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Abstract. Due to having a better performance of bit error rate (BER), sys-
tematic polar codes have been potentially applied in digital data transmission. In
the systematic polar coding, source bits are transmitted transparently. In this
paper, we propose a scheme of novel partial systematic polar coding in which
the encoded codeword is only composed of partial source bits with respect to the
encoded word of systematic polar codes. To effectively reduce the resource
consumption of the systematic encoder/decoder under all-zero frozen bits, the
partial systematic polar codes are introduced subsequently. Then the simulation

results in terms of core F ¼ 1 0
1 1

� �
are provided to demonstrate the afore-

mentioned analysis with negligible difference of BER performance.
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1 Introduction

Polar codes are the first provably capacity-achieving codes for any symmetric binary-
input discrete memoryless channel (DMC) [1] with flexible encoding and decoding
arrangements. The original manner of polar codes is non-systematic codes. Compared
with such codes, the systematic polar codes proposed by Arikan show the better BER
performance in the successive cancellation (SC) decoding algorithm [1, 2].

The BER performances of non-systematic/systematic codes are same among the
classical linear error-correction codes, such as Bose–Chaudhuri–Hocquenghem
(BCH) codes [3] and Low-Density Parity-Check (LDPC) codes [4] etc. As a linear
coding strategy, the non-systematic polar codes proposed by Arikan are produced when
the information and the frozen bits pass through the generator matrix G [1]. However,
systematic polar codes have better BER performance comparable to nonsystematic
polar codes, while the two codes have the same frame error rate (FER) under the SC
decoding [2]. Systematic polar coding does not simply utilize the SC decoder to
recover the source bits like the non-systematic polar codeword. There is an additional
preprocessing circuit network after SC decoding process, which is denoted as a de-
preprocessing circuit network [2]. As can be seen, compared with the non-systematic
polar codes, the improvement of BER performance for systematic polar codes is mainly
caused by the de-preprocessing circuit network of polar codes.
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Since source bits can appear in the encoded codeword, the bits in information set A,
named information bits [1], which are not source bits like non-systematic polar codes
but the per-encoded source bits by an additional circuit network as an en-preprocessing
process at the encoder input. And after the SC decoding algorithm in the receiver, an
additional corresponding circuit network as de-preprocessing process can recover the
information bits into the source bits [2]. With all-zero bits in frozen set Ac named the
frozen bits [1], the en-preprocessing process and de-preprocessing process will be
employed by G�1

AB and GAB which denote a sub-matrix in G�1 and G respectively, and
will be composed of elements G�1

i;j and Gi;j with i 2 A and j 2 B respectively [2]. In
this letter, the definition of partial systematic polar codes is presented. The difference of
the preprocessing process is the employed sub-matrix of G�1

A0B0 and GA0B0 under the

condition of all-zero frozen bits, where A0 � A. In terms of core F ¼ 1 0
1 1

� �
. Next

paper, the resource consumption of partial systematic decoder under all-zero frozen bits
will be reduced without the BER performance lost.

2 Problem Statement

2.1 Construction of Polar Codes

Polar codes, as a linear block coding scheme, have been proved to achieve the channel
capacity at a low encoding and decoding complexity [1]. For polar codes ðN;KÞ, pre-
encoded word is denoted as u, which is composed of K information-bit word uA and
N � K frozen-bit word uA c . Then, the encoded bits can be expressed as: x ¼ uG,
G ¼ F� log2 N , and code rate is R ¼ K=N. Where F� log2 N denotes the log2 N Kronecker
power of F. In the N bit-channels, the bit-channels where decoding result ûi equals to
pre-encoded bit ui can be considered as noise-free channels with information set A.
Therefore, the rest of the bit-channels are noisy channels with frozen set Ac. Note that
AþAc ¼ N and N ¼ ½1; 2; � � � ;N�. SC with the variable format of log-likelihood
ratio (LLR) can be expressed as [5]

Lð2i�1Þ
N ðyN1 ; û 2i�2

1 Þ ’ signð/ÞsignðuÞminðj/j; jujÞ; ð1Þ

Lð2iÞ
N ðyN1 ; û2i�2

1 Þ ¼ ð�1Þû2i�1/þu; ð2Þ

Where / ¼ LðiÞN=2ðyN=21 ; û2i�2
1;o � û2i�2

1;e Þ and u ¼ LðiÞN=2ðyNN=2þ 1; û
2i�2
1;e Þ. According to

formula (1) and (2), the front decoded bits are used to deduce the sequel bits. Then, the
LLR of each decoding bit can be calculated as [6].

LðûiÞ ¼ lnðW
ðiÞ
N ðyN1 ; ûi�1

1 j0Þ
W ðiÞ

N ðyN1 ; ûi�1
1 j1Þ

Þ: ð3Þ
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In the recursive process, the decoding result is decided by

ûi¼
1 if LðûiÞ\0
0 if LðûiÞ� 0
ui if i 2 Ac

8<
: :

2.2 Systematic Polar Coding Construction

The codeword u is composed of information-bit word uA and the frozen-bit word uA c .
The encoded codeword x can be derived as

x ¼ uG ¼ uAGA þ uA cGA c ; ð4Þ
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Fig. 1. The circuit of (16, 8) systematic polar codes, Part I is preprocessing module and Part II is
non-systematic polar code encoding module. (a) is decoder and (b) is decoder.
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where matrix GA consists of the A row index vector of matrix G. Matrix GA c consists
of the Ac row index vector of matrix G. Then formula (4) can changes as

xB ¼ uAGAB þ uA cGA cB; ð5Þ

where B ¼ A, The encoding circuit of ð16; 8Þ systematic polar codes is shown in
Fig. 1a. As can be seen, with all-zero frozen bits the first part shows the en-
preprocessing circuit G�1

AB, while the second part denotes the encoding circuit G of non-
systematic polar codes. xB ¼ fx8; x10; x11; x12; x13; x14; x15; x16g corresponds to bits
fu08; u010; u011; u012;u013; u014; u015; u016g of source-bit word u0A.

According to formula (5), the word of information bits as follow

uA ¼ ðxB � uA cGA cBÞG�1
AB: ð6Þ

Figure 1b shows the decoding circuit of systematic polar codes, where XOR net-
work represents GAB.

From Fig. 1a and b, we can draw that systematic polar codes add the en-
preprocessing G �1

AB and de-preprocessing GAB circuit embedded in polar coding sys-
tem, meanwhile, frozen bits are all zero.

2.3 Optimization Principle of Systematic Polar Codes

In Fig 1, the major difference between non-systematic polar codes and systematic polar
codes is that xB in formula (5) is composed of the source bits. Compared with non-
systematic polar codes, the systematic polar codes achieve better BER performance
after SC decoding algorithm. Therefore, the systematic polar codes are expected to be
more robust in practice. Specifically, if another polar coding scheme like systematic
polar codes would provide better BER performance than that systematic polar coding,
xB is not any more composed of all source bits like systematic polar codes. Then the
formula (4) can be revised as:

x ¼ uG ¼ ~uAR�1GA þ uAcGAc ; ð7Þ

where R�1 represents the coefficient matrix with the same dimension of G. Corre-
spondingly, the Part I in Fig. 1 is modified as R�1. Then the formula (6) should be
changed as

uA ¼ ð~xB � uA cGA cBÞRG�1
AB: ð8Þ

The encoding and decoding of (7) polar coding are based on non-systematic polar
coding.

Proposition 1: The decoding performance of another polar coding scheme like
systematic polar codes are related to the preprocessing matrix R.
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Proof: From Figs. 1 and 2a, the source bits from word u0A recovery systems at the
receiver can be derived as:

u0AR ¼ ~uA � � ��������� !encoding;decoding and interference
~̂uAR�1 ¼ ûA: ð9Þ

In the transmitting and receiving systems of (9) and the word u0AR is decoding, we
define a ¼ u0AR ¼ diagðu01; u02; . . .; u0KÞ to be like the transmitting signals and b ¼
û0A ¼ diagðu01; u02; . . .; u0KÞ to be like the received signals. Hence, in the systems of

(9), ����������� !encoding;decoding and interference
is parameter of systems. Then the systems (9) are

transformed into the form

b ¼ aHþ Z: ð10Þ

Where Z denotes the system interference. In order to minimize the interference of
the decoding process, we minimize the following cost function denotes check bit index:

JðĤÞ ¼ b� aĤ
�� ��2

¼ ðb� aĤÞHðb� aĤÞ
¼ b Hb� b HaĤ � Ĥ Ha Hbþ Ĥ Ha HaĤ:

ð11Þ

Where ð�ÞH is operation of matrix transpose. Clearly, the system (9) has the least
interference when the cost function (11) takes the minimum value, which can be
computed by the partial derivative of Ĥ, namely,

@JðĤÞ
@Ĥ

¼ 2a HaĤ � 2a Hb ¼ 0: ð12Þ

Then we have Ĥ ¼ a�1b. Combining Ĥ and (14), we can obtain

Ĥ ¼ ðdiagðu01; u02; . . .; u0KÞRÞ�1diagðû01; û02; . . .; û0KÞ
¼ R�1 bu0

A
�� ��2: ð13Þ

Therefore, the minimum system interference of (9) is determined by the prepro-
cessing matrix R. Namely, the decoding performance of generalized systematic polar
codes are relevant to the preprocessing matrix R.

Proposition 2: In the (7) polar coding, the performance of Arikan’s systematic
polar coding is optimal while the length becomes more longer.

Proof: For the received codeword x of (7) polar coding, xbi within word ~xB in (8)
has been mistaken by xbi þrxbi, where rxbi is interference. Then for the zero frozen
bits, the formula (6) changes as
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~̂uA ¼ ð~̂xB � uAcGAcBÞG�1
AB ¼¼¼uAc¼0

~̂xBG�1
AB

¼

xb1g�1
11 þ xb1g�1
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2i þ . . .þ xbkg�1

2k

..

.
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k1 þ xb1g�1

k2 þ . . .þðxþrxbiÞg�1
ki þ . . .þ xbkg�1

kk

2
66664

3
77775;

ð14Þ

where gii represents element of G �1
AB ,i 2 N. We define the SC decoded code word as

~̂uA. After de-preprocessing, û0A can be obtained by û0A ¼ ~̂uAR�1. From (15) in system
(9) suppose that the error information xbi þrxbi in ~x B has not been corrected after SC
decoding, and then the error bits occur with
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Fig. 2. Circuit of (16, 8) partial systematic polar codes, Part I is preprocessing module and
Part II is non-systematic polar code encoding module. In the circuits, the pruned networks mean
the reduction of resource consumption. (a) is decoder and (b) is decoder.
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~̂uA ¼ ð~̂xB � uAcGAcBÞG�1
AB ¼¼¼uAc¼0

~̂xBG�1
AB

¼

xb1g�1
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1i þ . . .þ xbkg�1
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2i þ . . .þ xbkg�1
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k1 þ xb1g�1

k2 þ . . .þðxþrxbiÞg�1
ki þ . . .þ xbkg�1

kk

2
66664

3
77775;

ð15Þ

The SC decoding are utilized the channel polarization to transfer the LLR infor-
mation. Due to (1) and (2) of SC decoding are calculated with odd-even indexes,
formula (15) gives the effective error interference in odd-even indexes. Hence, in SC
decoder, the error diffusion also occurs in odd-even indexes. Therefore, only when the
de-preprocessing matrix satisfies R ¼ G �1

AB , we can obtain

û0A ¼ ½û01; û02; . . .; ûi þD; . . .; û0j þD; . . .; û0K �
� ½g1; g2; . . .; gi ¼ 1; . . .; gj; . . .; ûK � H ;

ð16Þ

where D denotes the error interference and only if there are many error bits, the error
will be effectively assembled. Therefore, the long-length systematic polar codes have
much error interference. In equation (16), the errors will be counteracted effectively if
the number of D is abundantly produced by SC decoding. Accordingly, the system
achieves the best BER performance when R equals G �1

AB based on odd-even indexes of
en/de-preprocessing process.

3 Partial Systematic Polar Construction

In section above, systematic polar codes with the long length have been proven to have
the best BER performance. However, systematic polar codes with the short length have
no enough error to mutually counteract and obtain the best result. Hence, partial
systematic polar codes of short length will obtain a better BER than systematic polar
codes, such as partial systematic polar codes of (16, 8). In the next section, partial
systematic polar coding construction will be represented. The key of partial systematic
polar code construction is to cancel partial bits in source word to encode systematically.
Figure 2 can well illustrate the process of our partial systematic polar code construc-
tion. Firstly, to reduce the circuit resource consumption, the gray figures are deleted in
Fig. 1. Secondly, a certain percentage of source bit indexes in N is selected to cancel
systematic polar encoding, then circuit resource consumption is further reduced.
Thirdly, those canceled indexes return to non-systematic polar encoding. Finally, in the
decoding, those selected source bits are recovered by the non-systematic polar decoder.
For instance, Fig. 2, the selected source bit û08 will return to non-systematic polar
encoding and û08 does not appear as part of encoded word transparently. Meanwhile, in
Fig. 2b, the estimated û08 is recovered as a bit of non-systematic polar codes. Simulation
of Fig. 3 demonstrates that the BER performance of Fig. 2 circuit is better than that of
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the systematic polar coding scheme while pruning unnecessary networks of the circuit
u08nû08. Without loss of generality, for word uA, word uA�Ac�A0 � uA is selected to
cancel systematic polar coding, and then uA�Ac�A0 participates in nonsystematic polar
coding. Meanwhile, GAB is updated to GA0B0 , where A0 � A. For example, in Fig. 2,
uA�Ac�A0 ¼ u08 is supposed. Hence, Eq. (4) can be revised as

xN ¼ uNGN ¼ uA0GA0 þ uN�A0GN�A0 ; ð17Þ

and the equations of encoded word are derived as

xB0 ¼ uA0GA0B0 þ uN�A0GðN�A0ÞB0 ; ð18Þ

xN�B0 ¼ uA0GA0ðN�B0Þ þ uN�A0GðN�A0ÞB0 ; ð19Þ

Like Eq. (5), where B0 ¼ A0, B0 � B represents the index of appearing xN as
source bits. According to Eqs. (18) and (19), the equation of unfrozen decoded words
with non-systematic decoder is derived as

uA ¼ uA0 þ uN�Ac�A0

¼ ðxB0 � uN�A0GðN�A0ÞB0 ÞG�1
A0B0 þ uN�A c�A0 :

ð20Þ

Having obtained a word u0A and uA�Ac�A0 in Eq. (20), u0A will be calculated to
obtain u0A0 . Finally, both u0A0 and uA�Ac�A0 are put together as the source-bit word u0A.

Essentially, the word from the unfrozen set of partial systematic polar codes con-
sists of two parts, one is systematic polar coding part the other is non-systematic polar
coding part. These two parts have the respective minimum Hamming distance. If the
average minimum Hamming distances among words increase, the error performance
will become better [7]. Additionally, the minimum row weight of generator matrix is
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Fig. 3. Error probability of non-systematic polar codes, systematic polar codes, and partial
systematic polar codes. (a) is bit error rate and (b) is frame error rate.
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smaller than the minimum Hamming distance of words [8]. Hence, for systematic polar
coding part, the indexes of minimum row weight in GAB are selective. The selected
indexes directly participate in the non-systematic polar code encoding. Then, the
average minimum Hamming distances of the systematic polar coding part increase and
that of the non-systematic polar coding part is no longer equal to zero in the whole
coding process. Meanwhile, GAB is updated to GA0B0 and its scale becomes smaller.

4 Simulation Results

Firstly, the minimum row weight selecting method of these indexes is verified right by
simulations. Comparing with nonsystematic polar coding, Fig. 3 shows that the error
probability becomes worse within unfrozen bit indexes of smaller row weight in sys-
tematic polar coding. If systematic polar code bits in A�Ac �A0 return to non-
systematic polar coding scheme, the BER of SC decoding can be reduced and circuits
can be simplified along with lower resource consumption. Secondly, the resource
consumption further is reduced more than 9.1% in encoder and decoder at 0.5 rate. In
simulations, Fig. 4 shows the partial systematic polar codes further reduce the maxi-
mum percentage of resource consumption compared with the classical systematic polar
coding.

5 Conclusion

In this paper, a partial systematic polar coding is proposed. Due to pruning the coding
circuit, the basic circuit architecture of encoder and decoder become concise. Com-
paring with the systematic coding, the partial systematic polar coding decreases the
resource consumption of coding circuit. Meanwhile, the BER is negligible difference
between the partial systematic polar codes and systematic polar codes.
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Fig. 4. Reduction of resource consumption for non-systematic polar codes with negligible
different BER.
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