
An Efficient MapReduce-Based Apriori-Like
Algorithm for Mining Frequent Itemsets

from Big Data

Ching-Ming Chao1, Po-Zung Chen2, Shih-Yang Yang3(&),
and Cheng-Hung Yen1

1 Department of Computer Science and Information Management, Soochow
University, Taipei 100, Taiwan

2 Department of Computer Science and Information Engineering, Tamkang
University, Taipei, Taiwan

3 Department of Media Art and Management of Information System, University
of Kang Ning, Taipei, Taiwan
shihyang@ukn.edu.tw

Abstract. Data mining can discover valuable information from large amounts
of data so as to utilize this information to enhance personal or organizational
competitiveness. Apriori is a classic algorithm for mining frequent itemsets.
Recently, with rapid growth of the Internet as well as fast development of
information and communications technology, the amount of data is augmented
in an explosive fashion at a speed of tens of petabytes per day. These rapidly
expensive data are characterized by huge amount, high speed, continuous arri-
val, real-time, and unpredictability. Traditional data mining algorithms are not
applicable. Therefore, big data mining has become an important research issue.
Clouding computing is a key technique for big data. In this paper, we study

the issue of applying cloud computing to mining frequent itemsets from big
data. We propose a MapReduce-based Apriori-like frequent itemset mining
algorithm called Apriori-MapReduce (abbreviated as AMR). The salient feature
of AMR is that it deletes the items of itemsets lower than the minimum support
from the transaction database. In such a way, it can greatly reduce the generation
of candidate itemsets to avoid a memory shortage and an overload to I/O and
CPU, so that a better mining efficiency can be achieved. Empirical studies show
that the processing efficiency of the AMR algorithm is superior to that of another
efficient MapReduce-based Apriori algorithm under various minimum supports
and numbers of transactions.

Keywords: Data mining � Frequent itemsets � Big data � MapReduce
Apriori

1 Introduction

Currently in the age of information explosion, data are used in various aspects of one’s
daily life. However, the speed of data generation and storage has far exceeded that of
analysis and digestion people could achieve. Therefore, it is an important issue of how

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019
Published by Springer Nature Switzerland AG 2019. All Rights Reserved
J.-L. Chen et al. (Eds.): WiCON 2018, LNICST 264, pp. 76–85, 2019.
https://doi.org/10.1007/978-3-030-06158-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06158-6_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06158-6_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06158-6_8&domain=pdf
https://doi.org/10.1007/978-3-030-06158-6_8

to use information technology to analyze large amounts of data to discover and apply
valuable information in order to enhance personal or organizational competitiveness.
Data mining comes into the play. One of the important problems in data mining is
discovering frequent itemsets from a set of transactions where each transaction contains
a set of items [1]. A frequent itemset is a set of items that frequently occur together in a
set of transactions. Apriori is a classic algorithm for mining frequent itemsets [2].

With rapid growth of the Internet as well as fast development of information and
communications technology, such as the emergence of Web 3.0, the amount of data is
augmented in an explosive fashion at a speed of tens of petabytes (1 PB = 1024 TB)
per day. The global big data research report published by McKinsey Global Institute in
May 2011 indicated that global enterprise data had increased 7 exabytes (1 EB =
1024 PB) while the new data consumers stored in their personal computers (including
notebooks) and mobile devises had exceeded 6 exabytes in 2010 alone [3]. According
to statistics by International Data Center, the information capacity of digital world will
grow from 0.8 zettabytes (1 ZB = 1024 EB) in 2009 to 44 zettabytes in 2020, i.e. a
growth of 1 PB in every 15 s and an annual compound growth rate up to 40% [4].
These rapidly expansive data are characterized by huge amount, high speed, continuous
arrival, real-time, and unpredictability, which suggest that manual analysis methods
and conventional data mining algorithms are no longer applicable [2, 5–7]. Therefore,
big data mining has become an important research issue.

The emergence of big data, the pervasion of networks, and the rapid development
of personal computers, servers, and mobile devices all together have called for the
needs of applying cloud computing to big data mining. It is a great challenge to
properly distribute and manage resources, effectively analyze data to discover inter-
esting patterns, and promptly respond to the user. Applying cloud computing to big
data mining can have many practical applications. For example, it can be used in
medical treatment to analyze examined items (blood, urine, X-ray, magnetic resonance
imaging, etc.) and medicine prescriptions, as instructional materials of examined items
and medicine prescriptions to a specific disease for interns [8]. The network man-
agement personnel may rapidly analyze to reveal user behavior and abnormal flow
through monitoring the cloud network flow to insure the quality of networks as well as
to find out the primary reasons for internet instability from analyzed results to insure
the stable and smooth operation of networks [9].

Clouding computing is a key technique for big data. In this paper, therefore, we
study the issue of applying cloud computing to mining frequent itemsets from big data.
We proposed MapReduce-based Apriori-like frequent itemset mining algorithm called
Apriori-MapReduce (AMR). The salient feature of AMR is that it deletes the items of
itemsets lower than the minimum support from the transaction database. In such a way,
it can greatly reduce the generation of candidate itemsets to avoid a memory shortage
and an overload to I/O and CPU, so that a better mining efficiency can be achieved.
Empirical studies show that the processing efficiency of the AMR algorithm is superior
to that of another efficient MapReduce-based Apriori algorithm under various mini-
mum supports and numbers of transactions.

An Efficient MapReduce-Based Apriori-Like Algorithm 77

2 AMR Algorithm

The AMR algorithm is an improvement of the Apriori algorithm [1]. It overcomes the
drawback of generating too many candidate itemsets of the traditional Apriori algo-
rithm by deleting the items of itemsets lower than the minimum support from the
transaction database each time after generating frequent itemsets of a certain length. It
is safe to do so because any itemsets generated by adding more items to itemsets lower
than the minimum support cannot be frequent.

The basic approach of the AMR algorithm is generally the same as that of the
traditional Apriori algorithm. The difference is that AMR uses MapReduce to distribute
transaction data to multiple Map nodes that separately find candidate itemsets and
combine the candidate itemsets returned from these nodes to generate frequent item-
sets. Then, the items of itemsets lower than the minimum support are deleted from the
transaction database. If the transaction database is empty or no frequent itemsets can be
generated, the algorithm stops execution.

2.1 Details of Algorithm

Figure 1 shows the AMR Algorithm proposed in this paper. Input a transaction data-
base and a prespecified minimum support, the AMR Algorithm will output all of the
frequent itemsets in the transaction database.

Fig. 1. AMR algorithm

78 C.-M. Chao et al.

Definitions of parameters in the algorithm are as follows:
k: length of an itemset
m: Map node
Cmk: candidate itemsets of length k generated by the Map node m
Ck: candidate itemsets of length k
Lk: frequent itemsets of length k
Steps of the algorithm are described as follows:

(1) Start with itemsets of length 1.
(2) Uniformly distribute transactions in the transaction database to each Map node.
(3) Separately compute candidate itemsets of length k in the transactions of each node

Cmk.
(4) Combine candidate itemsets generated by each node to generate candidate item-

sets of length k Ck.
(5) Eliminate candidate itemsets lower than the minimum support from Ck to gen-

erate frequent itemsets of length k Lk.
(6) Delete the items of itemsets lower than the minimum support from the transaction

data-base.
(7) If there are no transactions in the transactions database or no frequent itemsets in

Lk, terminate the execution the algorithm; otherwise, increase the length of
itemsets by 1 and repeat steps 2 to 6.

2.2 Example

Table 1 shows a transaction database consisting of 10 transactions. Suppose the
minimum support is 3 and there are 3 Map nodes

First, start with itemsets of length 1. Uniformly distribute the 10 transactions in the
transaction database to 3 Map nodes, so that Map1 has transactions T001, T002, T003,
and T004, Map2 has T005, T006, and T007, and Map3 has T008, T009, and T010.
Each node separately computes candidate itemsets of length 1 Cm1.

Table 1. Transaction database

TID List of items

T001 cookies, cola, pizza
T002 milk, coffee, bread
T003 cookies, bread
T004 bread, milk, coffee
T005 cookies, bread, milk
T006 coffee, cookies, cola
T007 pizza, cola, beer
T008 cookies, coffee, cola
T009 beer, milk,
T010 cookies, milk, bread

An Efficient MapReduce-Based Apriori-Like Algorithm 79

C11 = {<bread, 3>, <coffee, 2>, <cola, 1>, <cookies, 2>, <milk, 2>, <pizza, 1>}
C21 = {<beer, 1>, <bread, 1>, <coffee, 1>, <cola, 2>, <cookies, 2>, <milk,

1>, <pizza, 1>}
C31 = {<beer, 1>, <bread, 1>, <coffee, 1>, <cola, 1>, <cookies, 2>, <milk, 2>}
Combine C11, C21, and C31 to generate candidate itemsets of length 1 C1
C1 = {<beer, 2>, <bread, 5>, <coffee, 4>, <cola, 4>, <cookies, 6>, <milk,

5>, <pizza, 2>}
Eliminate candidate itemsets lower than the minimum support from C1 to generate

frequent itemsets of length 1 L1
L1 = {<bread, 5>, <coffee, 4>, <cola, 4>, <cookies, 6>, <milk, 5>}

Figure 2 shows the process of generating frequent itemsets of length 1.
Delete the items in C1 that are lower than the minimum support from the transaction

database. Since there are transactions in the transaction database and frequent itemsets
in L1, increasethe length of itemsets by 1 to become 2. Uniformly distribute the 10
transactions in the transaction database to 3 Map nodes, so that Map1 has transactions
T001, T002, T003, and T004, Map2 has T005, T006, and T007, and Map3 has T008,
T009, and T010. Each node separately computes candidate itemsets of length 2 Cm2.

C12 = {<{bread, coffee}, 2>, <{bread, cookies}, 1>, <{bread, milk}, 2>, <{coffee,
milk}, 2>, <{cola, cookies}, 1>}

C22 = {<{bread, cookies}, 1>, <{bread, milk}, 1>, <{coffee, cola}, 1>, <{coffee,
cookies}, 1>, <{cola, cookie}, 1>, <{cookies, milk}, 1>}

C32 = {<{bread, cookies}, 1>, <{bread, milk}, 1>, <{coffee, cola}, 1>, <{coffee,
cookies}, 1>, <{cola, cookie}, 1>, <{cookies, milk}, 1>}

Combine C12, C22, and C32 to generate candidate itemsets of length 2 C2.
C2 = {<{bread, coffee}, 2>, <{bread, cookies}, 3>, <{bread, milk}, 4>,<{coffee,

cola}, 2>, <{coffee, cookies}, 2>, <{coffee, milk}, 2>, <{cola, cookies}, 3>,
<{cookies, milk}, 2>}

Fig. 2. Generating frequent itemsets of length 1

80 C.-M. Chao et al.

Eliminatecandidate itemsets lower than the minimum support from C2 to generate
frequent itemsets of length 2 L2.

L2 = {<{bread, cookies}, 3>, <{bread, milk}, 4>, <{cola, cookies}, 3>}

Figure 3 shows the process of generating frequent itemsets of length 2.
Delete the itemsof itemsets in C2 that are lower than the minimum support from the

transaction database. Since there are transactions in the transaction database and fre-
quent itemsets in L2, increasethe length of itemsets by 1 to become 3. Uniformly
distribute the 10 transactions in the transaction database to 3 Map nodes, so that Map1
has transactions T001, T002, T003, and T004, Map2 has T005, T006, and T007, and
Map3 has T008, T009, and T010. Each node separately computes candidate itemsets of
length 3 Cm3.

C13 = {}
C23 = {}
C33 = {}
Combine C13, C23, and C33 to generate candidate itemsets of length 3 C3.
C3 = {}
Eliminatecandidate itemsets lower than the minimum support from C3 to generate

frequent itemsets of length 3 L3.
L3 = {}
Figure 4 shows the process of generating frequent itemsets of length 3.
Since there is no frequent itemset in L3, terminate the execution the algorithm.

Finally, by using the AMR algorithm, the frequent itemsets generated from the
transaction database in Table 1 are as follows:

L = L1 [L2 [L3 = {<bread, 5>, <coffee, 4>, <cola, 4>, <cookies, 6>, <milk, 5>,
<{bread, cookies}, 3>, <{bread, milk}, 4>, <{cola, cookies},
3>}

Fig. 3. Generating frequent itemsets of length 2

An Efficient MapReduce-Based Apriori-Like Algorithm 81

3 Performance Evaluation

3.1 Experiment Environment and Data

The experiment environment uses two HP servers to generate eight virtual computers
for performance test. One of the virtual computers serves as Master and the remaining
seven virtual computers as Slaves. Each virtual computer is equipped with one CPU (2
thread) and 2 GB memory. The development tool Eclipse is used to write programs.

We use the 2013 whole year meteorological data at Taipei, Danshui, Keelung, and
Branchial from Central Weather Bureau as the realdataset for experiments.It consists of
52600 data records and each data record includes atmospheric pressure, air tempera-
ture, dew point temperature, relative moisture, average wind speed, maximum average
wind speed, and maximum instantaneous wind speed. In addition, we use IBM Quest
Synthetic Data Generator to generatesynthetic datasets. A synthetic dataset has three
parameters, of which T denotes the number of transactions, L denotes the average
length of transactions, and N denotes the number of different kinds of items. For
example, T1000KL5N0.5 K denotes that this synthetic dataset consists of one million
transactions, the average length of transactions is 5, and there are 500 different kinds of
items.

3.2 Comparison and Analysis

Because both Apriori-Map/Reduce and AMRare MapReduce-based Apriori-like
algorithms for mining frequent itemsets, we compare and analyze these two algo-
rithms with respect to their processing efficiency under various minimum supports and
numbers of transactions, respectively.

Processing efficiency under various minimum supports. Figures 5 and 6 show the
comparison of processing efficiency between AMR and Apriori-Map/Reduce under
various minimum supports, where the X-axis is the minimum support (%) and the Y-

Fig. 4. Generating frequent itemsets of length 3

82 C.-M. Chao et al.

axis is the execution time in seconds. The experiment data for Fig. 5 is a synthetic
database T1000KL6N0.5 K. The experiment data for Fig. 6 is taken from the real
dataset with 52000 data records and of data length 7. As shown in Figs. 5 and 6, the
processing efficiency of AMR is superior to that of Apriori-Map/Reduce under various
minimum supports. It is because that AMR deletes the items of itemsets lower than the
mini-mum support from the transaction database, which can greatly reduce the gen-
eration of candidate itemsets so as to reduce database scanning time.

Processing efficiency under various numbers of transactions. Figures 7 and 8 show
the comparison of processing efficiency between AMR and Apriori-Map/Reduce under
various numbers of transactions, where the X-axis is the number of transactions in
thousands and the Y-axis is the execution time in seconds. The experiment data for
Fig. 7 are four synthetic datasets T1000KL8N0.5 K, T5000KL8N0.5 K, T10000 K
L8N0.5 K and T20000KL8N0.5 K. The experiment data for Fig. 8 are four datasets
taken from the real dataset with 5000, 10000, 25000, and 52000 data records,
respectively, and a data length 7. As shown in Figs. 7 and 8, the processing efficiency
of AMR is superior to that of Apriori-Map/Reduce under various numbers of trans-
actions, and the difference becomes more prominent as the number of transactions gets

Fig. 5. Processing efficiency under various minimum supports (synthetic dataset)

Fig. 6. Processing efficiency under various minimum supports (real dataset)

An Efficient MapReduce-Based Apriori-Like Algorithm 83

larger. It is because that AMR deletes the items of itemsets lower than the minimum
support from the transaction database, which can greatly reduce the generation of
candidate itemsets so as to reduce database scanning time.

4 Conclusion

In this paper, we have proposed the AMR algorithm that applies cloud computing to
big data mining. It can efficiently mine big data under the framework of MapReduce.
AMR differs from Apriori-Map/Reduce in that, after the generation of frequent item-
sets, it deletes the items of itemsets lower than the minimum support from the trans-
action database to avoid a memory shortage and an overload to I/O and CPU, so that a

Fig. 7. Processing efficiency under various numbers of transactions (synthetic dataset)

Fig. 8. Processing efficiency under various numbers of transactions (real dataset)

84 C.-M. Chao et al.

better mining efficiency can be achieved. Empirical studies show that the processing
efficiency of the AMR algorithm is superior to that of the Apriori-Map/Reduce algo-
rithm under various minimum supports and numbers of transactions.

References

1. Agarwal R., Srikant, R.: Fast algorithms for mining association rules in large database. In:
Proceedings of the 20th International Conference on Very Large Data Bases, pp. 487–499,
Santiago de Chile (1994)

2. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data stream
systems. In: Proceedings of the 21st ACM SIGMOD-SIGACT-AIGART Symposium on
Principles of Database Systems, pp. 1–16, Madison, WI, June 2002

3. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers, A.H.: Big
data: the next frontier for innovation, competition, and productivity. McKinsey Global
Institute, New York (2011)

4. Turner, V., Gantz, J.F., Reinsel, D., Minton, S.: The digital universe of opportunities: rich
data and the increasing value of the internet of things. In: International Data Corporation,
White Paper, IDC_1672, May 2014

5. Gaber, M.M., Zaslavsky, A., Krishnaswamy, S.: Towards an adaptive approach for mining
data streams in resource constrained environments. In: Proceedings of the 2004 International
Conference on Data Warehousing and Knowledge Discovery, pp. 189–198, Zaragoza, Spain,
September 2004

6. Gaber, M.M., Zaslavsky, A., Krishnaswamy, S.: Mining data streams: a review. ACM
Sigmod Record 34(2), 18–26 (2005)

7. Golab, L., Ozsu, T.M.: Issues in data stream management. ACM Sigmod Record 32(2), 5–14
(2003)

8. Wang, F., Ercegovac, V., Syeda-Mahmood, T., et al.: Large-scale multimodal mining for
healthcare with MapReduce. In: Proceedings of the 1st ACM International Health Informatics
Symposium, pp. 479–483, New York, November 2010

9. Lin, R.C.H., Liao, H.J., Tung, K.Y., Lin, Y.C., Wu, S.L.: Network traffic analysis with cloud
platform. J. Internet Technol. 13(6), 953–961 (2012)

An Efficient MapReduce-Based Apriori-Like Algorithm 85

	An Efficient MapReduce-Based Apriori-Like Algorithm for Mining Frequent Itemsets from Big Data
	Abstract
	1 Introduction
	2 AMR Algorithm
	2.1 Details of Algorithm
	2.2 Example

	3 Performance Evaluation
	3.1 Experiment Environment and Data
	3.2 Comparison and Analysis

	4 Conclusion
	References

