
Container-Based Virtualization
for Real-Time Data Streaming Processing

on the Edge Computing Architecture

Endah Kristiani1,2, Chao-Tung Yang1(B) , Yuan-Ting Wang3,
Chin-Yin Huang2 , and Po-Cheng Ko1

1 Department of Computer Science, Tunghai University,
Taichung 40704, Taiwan, ROC

endahkristi@gmail.com, ctyang@thu.edu.tw, pocheng0605@gmail.com
2 Department of Industrial Engineering and Enterprise Information,

Tunghai University, Taichung 40704, Taiwan, ROC
huangcy@thu.edu.tw

3 Cloud Computing Laboratory, Chunghwa Telecom Laboratories,
No. 99, Dianyan Rd. Yangmei, Taoyuan 326, Taiwan, ROC

yttom@cht.com.tw

Abstract. Container-based virtualization is one of the prominent tech-
nologies in the cloud computing. Containers virtualize at the operating
system level which provides a lightweight operation than traditional vir-
tualization on a hypervisor. The combination of the Internet of Things
(IoT), edge computing and container-based virtualization is going to
make system rapid, inexpensive, and more reliable. In this paper, we
intend to implement a complete set of edge computing architectures
based on containerization on an IoT environment. In this case, we imple-
mented container-based virtualization which constructs Kubernetes Min-
ion (Nodes) in the Docker container service independently for each ser-
vice on the Edge side. We used humidity and temperature sensory data
as our case study. We set up the Raspberry Pi on the Edge Gateway and
Kubernetes minion on the Raspberry Pi to provide the service applica-
tion, which contains Grafana, the open platform for analytics and moni-
toring. For short-term data storage, we use InfluxDB as a data store for
large amounts of time-series data.

Keywords: Edge computing · Container-based virtualization ·
Kubernetes · Docker · Internet of Things (IoT)

1 Introduction

Internet of Things (IoT) industry has grown substantially. So that, it triggers an
exponentially increasing amount of data which need to improve the data analysis
process. Cloud computing is essential to the success of IoT, however pure cloud

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

J.-L. Chen et al. (Eds.): WiCON 2018, LNICST 264, pp. 203–211, 2019.

https://doi.org/10.1007/978-3-030-06158-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06158-6_21&domain=pdf
http://orcid.org/0000-0002-9579-4426
http://orcid.org/0000-0002-9769-8075
https://doi.org/10.1007/978-3-030-06158-6_21


204 E. Kristiani et al.

computing itself not quite adequate for faster data analysis. The long distance
of the network logic between the cloud and the end device might easily cause
Network delay, thereby affecting the system can not respond promptly. In this
case, the concept of edge computing [1,2] meets the need for faster data analysis.
Edge computing is a form of cloud computing, which pushes data processing out
to the edge device to handle. This mechanism transports only the results of the
data processing over networks. Therefore, it provides accurate results and con-
sumes more lightweight network bandwidth than independent cloud computing.
Additionally, we implemented Container-based virtualization which provides a
lightweight operation than traditional virtualization.

In this paper, we integrated open source software to implement a complete
set of edge computing architectures. Edge computing between IoT devices and
the cloud establishes a relay station to process the data collected by the sensors
and provide the most immediate preprocessing and response. We set up the
Raspberry Pi on the Edge Gateway and Kubernetes minion on the Raspberry Pi
to provide the service application, which contains Grafana [3], the open platform
for analytics and monitoring. For short-term data storage, we use InfluxDB [4]
as a data store for large amounts of time-series data.

In particular, our specific purpose is to deploy a complete set of cloud-edge
computing architectures and IoT using container-based virtualization which con-
structs Kubernetes Minion (Nodes) in the Docker container service on the Edge
side. In this case, we integrate Raspberry Pi 3+, DHT11 Humidity and Temper-
ature Sensor, Grafana and InfluxDB in the Kubernetes and Docker environment.

The rest of the paper is organized as follows. Section 2 describes the back-
ground and related work. Section 3 presents the system architecture. Section 4
shows the experimental results. The last one, Sect. 5 provides a conclusion and
the future work of this paper.

2 Background and Related Work

In this section, we provide several components that are approaching in this paper:
Edge Computing, Docker, and Kubernetes.

2.1 Edge Computing

Edge computing is a method of optimizing cloud computing systems by per-
forming data processing at the edge of the network, near the source of the data.
IoT applications are ideally suited for edge computing architectures. Notably,
in emerging IoT applications such as self-driving, drone, augmented reality
(AR)/virtual reality (VR), and robotics. All of which are new applications that
emphasize immediate of the image analysis and identification processing capabil-
ities, low latency and high bandwidth requirements that need tens of microsec-
onds or even milliseconds response time. In edge computing, the transfer of data



Container-Based for Real-Time Data on the Edge Computing 205

to and from the cloud over the Internet can reach hundreds of milliseconds to
respond time. Therefore these type of applications is very suitable to use the
edge computing architecture.

2.2 Docker

Docker [5–8] is an open-source project that automates the deployment of appli-
cations inside software containers, by providing an additional layer of abstrac-
tion and automation of operating-system-level virtualization on Linux. Docker
uses the resource isolation features of the Linux kernel such as cgroups and
kernel namespaces, and a union-capable filesystem such as aufs and others to
allow independent “containersto” run within a single Linux instance, avoiding
the overhead of starting and maintaining virtual machines. The Linux kernel‘s
support for namespaces mostly isolates an application‘s view of the operating
environment, including process trees, network, user IDs and mounted file sys-
tems, while the kernel‘s cgroups provide resource limiting, including the CPU,
memory, block I/O and network. Since version 0.9, Docker includes the libcon-
tainer library as its way to directly use virtualization facilities provided by the
Linux kernel, in addition to using abstracted virtualization interfaces via libvirt,
LXC [9–11] (Linux Containers) and systemd-nspawn.

By using containers, resources can be isolated, services restricted, and pro-
cesses provisioned to have an almost entirely private view of the operating system
with their own process ID space, file system structure, and network interfaces.
Multiple containers share the same kernel, but each container can be constrained
to only use a defined amount of resources such as CPU, memory and I/O. Using
Docker to create and manage containers may simplify the creation of highly
distributed systems by allowing multiple applications, worker tasks, and other
processes to run autonomously on a single physical machine or across multiple
virtual machines. Docker enables the deployment of nodes to be performed as
the resources become available or when more nodes are needed, allowing a plat-
form as a service (PaaS)-style of deployment and scaling for systems like Apache
Cassandra, MongoDB or Riak. Docker also simplifies the creation and operation
of task or workload queues and other distributed systems. Docker architecture
is different from virtual architecture.

2.3 Kubernetes

Kubernetes is particularly well-suited for microservices such architectures. Com-
bining several containers into a single service, Kubernetes also provides an excel-
lent service discovery mechanism for each service to communicate with one
another. Most importantly K8S great programming can automatically expand
services, and even for large-scale containers for rolling updates (Rolling update)
and rollback (Rolling back/Undo), but also can integrate CI/CD and other
DevOps tools, Absolutely allow users to manage an extensive system with the
least effort [12].



206 E. Kristiani et al.

2.4 Related Works

The Cisco introduced Fog Computing Systems as a new model to ease wire-
less data transfer to distributed devices in the Internet of Things (IoT) network
paradigm. Cisco defines Fog Computing as a paradigm that extends Cloud com-
puting and services to the edge of the network. Similar to Cloud, Fog provides
data, compute, storage, and application services to end-users. The distinguishing
Fog characteristics are its proximity to end-users, its dense geographical distri-
bution, and its support for mobility. Services are hosted at the network edge
or even end devices such as set-top-boxes or access points. By doing so, Fog
reduces service latency, and improves QoS, resulting in superior user-experience.
Fog Computing supports emerging Internet of Everything (IoE) applications
that demand real-time/predictable latency (industrial automation, transporta-
tion, networks of sensors and actuators). Thanks to its wide geographical distri-
bution the Fog paradigm is well positioned for a real-time big data and real-time
analytics. Fog supports densely distributed data collection points, hence adding
a fourth axis to the often mentioned Big Data dimensions (volume, variety, and
velocity) [13].

China Venkanna Varma et al. [14] in 2016, studied the working of Docker
networks, various factors of CPU context switch latency and how network IO
throughput will be impacted with the number of live Docker containers. A
Hadoop cluster environment built and executed benchmarks such as TestDFSIO-
write and TestDFSIO-read against varying amount of the live containers. They
observed that Hadoop throughput is not linear with increasing number of live
container nodes sharing the same system CPU.

3 System Architecture

To develop the proposed solution by this paper, we needed the use of different
types of software and hardware components. The used hardware was a Raspberry
Pi 3 Model B+ with DHT11 temperature and humidity sensor. The details of
hardware and software specification describe as following in Table 1: To get a
general overview, Fig. 1 shows the scheme of the node architecture with all of the
systems components. In the first step, we deploy the raspberry using kubernetes
and docker with grafana installed and connected to the DHT11 sensor. Data
captured by sensor then send to the InfluxDB using MQTT. Grafana uses a
plugin to connect with InfluxDB in order to visualize the data in the graph and
give the alert as our rule.

The overall device architecture is shown in Fig. 2, mainly using Arduino LoRa
Shield module and DHT11 sensor as the overall sensing module and LoRa sensing



Container-Based for Real-Time Data on the Edge Computing 207

Table 1. Hardware and software specification

Category Item Specification Description

Hardware Raspberry OS Raspbian Jessie

CPU 4 Cores, Broadcom BCM2837 64 bits

ARMv8 Processor, 1.2GHz

Power 5V@2.4A(with, MicroUSB)

Storage microSD

Network Ethernet (RJ45)

WiFi BCM43143 WiFi

Bluetooth BCM43438 wireless LAN and

Bluetooth Low Energy (BLE) on board

Sensor DHT11 Temperature and Humidity

Software Application Grafana An open platform for analytics and monitoring

Database InfluxDB A data store for large amounts of time series data

Fig. 1. The edge architecture

data collected by LoRa Nodes will be transmitted to LoRa Gateway through
LoRa. In this process, LoRa offers the Low Power Wide Area Network (LPWAN)
and the star-topology, and the LoRa Gateway is also connected to the miniature
ramps made by the Raspberry Pi 3 for ultimate unified delivery to the data
center(cloud).

4 Experimental Results

In this work, we build the system on campus with four LoRa nodes and a LoRa
Gateway as shown in Fig. 3.



208 E. Kristiani et al.

Fig. 2. The device architecture

Fig. 3. LoRa Deployment

Fig. 4. Raspberry Pi integrated with DHT11



Container-Based for Real-Time Data on the Edge Computing 209

To implement an Edge Computing, first, we prepared Raspberry Pi inte-
grated with DHT11 humidity and temperature sensor as shown in Fig. 4. Sec-
ond, we set up docker container with Grafana and InfluxDB installed as shown
in Figs. 5, 6 and 7.

Fig. 5. Docker container

Fig. 6. Grafana dashboard



210 E. Kristiani et al.

Fig. 7. InfluxDB

5 Conclusion

This paper integrates the technologies of Kubernetes, Docker, Grafana,
InfluxDB, IoT, and LoRa to implement a complete set of edge computing archi-
tectures. From the experiment, we can prove that Edge Computing improves
application performance such as analysis and monitoring system. By using
Grafana and influxDB, we can monitor the movement of time-series data and
send the alert based our rule automatically. In summary, the implementation of
Edge Computing Architecture using container-based virtualization for real-time
data streaming Processing provides significant improvement of application per-
formance. By using this architecture, we can achieve lower latency levels on the
edge, as opposed to a faraway cloud or data center.

Acknowledgment. This work was supported in part by the Ministry of Science and
Technology, Taiwan R.O.C., under grants number 107-2221-E-029-008-.

References

1. Varghese, B., Buyya, R.: Next generation cloud computing: new trends and
research directions. Futur. Gener. Comput. Syst. 79, 849–861 (2018)

2. Kristiani, E., Yang, C.-T., Wang, Y.T., Huang, C.-Y.: Implementation of an edge
computing architecture using openstack and kubernetes. In: Kim, K.J., Baek,
N. (eds.) ICISA 2018. LNEE, vol. 514, pp. 675–685. Springer, Singapore (2019).
https://doi.org/10.1007/978-981-13-1056-0 66

3. Grafana (2018). https://grafana.com/
4. Influxdb (2018). https://www.influxdata.com/

https://doi.org/10.1007/978-981-13-1056-0_66
https://grafana.com/
https://www.influxdata.com/


Container-Based for Real-Time Data on the Edge Computing 211

5. Špaček, F., Sohlich, R., Dulk, T.: Docker as platform for assignments evaluation.
Energy Procedia, 1665–1671 (2015)

6. Build, ship and run any app, anywhere (2015). https://www.docker.com/
7. Docker (software) (2015). http://en.wikipedia.org/wiki/Docker%28software%29
8. Liu, D., Zhao, L.: The research and implementation of cloud computing platform

based on docker. In: 2014 11th International Computer Conference on Wavelet
Active Media Technology and Information Processing (ICCWAMTIP), pp. 475–
478 (2014)

9. Felter, W., Ferreira, A., Rajamony, R., Rubio, J.: An updated performance com-
parison of virtual machines and linux containers. In: 2015 IEEE International Sym-
posium on Performance Analysis of Systems and Software (ISPASS), pp. 171–172
(2015)

10. Nakagawa, G., Oikawa, S.: Behavior-based memory resource management for
container-based virtualization. In: Proceedings of 4th International Conference
on Applied Computing and Information Technology, 3rd International Conference
on Computational Science/Intelligence and Applied Informatics, 1st International
Conference on Big Data, Cloud Computing, Data Science and Engineering, ACIT-
CSII-BCD 2016, pp. 213–217 (2016)

11. Soltesz, S., Pötzl, H., Fiuczynski, M.E., Bavier, A., Peterson, L.: Container-based
operating system virtualization: a scalable, high-performance alternative to hyper-
visors. In: Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference
on Computer Systems 2007, pp. 275–287 (2007)

12. Kubernetes (2017). https://kubernetes.io/
13. Ahmed, E., Rehmani, M.H.: Mobile edge computing: opportunities, solutions, and

challenges (2017)
14. China Venkanna Varma, P., Kalyan Chakravarthy, K.V., Valli Kumari, V.,

Viswanadha Raju, S.: Analysis of network IO performance in hadoop cluster envi-
ronments based on docker containers. In: Pant, M., Deep, K., Bansal, J.C., Nagar,
A., Das, K.N. (eds.) Proceedings of Fifth International Conference on Soft Comput-
ing for Problem Solving. AISC, vol. 437, pp. 227–237. Springer, Singapore (2016).
https://doi.org/10.1007/978-981-10-0451-3 22

https://www.docker.com/
http://en.wikipedia.org/wiki/Docker%28software%29
https://kubernetes.io/
https://doi.org/10.1007/978-981-10-0451-3_22

	Container-Based Virtualization for Real-Time Data Streaming Processing on the Edge Computing Architecture
	1 Introduction
	2 Background and Related Work
	2.1 Edge Computing
	2.2 Docker
	2.3 Kubernetes
	2.4 Related Works

	3 System Architecture
	4 Experimental Results
	5 Conclusion
	References




