EEG recordings. The
authors test 42 classification algorithms and found that the K* algorithm can get the
highest accuracy of 97.3%. As a classic statistical pattern recognition method, the K*
algorithm performs classification on a data sample mainly based on the surrounding
neighboring samples. However, when the training sample set is large, the computing
time of the K* algorithm increases significantly. In order to address this problem, some
studies in the second category employ more efficient classification methods to reduce
the computing time. For instance, Hamilon, Shahryari, and Rasheed [7] use Boosted
Rotational Forest (BRF) to predict eye state with an accuracy of 95.1% and speed of
454.1 instances per second. Reddy and Behera [8] design an online eye state recog-
nition with an accuracy of 94.72% and the classification speed of 192 instances per
second.

In this paper, we aim to develop an effective and efficient EEG based eye state
recognition system. Different from the above methods which mostly focus on opti-
mizing the classification algorithm, we explore the overall system design consisting of
EEG signal preprocessing, feature extraction, feature selection, and classification.
Specifically, we first decompose the signal and mitigate noise in it. Then, we conduct
feature extraction. We argue that feature extraction of dynamic signals like EEG should
consider the information of adjacent time-domain signals rather than only include the
information at a certain time instance. Therefore, we propose a novel feature extraction
scheme by utilizing the information accumulation 3 algorithm based on wavelet
transform. After that, we employ the BestFirst search algorithm to select features, and
the Random Forest algorithm to perform classification. The overall EEG eye state
recognition system achieves the classification accuracy of 99.8% and the speed of
639.5 instances per second. The rest of this paper is organized as follows. Section II
describes the proposed real-time EEG eye state recognition system in detail. Section III
demonstrates the experiment results. The last section concludes the paper.

2 System Design

2.1 EEG Signal Proprecessing

EEG signals, which are different from normal electrical signals, are dynamic, random,
non-linear bio-electrical signals with high instablity. Traditional de-noising methods
including linear filtering and nonlinear filtering, such as wiener filtering [9] and median
filtering [10], are inappropriate for EEG signal preprocessing, because the entropy and
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the non-stationary characteristics of signal transformation cannot be clearly described,
and the correlation of signals cannot be easily obtained. Wavelet transform [11] has
strong data de-correlation capability, which can make the energy of the signal in the
wavelet domain concentrated on a few large wavelet coefficients, and the noise energy
distributed in the entire wavelet domain. Moreover, the noise in EEG signal is usually
close to white noise. So, this paper uses the wavelet threshold de-noising [12], which
can almost completely suppress the white noise, and the characteristics of the original
signal are retained well.

Particularly, wavelet threshold de-noising [13] is to employ an appropriate
threshold function so that the wavelet coefficients obey certain rules after the wavelet
transform to achieve the purpose of de-noising. The selection of the threshold function
and the determination of the threshold value are two key problems in the design of
wavelet threshold de-noising algorithm, which influence the de-noising result directly.
In general, threshold functions can be divided into two categories: hard threshold and
soft threshold. Currently, fixed threshold [14], Stein unbiased likelihood estimation
threshold, heuristic threshold [15] and minimum maximum criterion threshold are the
four most frequently used selection rules. Because Stein unbiased likelihood estimation
threshold and min-max criterion threshold often result in incomplete de-noising, in this
paper we adopt the heuristics threshold.

2.2 Feature Extraction

In feature extraction, fast Fourier transform (FFT), autoregressive (AR) models,
wavelet transform (WT) and short-time Fourier transform (STFT) are widely used to
extract features of EEG signals. But transient features cannot be captured by AR mod-
els or FFT models. Both SFT transform and wavelet transform are time-frequency
analysis methods, and have a unified time window to simultaneously locate different
frequency ranges and time intervals. Studies have shown that the combination of time
domain information and frequency information can improve the classification perfor-
mance of the EEG recognition system, and that for non-stationary transient signals such
as EEG, WT is more effective than SFT. Therefore, we develop a wavelet packet
decomposition (WPD) based approach to extract features of EEG signals. The coeffi-
cients of WPD and the wavelet packet energy of special sub-bands are taken as the
original features.

Table 1. The correspondence between components of the wavelet and frequencies of the EEG
signals

Wavelet component | EEG signal frequency

AS Delta waves
D5 Theta waves
D4 Alpha waves

D3 Beta waves
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Note that in the proposed scheme determining suitable wavelet and the number of
decomposition levels is critical. In particular, different types of wavelets are usually
used in testing to find the wavelet with the highest efficiency for a particular appli-
cation. The smoothing characteristic of the db4 wavelet is more suitable for detecting
changes of EEG signals. Thus, we employ this scheme to compute the wavelet coef-
ficients in this paper. Moreover, the number of decomposition levels is usually chosen
based on the main frequency components of the signal. According to previous studies,
the number of decomposition levels is set to 5 because EEG signals do not have any
useful information above 30 Hz. Then, the EEG signals were decomposed into details
D3-D5 and one final approximation, AS. Table 1 shows the correspondence between
components of the wavelet and frequencies of the EEG Signals.

Furthermore, after analyzing the EEG signal changes corresponding to more than
50 eye state changes, we find that changes in EEG usually happen before eye move-
ment as shown in Fig. 1. The reason for this phenomenon may be that there is a process
of brain consciousness formation before people perform physiological activities. This
process is related to Event-related potentials (ERP [16]), a special kind of brain evoked
potentials. Evoked Potentials (EPs [17]), also known as Evoked Responses, refer to the
specific stimulation of the nervous system (from the receptor to the cerebral cortex) or
the processing of information about the stimulus (positive or negative). EPs are bio-
electrical responses that are detectable in a system and at a corresponding portion of the
brain with a relatively fixed time interval (lock-time relationship) and a specific phase.
Experimental psychologists and neuroscientists have discovered many different stimuli
that elicit reliable ERPs from participants. The timing of these responses can provide a
measure of the timing of the brain’s communication or timing of information pro-
cessing. Therefore, we attempt to improve our algorithm by exploring the occurrence of
brain event-related potential (ERP) in the case of human eye movement and finding out
the response time of the brain to eye movement consciousness through experiments.
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Fig. 1. The changes of signal potential when the change of eye state change
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Specifically, according to the Parseval theorem, we can obtain the energy of each
component after wavelet transform. Let f, represent the energy of the x component.
Then the feature vector f can be described as: f = [ fp3, fpa, fps, fA5}T. As mentioned
above, it has been shown that the voltage amplitude of the EEG signals starts to rise or
descend before the change of eye state. Thus, the vector f only includes the energy at a
certain time, but neglects the useful information of adjacent time or previous time of the
signal. So, we employ the information accumulation algorithm to extend the feature
vector f to f/ which can better represent the characteristics of the EEG signal as in
(1) and (2).

£=> fi(fori=1,2,-- n) (1)
T

f/:[fllv le?""fr:]T (2)

Here, T represents a time window whose optimal value can be determined by exper-
iments, and n represents the number of data samples.

2.3 Feature Selection

In machine learning, if the number of features is too many, there may exist irrelevant
features and may be interdependency among features. So, it is necessary to select
features before classification. This paper uses CfsSubsetEval evaluator based on the
BestFirst search method [18] derived in Weka toolkit [19] to select features.

2.4 Classification

The Random Forest classification (RFC) [20] is a classification model that is composed
of many decision tree classification models. Specifically, given one variable X, in each
decision tree classification model, the optimal classification result depending on one
vote. In contrast RFC works as follows. First, it uses the bootstrap sample method to
extract k samples from the original training set. Second, k decision tree models are
established from k samples, and k classification results are obtained. Finally, the
classification result is obtained by following the plurality rule, i.e.,

H(x) = arg max S I =) (3)

In (3), H(x) is the final classification result, /;(x) is the classification result of a
single decision tree, Y is target classification, and I(e) is the indicator function.
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3 Experiment Results

3.1 Dataset

This paper uses EEG Eye State Data Set [21] from the UCI database. All EEG signals
were recorded by Emotiv EEG Neuroheadset [22]. Each sample consists of 14 values
from 14 electrode positions, and a label indicating the eye state (‘1° indicates the eye-
closed state and ‘0’ the eye-open state). The duration of the EEG recording was 117 s.

3.2 Results

3.2.1 EEG Signal Proprecessing Results

In the SIGNAL toolbox of the MATLAB2010 platform, the signal is decomposed by
the ‘sym8’ wavelet. On the 5th floor of the decomposition, the heuristic SURE
threshold is used to de-noise the signal. The Fig. 2 shows the difference between the
signal before de-noising and after de-noising in channel AF3. From the Fig. 2, it can be
seen that the shaking of the waveform after de-noising is reduced, and a larg- e
proportion of noises have been removed. Consequently, the wavelet threshold
de-noising is a useful method to the EEG signal.
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Fig. 2. de-noising results

3.2.2 Classification Results
In the experiments, all the patterns were partitioned for training and testing with the
division of 66% and 34% (Roser & Suendermann’s work use 10-fold cross validation).
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In the step of feature extraction, there are 8 methods shown in Table 2 which lead to 8
results of feature selection and classification shown in Table 3. The classification speed
v is defined as:

V= ;(instance/s) 4)

In (4), n is the number of instance, ¢ is the cpu execution time. The cost time didn’t
include the obtainment and transmission time in hardware.

Table 3 shows that the best approach is the No.5 which has an accuracy rate of
99.8% and speed of 639.5 instances/s if taking all aspects into consideration. The best
selection of the parameter T is the time period including 49 points before the current
point and 50 points after it. The information in this time period can reflect eye state
most effectively. The margin curve of this method is shown in Fig. 6. From this figure,
we can find that, when the number of samples is larger than 1563, the classification
result tends to be stable and the calculation cost is low. When the number of samples is
less than 210, the classification accuracy is low and the calculation cost is high. When
the number of samples is larger than 210, the accuracy increases rapidly and the
calculation cost is reduced greatly. So, the minimum number of training samples is
1563. Compared not using feature extraction with only using wavelet transform when
select RF as classifier, the accuracy rate increases 7.9% and 1.9% respectively. When
using K* classification algorithm, the accuracy rate increases 3.7% and the speed
increases to ten times. Moreover, by feature selection, it is proved that AF3(AS), F7
(A5), T7(AS), O1(AS) and FC6(D5) are 5 scalp electrode positions with high corre-
lation to eye state. So, the recognition of eye state based on the EEG signal only needs
the information of 5 channels and frequency components of delta waves and alpha
waves.

Table 2. 8 feature extraction methods

Number | Method of feature extraction

With no feature extraction

WT

WT and IAA(T = [t; 40, £;])
WT and IAA(T = [t;4;, tivsol)
WT and IAA(T = [t;49, tirso])
WT and TAA(T = [t_go, 1;])
WT and IAA(T = [#;1, tiv100])
WT and IAA(T = [#;_99, ti+100])

0NN kAW
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Table 3. 8 results of feature selection and classification

No. | Selected features Speed Accuracy | Minimum
number
of training
samples

1 |ALL 2358.4instances/s | 91.9% 5093

2 | AF3(A5),F7(A5),T7(AS5),01(AS5),FC6(AS) | 2573.2instances/s | 97.9% 3552

3 | AF3(A5),F7(A5),T7(AS5),01(A5) 548.2istances/s | 98.6% 2737

4 | AF3(A5),F7(A5),T7(AS),01(AS) 641.1linstance/s | 99.3% 2189

5 | AF3(A5),F7(A5),T7(AS5),01(A5),FC6(D4) | 639.5instances/s | 99.8% 1563

6 | AF3(A5),F7(A5),T7(AS5),01(A5),FC6(D4) | 616.3instances/s | 99.8% 1600

7 | AF3(A5),F7(A5),T7(AS),01(AS) 654.0instances/s | 99.6% 1345

8 | F7(A5),T7(AS), 654.5instances/s | 99.6% 1047

O1(AS5)
4 Conclusions

This paper develops a novel efficient EEG eye state recognition system. It has a
significantly faster classification speed and higher accuracy compared with the K*
algorithm. Compared with the K*algorithm, the optimal performance in this study
reaches the accuracy of 99.8% and the classification speed of at-least 639.5 samples per
second, making it appropriate to real-time BCI systems. We hope that this study will
help more scientists and engineers understand brain activities and develop BCI systems
for improving human lives.
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