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Abstract. It is well-known that the Fourier transforms plays a criti-
cal role in image processing and the corresponding applications, such
as enhancement, restoration and compression. For filtering of gray scale
images, the Fourier transform in R

2 is an important tool which converts
the image from spatial domain to frequency domain, then by applying
filtering mask filtering is done. To filter color images, a new approach is
implemented recently which uses hypercomplex numbers (called Quater-
nions) to represent color images and uses Quaternion-Fourier transform
for filtering. The quaternion Fourier transform has been widely employed
in the colour image processing. The use of quaternions allow the anal-
ysis of color images as vector fields, rather than as color separated
components. In this paper we mainly focus on the theoretical part of
the Quaternion Fourier transform: the real Paley-Wiener theorems for
the Quaternion-Fourier transform on R

2 for Quaternion-valued Schwartz
functions and Lp-functions, which generalizes the recent results of real
Paley-Wiener theorems for scalar- and quaternion-valued L2-functions.
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1 Introduction

The original Paley-Wiener theorem [8] describes the Fourier transform of
L2-functions on the real line with support in a symmetric interval as entire
functions of exponential type whose restriction to the real line are L2-functions,
which has proved to be a basic tool for transform in various set-ups. Recently,
there has been a great interest in the real Paley-Wiener theorem due to Bang
in [1] and Tuan in [11], in which the adjective “real” expresses that information
about the support of the Fourier transform comes from growth rates associated
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to the function f on R, rather than on C as in the classical “complex Paley-
Wiener theorem”. The Fourier transform of functions with polynomial domain
supports, of functions vanishing on some ball, and even in the classical case the
result obtained here are also new. The set-up is as follows. For any functions
f ∈ S(Rk), there holds

lim
n→∞ ‖Pn(iD)f‖ 1

n
p = sup

y∈suppf̂

|P (y)|

and

lim
n→∞ ‖

∞∑

m=0

nmΔmf

m!
‖ 1

n
p = exp

(
− inf

y∈suppf̂

)
|y|2,

here P (y) is a non-constant polynomial and P (iD) is the transmutation operator.
In this paper we will consider the real Paley-Wiener theorem for the quater-

nion Fourier transform (QFT) which is a nontrivial generalization of the real and
complex Fourier transform (FT) to quaternion algebra. The four components of
QFT separate four cases of symmetry in real signals instead of only two ones in
the complex FT. The QFT plays an important role in the representation of sig-
nals and transforms a quaternion 2D signal into a quaternion-valued frequency
domain signal. There are lots of efforts to devote to many important properties
and applications of the QFT (see [2–4,6,7,9,10]).

Motivated by recent work [5] which derived a real Paley-Wiener theorem to
characterize the quaternion-valued L2-functions whose QFT has compact sup-
port, we systematically develop a real Paley-Wiener theorem for QFT on R

2 for
quaternion-valued Schwartz functions and Lp-functions, 1 ≤ p ≤ ∞.

The paper is organized as follows. Section 2 is devoted to recalling some
definitions and properties for quaternions and their analysis. In Sect. 3, we prove
the real Paley-wiener theorems for the QFT.

2 Preliminaries

The quaternion algebra H and Clifford algebra are extensions of the algebra of
complex numbers. The quaternion algebra is given by

H = {q|q = q0 + q1i + q2j + q3k, q0, q1, q2, q3 ∈ R}
where the elements i, j,k obey Hamilton’s multiplication rules

ij = −ji = k, jk = −kj = i,ki = −ik = j, i2 = j2 = k2 = ijk = −1.

The conjugate of a quaternion q ∈ H is obtained by changing the sign of the
pure quaternion part, i.e., q̄ = q0−q1i−q2j−q3k. This leads to a norm of q ∈ H,
which is defined as

|q| =
√

qq̄ =
√

q02 + q12 + q22 + q32.
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A quaternion-valued function f : R2 → H will be written as

f(x) = f0(x) + f1(x)i + f2(x)j + f3(x)k, x = (x1, x2),

with real-valued coefficient functions f0, f1, f2, f3 : R2 → R. We introduce the
space Lp(R2), 1 ≤ p ≤ ∞, as the left module of all quaternion-valued functions
f : R2 → H satisfying

‖f‖p :=
( ∫

R2
|f(x)|pdx

)1/p

< ∞, if 1 ≤ p < ∞,

‖f‖∞ := ess sup
x∈R2

|f(x)| < ∞, if p = ∞.

Definition 1. The normalized right-sided QFT of a function f ∈ L1(R2) is
defined by

Fr
q f(λ) =

∫

R2
f(x)e−ix1λ1e−jx2λ2dx, for all λ ∈ R

2. (1)

So the corresponding inversion formula can be given as

f(x) =
1

(2π)2

∫

R2
Fr

q f(λ)ejx2λ2eix1λ1dλ, for all x ∈ R
2. (2)

Similarly,

Definition 2. The normalized left-sided QFT of a function f ∈ L1(R2) is
defined through

F l
qf(λ) =

∫

R2
e−ix1λ1e−jx2λ2f(x)dx, for all λ ∈ R

2, (3)

and the corresponding inversion formula can be given as

f(x) =
1

(2π)2

∫

R2
ejx2λ2eix1λ1F l

qf(λ)dλ, for all x ∈ R
2. (4)

The QFT of a tempered distribution T is defined by

〈Fr
q T, φ〉 = 〈T,F l

qφ〉, φ ∈ S(R2), (5)

which is compatible with its definition on L1(R2).
In what follows, we recall the following important property of the QFT. For

more properties and details, we refer to [5,6].

Proposition 1. (QFT partial derivatives). If ∂m1+m2

∂x
m1
1 ∂x

m2
2

f(x) ∈ L1(R2),
m1,m2 ∈ N0, then we have

Fr
q { ∂m1+m2

∂xm1
1 ∂xm2

2

f(x)i−m1}(λ) = λm1
1 Fr

q f(λ)λm2
2 jm2 , (6)
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and

F l
q{

∂m1+m2

∂xm1
1 ∂xm2

2

j−m2f(x)}(λ) = im1λm1
1 F l

qf(λ)λm2
2 . (7)

Proposition 2. (QFT Plancherel). If f, g ∈ L2(R2), then there holds

(f, g) =
1

(2π)2
(Fr

q f,Fr
q g). (8)

In particular, if f = g, we have the following Parseval’s Identity:

‖f‖2 =
1
2π

‖Fr
q f‖2. (9)

3 Real Paley-Wiener Theorems for the Quaternion-
Fourier Transform

First, we consider the functions vanishing outside a ball, which is the Paley-
Wiener-Type Theorem.

Theorem 1. Let P (x) = xn1
1 xn2

2 for any fixed nonnegative integers n1 and n2.
Suppose P (∂)m ∈ Lp(R2) for all m ∈ N0 and 1 ≤ p ≤ ∞. Assume further that
either Fr

q f has compact support or that the set λ ∈ R2 : |P (λ)| ≤ R is compact
for all R ≥ 0. Then in the extended positive real numbers

lim
m→∞ ‖Pm(∂)f‖ 1

m
p = sup

λ∈suppFr
q (f)

|P (λ)|. (10)

Proof. The case for f ≡ 0 is trivial, so we assume that f �≡ 0.

Step 1: If 2 ≤ p ≤ ∞, applying the Hausdorff-Young’s inequality with p−1 +
q−1 = 1:

‖Pm(∂)f i−mn1‖p ≤ C‖Pm(λ)Fr
q (f)jmn2‖q

= C‖Pm(λ)Fr
q (f)jmn2‖Lq(suppFr

q (f))

= C‖Pm(λ)Fr
q (f)‖Lq(suppFr

q (f))

≤ C sup
λ∈suppFr

q (f)

|P (λ)|m‖Fr
q (f)‖Lq(suppFr

q (f))
,

so we have

lim
m→∞ sup ‖Pm(∂)f i−mn1‖ 1

m
p ≤ sup

λ∈suppFr
q (f)

|P (λ)| lim
m→∞ sup C

1
m ‖Fr

q (f)‖ 1
m
q

= sup
λ∈suppFr

q (f)

|P (λ)|. (11)
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For the case 1 ≤ p < 2, using Hölder’s inequality and Plancherel Theorem for
the QFT, we get

‖f‖p
p =

∫

R2
(1 + |x|2)−2p|(1 + |x|2)2f(x)|pdx

≤ ‖(1 + |x|2)−2p‖ 2
2−p

‖(1 + |x|2)2f(x)‖p
2

≤ C‖(1 + |x|2)2f(x)‖p
2

= C‖(1 − Δ)2Fr
q (f)‖p

2, (12)

here Δ = ∂2

∂x2
1

+ ∂2

∂x2
2

denotes the Laplacian.
Substituting f in the above inequality with Pm(∂)i−mn1 , there holds

‖Pm(∂)i−mn1‖p
p ≤ C‖(1 − Δ)2Pm(λ)Fr

q (f)jmn2‖p
2.

By mathematical induction, we can show that

(1 − Δ)2(Pm(λ)Fr
q (f)jmn2) = Pm−4(ω)Φn(ω)imn2 , m > 4,

where suppΦn ⊂ suppFr
q (f) and Φn(ω) ≤ Cn4.

Hence,

‖Pm(∂)f i−mn1‖p ≤ C‖Pm−4Φn(ω)imn2‖2
≤ C sup

suppFr
q (f)

|P (ω)|m−4‖Φn(ω)jmn2‖2

≤ Cn4 sup
suppFr

q (f)

|P (ω)|m−4,

which implies

lim
m→∞ sup ‖Pm(∂)fi−mn1‖ 1

m
p ≤ sup

suppFr
q (f)

|P (ω)|. (13)

In case p = ∞, we have

‖f‖∞ ≤ (2π)−1‖f‖1
= (2π)−1

∫

R2
(1 + |x|2)−2|(1 + |x|2)2Fr

q (f)|dx

= (2π)−1‖(1 + |x|2)−2‖2‖(1 + |x|2)2Fr
q (f)‖2

≤ C‖(1 + |x|2)2Fr
q (f)‖2.

Therefore,

‖Pn(∂)f i−mn1‖∞ ≤ C‖(1 + |x|2)2Pn(ω)Fr
q (f)jmn2‖2

= C‖(1 + |x|2)2Fr
q (f)Pn(ω)jmn2‖.
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Consequently,

lim
m→∞ sup ‖Pm(∂)f i−mn1‖ 1

m∞ ≤ sup
ω∈supp(1+|x|2)2Fr

q (f)

|P (ω)|

= sup
ω∈suppFr

q (f)

|P (ω)|. (14)

Step 2: Since f ∈ S(R2), the function f and its partial derivatives vanish
at infinity, therefore, integration by parts gives

∫

R2
Pm(∂)fPm(∂)f(x)dx =

∫

R2
Pm(∂)f(x)Pm(∂)f(x)dx

= −
∫

R2
f(x)P 2m(∂)f(x)dx.

Hence, by Hölder inequality, we have

‖Pm(∂)f‖22 ≤ ‖f‖q‖P 2m(∂)f‖p.

Replacing f by P (∂)f in above inequality, we have

‖Pm+1(∂)f‖22 ≤ ‖P (∂)f‖q‖P 2m+1(∂)f‖p.

Since f ∈ S(R2), we have that P (iD)f �= 0, and consequently,

sup
ω∈suppFr

q (f)

|P (ω)| = lim
m→∞ ‖Pm+1(∂)f‖

1
m+1
2

= lim
m→∞ ‖Pm+1(∂)f‖

2
2m+1
2

≤ lim
m→∞ ‖P (∂)f‖ 1

2m+1 lim
m→∞ inf ‖P 2n+1(∂)f‖

1
2n+1
p

= lim
m→∞ inf ‖P 2m+1(∂)f‖

1
2m+1
p .

For another, applying formula for the proved case p = 2, there holds

sup
ω∈suppFr

q (f)

|P (ω)| = lim
m→∞ ‖Pm(∂)f i−mn1‖ 1

m
2

≤ lim
m→∞ ‖f‖ 1

2m
q lim

m→∞ inf ‖P 2m(∂)f i−mn1‖ 1
2m
p

= lim
m→∞ inf ‖P 2m(∂)f i−mn1‖ 1

2m
p .

In summary, we get

lim
m→∞ inf ‖Pm(∂)f‖ 1

m
p ≥ sup

ω∈suppFr
q (f)

|P (ω)|. (15)

Inequality (15) together with inequalities (11), (13) and (14) give the formula
(10). The theorem is proved. ��
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Remark 1. Due to the noncommutative property of quaternions, we only con-
sider the special polynomials P (x) = xn1

1 xn2
2 . For the general polynomials in R

2,
we can only obtain the results in Step 1 in the above theorem.

Second, we consider the functions vanishing on a ball, which is the Boas-Type
Theorem.

Theorem 2. For any function f ∈ S(R2), the following equality holds:

lim
n→∞ ‖

∞∑

m=0

nmΔmf

m!
‖ 1

n
p = exp(− inf

y∈suppFr
q (f)

|y|2), 1 ≤ p ≤ ∞. (16)

Proof. From Proposition 1, we have for any function f ∈ S(R2):

Fr
q

( ∞∑

m=0

nmΔmf(x)
m!

)
= exp(−n|y|2)Fr

q (f)(y).

Follow the similar proof of the previous theorem, if 2 ≤ p < ∞, applying the
Hausdoff-Young’s inequality with p−1 + q−1 = 1, there holds

‖
∞∑

m=0

nmΔmf

m!
‖p ≤ C‖e−n|λ|2Fr

q (f)‖q ≤ Ce−n inf |y|2‖Fr
q (f)‖q.

Therefore,

lim
n→∞ sup ‖

∞∑

m=0

nmΔmf

m!
‖ 1

n
p ≤ exp(− inf

y∈suppFr
q (f)

|y|2). (17)

For the case 1 ≤ p < 2, we first use the inequality (12) to get

‖
∞∑

m=0

nmΔmf

m!
‖p ≤ ‖(1 − Δ)2e−n|y|2Fr

q (f)‖2.

Second, It’s easy to show that

(1 − Δ)2 exp(−n|y|2Fr
q (f)) = exp(−n|y|2)Φn(y),

with suppΦn ⊂ suppFr
q (f) and ‖Φn‖2 ≤ Cn4.

Hence, we can obtain that

lim
n→∞ sup ‖

∑ nmΔmf

m!
‖ 1

n
p ≤ exp(− inf

y∈suppFr
q (f)

|y|2). (18)

In case p = ∞, using the inequality

‖f‖∞ ≤ C‖(1 + |y|2)2Fr
q (f)‖2
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we get

‖
∞∑

m=0

nmΔmf

m!
‖∞ ≤ C‖ exp(−n|y|2)Fr

q (f)(1 + |y|2)2‖2.

Therefore, we get inequality

lim
n→∞ sup ‖

∞∑

m=0

nmΔmf

m!
‖ 1

n∞ ≤ exp(− inf
y∈suppFr

q (f)
|y|2). (19)

On the other hand, using the Plancherel theorem for the QFT and Hölder’s
inequality we have

‖
∞∑

m=0

nmΔmf

m!
‖22 =

∫

R2
|

∞∑

m=0

nmΔmf

m!
|2dx

=
∫

R2
e−2n|y|2 |Fr

q (f)|2dy

=
∫

R2
Fr

q (f)(y) exp(−2n|y|2)Fr
q (f)(y)dy

=
∫

R2
f(x)

∞∑

m=0

(2n)mΔmf(x)
m!

dx

≤ ‖f‖q‖
∞∑

m=0

(2n)mΔmf

m!
‖p.

Similarly,

‖
∞∑

m=0

nmΔmf

m!
‖22 ≤ ‖

∞∑

m=0

Δmf

m!
‖q‖

∞∑

m=0

(2n − 1)mΔmf

m!
‖p.

In summary, we get

lim
n→∞ inf ‖

∞∑

m=0

nmΔmf

m!
‖ 1

n
p ≥ lim

n→∞ ‖
∞∑

m=0

nmΔmf

m!
‖ 1

n
2 = exp(− inf |ω|2). (20)

Combining inequalities (17), (18) and (20) we have the final result. ��
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