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Abstract. In the field of ubiquitous computing, machines need to be aware of
the present context to enable anticipatory communication with humans. This
leads to human-centric applications that have the primary objective of improving
the Quality-of-Life (QoL) of its users. One important type of context informa-
tion for these applications is the current activity of the user, which can be
derived from environmental and wearable sensors. Due to the processing
capabilities and the number of sensors embedded in a smartphone, this device
exhibits the most promise among other existing technologies in human activity
recognition (HAR) research. While machine learning-based solutions have been
successful in past HAR studies, several design struggles can be easily resolved
with deep learning. In this paper, we investigated Convolutional Neural Net-
works and Long Short-Term Memory Networks in dealing with common
challenges in smartphone-based HAR, such as device location and subject
dependency, and manual feature extraction. We showed that the CNN model
accomplished location- and subject-independent recognition with overall accu-
racy of 98.38% and 90.61%, respectively. The LSTM model also performed
location-independent recognition with an accuracy of 97.17% but has a subject-
independent recognition accuracy of only 80.02%. Finally, optimal performance
of the network was achieved by performing Bayesian Optimization using
Gaussian Processes in tuning the design hyperparameters.
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1 Introduction

For any system that requires human-machine interaction (HMI), user and environ-
mental context are necessary to enable machines to better serve humans and improve
their quality of life. An important behavioral context for HMI is the current activity
being performed by the user, which can be useful for anticipatory communications
between machines and humans.

It is also becoming more essential to add some form of intelligence to systems that
involve HMI. For human activity recognition (HAR), pattern recognition and machine
learning strategies have been the most prevalent and widely implemented solutions.
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Although classical machine learning strategies have made remarkable progress in the
field of HAR, they require domain knowledge and thus prohibit generalization across
multiple application domains. Furthermore, machine learning algorithms have inade-
quate capabilities in modelling input data dependencies and are limited to recognition
of simple tasks.

Unlike traditional shallow learning based activity recognition, deep learning
algorithms accomplish sensor fusion naturally and do not require combining multi-
sensor signals prior to feeding it into the network. Moreover, features are automatically
learned in a hierarchical manner to accurately perform recognition. One category of
deep learning networks, called Convolutional Neural Network (CNN), has been shown
to be more effective in classifying data that have inherent order in them, such as time
series sensor data. Another type of deep learning, called Recurrent Neural Networks
(RNN), is also commonly used for time series data since learning is done through time.

Although deep learning algorithms are generally better than shallow ones, their
performance greatly depends on the hyperparameters set before training. Therefore,
careful tuning of design hyperparameters is crucial in determining the success of these
networks. While hyperparameters are usually set by the designer manually before
training, finding the optimal hyperparameter settings can be done in a more automated
manner that is based on the actual data to be processed.

In this study, we used CNN to model more complex dependencies in the raw sensor
input and perform accurate activity recognition in smart phones. Moreover, since CNNs
have been shown to capture local dependencies and extract scale-invariant features, this
paper investigates the network’s ability to perform subject and device location inde-
pendent recognition. We also examined RNN in its capability to model the inter-temporal
dependencies within time series data. Furthermore, the recognition performance, through
the network’s innate ability to automatically extract hierarchical features, was improved
by leveraging on sensor fusion. Lastly, hyperparameter optimization was performed by
employing Bayesian Optimization using Gaussian Processes.

The rest of the paper is structured as follows. Section 2 summarizes relevant work
on human activity recognition in literature. Section 3 presents the methodology in
building the system. In Sect. 4, experimental results are reported and analyzed to give
further insights to the current HAR problem. Finally, conclusion is drawn in Sect. 5
along with recommendations and future work.

2 Human Activity Recognition

Human activity recognition (HAR) is defined as identifying the physical activity of a
person at a desired instant. It obtains its significance in several applications such as
healthcare, sports and fitness, and assisted living systems.

Action recognition has been used in assessing the physical well-being of an indi-
vidual as well as monitoring the rehabilitation progress of patients, such as paraplegics.
In previous studies, gait analysis was used to detect step frequency and assess indi-
viduals for diagnosis, prognosis and progress of their rehabilitation [1]. Activity
recognition also finds its way in the domain of sports and fitness since some people,
such as athletes, are required to perform a set of activities that should be strictly
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followed, to maintain a healthy body [2]. Similarly, obese people have to execute
certain exercises and movements that would help in their calorie consumption [2].
Application of HAR in fitness is particularly relevant today since two-thirds of the
world population is obese [3]. In all of these applications, further conclusions can be
drawn for critical decision-making.

2.1 Ambient-Assisted Living (AAL)

It has been projected that 20% of the world population will belong to the senior citizen
age group by the year 2050 [4], which opens up several challenges to the society. Since
the elderly are more prone to diseases, this will cause a rapid increase in the diseases
that our current healthcare systems can support. Due to shortage of caregivers and
nursing homes, a huge majority of the elderly would still prefer to live independently in
the comfort of their own homes. Hence, it is necessary to build systems and create
services that assist this population while they age in place.

The general term that refers to concepts, products and services that have the goal of
improving the quality-of-life (QoL) of individuals is ambient-assisted living (AAL).
AAL systems usually employ intelligent technologies to assist individuals and ensure a
better and a safer living environment. In AAL systems, monitoring the habitual
physical activity is important for several reasons. By recording the daily activities of
individuals, patterns and abnormalities in their behavior can be detected and aid into
making inferences about their physical, mental and physiological well-being. Fur-
thermore, by tracking their activities, a probabilistic model can be created to guide the
intelligent system serving them.

2.2 State-of-the-Art in HAR

In this section, we discuss existing technologies used in HAR based on the platform
used to gather data and infer human activity.

Vision-Based HAR
Vision-based systems have long been used in recognizing human activities and ana-
lyzing motion in general since they provide accurate characterization of the entire body
[5, 6]. However, ideal results can only be obtained in controlled environments since
video-based systems tend to suffer from problems such as data-association for multiple
subjects. In addition, these systems are generally not immune to varying ambient
conditions [6] and are computationally expensive due to the large amount of data being
processed. Cameras also have limited fields of view, thus requiring installation of
multiple cameras within an area. In most cases, the use of cameras is not practical in
many environments because of their intrusiveness.

Sensor-Based HAR
In human activity recognition, human action can be inferred from a single sensor or
from a set of sensors. Many HAR studies utilize sensor measurements from several
locations on the body. However, most of these systems require the sensors to be
attached firmly. Thus, wearing a network of sensors can be obtrusive and limits their
real-world practicability.
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There are also several attempts in using a single sensor for recognition and most of
them make use of one tri-axial accelerometer. Accelerometers are widely used in
motion sensing because of their low-power requirement and non-intrusiveness [7].
However, the classification performance is lower compared to when using multiple
sensors. The most commonly used mobile sensors in HAR literature are accelerome-
ters, gyroscopes, and magnetometers [7].

Smartphone-Based HAR
The smartphone is the latest technology that is being utilized for activity recognition
due to its widespread use across various groups of people. Since smartphones are more
integrated than other existing technologies in HAR, they can gain more acceptance due
to their pervasiveness and non-intrusiveness. Hence, smartphones can be used as a
cost-effective tool in pervasive healthcare to cut down healthcare costs due to the
increasing population of the elderly [8].

Although HAR has been an active field of research over the past decade, very few
works have successfully been deployed in mobile phones. There are still several
challenges in designing a smartphone-based HAR system [9]. Two common challenges
encountered in mobile-HAR are the variations in which smartphones can be positioned
on the body as well as inherent diversity among humans. In previous studies, HAR
models are usually only valid for a specific smartphone orientation and location. Since
smartphones can be placed on different locations on the body at random placement
orientations, these models are not valid in real-life scenarios. Thus, this warrants a
learning algorithm that is independent of these variations. Furthermore, the manner in
which different activities are performed varies from human-to-human. In most studies,
the model is trained by the subject’s own data, resulting to a subject-dependent pre-
diction. However, it is sometimes inconvenient to retrain the system for each new user
since collection of data can become difficult or nearly impossible in some scenarios.
For example, a large volume of activities may need to be recognized, activities may be
difficult to be simulated by the user, or subjects could be suffering from different
medical conditions.

3 Deep Learning for Smartphone-Based HAR

In this study, the deep learning models used for classifying human activities based on
sensor data from smartphones are Convolutional Neural Networks (CNN), and Long
Short-Term Memory (LSTM) Networks which is a class of Recurrent Neural Networks
(RNN). CNN is popular for time-series data or any data that has an underlying local
dependency among its samples [10]. Likewise, LSTM is also capable of modelling the
inherent dependencies in a time series data. Both models have the ability to auto-
matically extract features from the raw data [10] which are more representative of the
true nature of the input data. Unlike hand-engineered features, these features are better
at discriminating between classes, since they are based on the data itself. For CNN,
higher level features and hierarchical representations of the input are formed as you go
deeper into the network.
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3.1 Convolutional Neural Network

For convolutional neural networks, weights are shared across the input of each layer.
A filter of weights is applied on a portion of the input and is replicated across the entire
input space. This process is called convolution. The convolution process searches the
occurrence of a certain feature associated with one filter in the input and outputs it into
a feature map. One layer can output multiple feature maps that represent the presence of
different features. The output of a convolutional layer is

xl;ji ¼ r bj þ
Xm

a¼1
wj
ax

l�1;j
iþ a�1

� �
ð1Þ

where xl;ji is the output at the lth and jth feature map. The non-linear mapping r is
usually a ReLu function which is element-wise rectification.

After the convolutional and ReLu layers, a statistical vote is carried out over local
regions in the input feature maps.We usedmax pooling as the statistical tool in this study.
To perform max-pooling on top of a convolutional layer, the maximum value in a certain
partition is obtained for all partitions of the convolved input. This operation gives rise to
scale-invariant features of the input which is useful in recognizing activities that can be
performed with varying intensities. The output of one max-pooling layer is given by

xl;ji ¼ max
r

k¼1
xl�1;j
ði�1Þ�sþ k

� �
ð2Þ

Several stacks of these convolutional, ReLu and max-pooling layers in different
permutations can be constructed depending on the application. Next, the output of the
last layer will be flattened and fed into dense layers or fully-connected layers, similar to
regular deep neural networks. Finally, the output layer is a softmax layer that will
perform the final classification.

3.2 Long-Short Term Memory

Long-Short Term Memory (LSTM) is a recurrent neural network that allows us to
model the temporal dynamics of the input signal more effectively since it addresses the
problem of vanishing gradients. The problem of vanishing gradients arises when the
output error is back propagated through several time steps. Updating the training
parameters through each time step involves multiplying all the gradients. Hence, if the
gradients are very small, the total product will be almost zero, and this will correspond
to a zero improvement in the weights. Therefore, no learning takes place.

To regulate the problem of vanishing gradients, extra interactions are added.
An LSTM cell has four main components namely, an input gate, a forget gate, an
output gate and an intermediate cell state. The equations for these four components are

ft ¼ rðWf St�1 þWfXtÞ ð3Þ

it ¼ rðWiSt�1 þWiXtÞ ð4Þ
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ot ¼ rðWoSt�1 þWoXtÞ ð5Þ
Ct ¼ tanhðWcSt�1 þWcXtÞ ð6Þ

Each of these gates is sum of old the state and the current input, each multiplied
with their respective weights, and are passed to a sigmoid activation function. This
allows us to control how far back in the past we want to recall. The intermediate cell
state is obtained in a similar manner, but using tanh for the activation function.

The current cell state is computed as the sum of intermediate cell state times the
input gate and the previous cell state times the forget gate. The new state will be the
tanh of the cell state multiplied by the output gate.

ct ¼ it � Ctð Þþ ðft � ct�1Þ ð7Þ

ht ¼ ot � tanhðctÞ ð8Þ

3.3 Bayesian Optimization Using GP

Bayesian optimization is a type of a sequential model-based optimization (SMBO)
algorithm that uses previous observations of the loss function ƒ in determining the next
point in the hyperparameter space to sample ƒ for. It relies on sequentially building a
model for ƒ for varying hyperparameter sets, by using smooth functions called
Gaussian processes. This allows us to predict the expected performance of the network
for a certain set, as well as the uncertainty of the prediction.

The posterior distribution of ƒ is updated for every observed value of f(x) corre-
sponding to a hyperparameter set x that maximizes an acquisition function until desired
convergence is reached. The most common acquisition function found in literature is
the expected improvement (EI) which is defined as

EI xð Þ ¼ E max 0; f xð Þ � f x̂ð Þf g½ � ð9Þ

where x̂ is the current optimal hyperparameter set. Maximizing this function gives us
the set that improves ƒ the most.

We can compute the expected improvement for the GP model by using integration
by parts

EIðxÞ ¼ l xð Þ � f x̂ð Þð ÞU zð Þþ r xð ÞU zð Þ; r xð Þ[ 0
0; r xð Þ ¼ 0

�
ð10Þ

z ¼ lðxÞ � f ðx̂Þ
rðxÞ

where lðxÞ is the expected value of ƒ, while UðzÞ and UðzÞ are the cumulative dis-
tribution and probability density function of the standard normal distribution,
respectively.

70 C. V. San Buenaventura et al.



From this closed form solution, we see that the EI is high when the expected value
of the loss, lðxÞ, is greater than the current best value f ðx̂Þ. Likewise, EI is high when
the uncertainty rðxÞ is high around x. Hence, by maximizing EI, we get the points that
gives a higher value of ƒ as well as points in the region of the hyperparameter space
that were not explored yet. This allows us to build the model for hyperpameter per-
formance more efficiently.

4 Simulation Results

4.1 Dataset

Sensor Activity Dataset [11] is a publicly available dataset which consisted of
accelerometer, gyroscope, and magnetometer readings by five Samsung Galaxy SII
(i9100) from ten participants, while performing seven ambulatory activities. The par-
ticipants performed walking, sitting, standing, jogging, biking, walking upstairs and
walking downstairs for 3–4 min, while the smartphones are placed in five on-body
locations namely, belt, left trousers pocket, right trousers pocket, upper arm and wrist.

Data was collected at a sampling rate of 50 Hz, which was observed to be sufficient
in recognizing physical activities in the past [12]. The sensor stream was segmented by
a sliding time window of 2 s with 50% overlap. The choice of both the time window
length and the amount of overlap has been shown to be effective in physical activity
recognition [12].

4.2 Location-Independent Prediction

Table 1 shows the summary of the recognition performance of CNN for different
smartphone locations, as well as the overall performance. It can be seen that the best-
performing smartphone location is the left pocket location with an accuracy of 98.78%.
The overall performance for all locations is 97.37%. Similarly, Table 2 shows the
summary of the recognition rates of the LSTM model. It can be observed that both left
and right pockets gave the most accurate predictions having recognition rates of
98.38% and 97.49%, respectively. In this case, the recorded per-location results of both

models listed in Tables 1, 2 tell us that ambulatory motion is best captured when sensor
data is collected from the trousers pocket of the subject.

4.3 Subject-Independent Prediction

In this section, we test the generalization ability of the models using the leave-one-
subject-out validation. Using CNN, Table 3 lists the test accuracy for each subject,

Table 1. Classification rates for each location using CNN

Belt Left pocket Right pocket Upper arm Wrist Overall

Accuracy 97.01% 99.07% 97.89% 96.88% 96.27% 97.37%
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when the model is trained with the data, from while the remaining subjects. The overall
accuracy of 90.61% is the average of the five classification rates for each of the five test
subjects, verifying the subject-independent recognition ability of CNN.

On the other hand, it can be seen from Table 4 that LSTM has significantly lower
classification rates for the leave-one-subject-out recognition compared to CNN. Hence,
it is less capable of providing subject-independent recognition. This is due to the fact
that CNN has convolutional and max-pooling layers that inherently extract scale- and

shift-invariant features, while LSTM is only concerned with the temporal dependencies
in the data. Both models were only trained for eight epochs, and the performance can
still improve by training the models further.

4.4 Hyperparameter Optimization

In this study, we use gp_minimize from the Scikit-Optimize, or skopt, library, which is
an implementation of Bayesian Optimization using Gaussian Processes.

The network is first evaluated at an initial set of hyperparameters, with 1000 hidden
neurons, 2 hidden layers, and 1 � 10−3 learning rate. The network is then updated and
evaluated on each of the hyperparameter setting at each call. The valid range of the

Table 2. Classification rates for each location using LSTM

Belt Left pocket Right pocket Upper arm Wrist Overall

Accuracy 96.51% 98.38% 97.49% 96.03% 95.17% 97.17%

Table 3. Leave-one-subject-out classification rates using CNN

Test subject Classification rate

Subject 1 85.49%
Subject 2 93.33%
Subject 3 90.73%
Subject 4 91.04%
Subject 5 92.44%
Overall 90.61%

Table 4. Leave-one-subject-out classification rates using LSTM

Test subject Classification rate

Subject 1 77.07%
Subject 2 80.88%
Subject 3 83.04%
Subject 4 81.10%
Subject 5 78.02%
Overall 80.02%
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three hyperparameters that were considered are listed in Table 5. The hyperparameter
setting that gave the highest validation accuracy of 98.86% is a network of 559 hidden
neurons, 5 hidden layers and learns at a rate of 5.7 � 10−4. Table 6 shows the sum-
mary for different calls during optimization while exploring the hyperparameter space,
listing the top ten optimal hyperparameter settings. By plotting the results in a table,
trends in the data will be more apparent, for which Gaussian processes are satisfactorily
used.

5 Conclusion and Future Work

Smartphones can be an unobtrusive means of gaining contextual information from the
user. In this study, Convolutional Neural Networks and Long-Short Term Memory
Networks were examined in classifying activities of daily living (ADL) from three
smartphone sensor signals.

Using CNN, we were able to achieve location- and subject-independent recognition
which can be attributed to the presence of the convolutional and max-pooling layers in
the network. The CNN model achieved an overall accuracy of 98.38% and 90.61% for
location- and subject-independent recognition, respectively. For the LSTM model, we
were able to achieve a location-independent recognition accuracy of 97.17%, which is
slightly lower than that obtained with CNN. However, the overall accuracy of LSTM
for the subject-independent recognition using the leave-one-subject-out training is
80.02%, which proves that LSTM is generally less capable of generalizing to different

Table 5. List of valid ranges of hyperparameters to search in during optimization

Lower bound Upper bound

No. of hidden neurons 10 1000
No. of hidden layers 1 5
Learning rate 1.00E-06 1.00E-02

Table 6. Summary of validation accuracy during hyperparameter optimization

No. of hidden neurons No. of hidden layers Learning rate Validation accuracy

559 5 5.70E-04 0.9886
1000 5 7.60E-04 0.9857
1000 1 1.70E-04 0.9839
1000 5 5.13E-05 0.9839
1000 5 1.30E-04 0.9838
1000 1 3.73E-05 0.982
425 2 3.10E-04 0.981
1000 1 2.30E-05 0.981
1000 5 1.60E-04 0.981
24 4 8.20E-04 0.9801
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subjects compared to CNN. Finally, we investigated the application of Bayesian
Optimization Using Gaussian Processes in finding the optimal or near-optimal
hyperparameter values.

In the future, we wish to recognize higher level activities, as well as composite
ones, to challenge the classification ability of deep learning models. Furthermore,
computational and resource expenditures during training and testing can also be con-
sidered, and different regularization methods can be explored.
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