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Abstract. Wireless acoustic sensor network is useful for ambient
assisted living applications. Its capability of incorporating an audio event
detection and classification system helps its users, especially elderly, on
their everyday needs. In this paper, we propose using convolutional neu-
ral networks (CNN) for classifying audio streams. In contrast to AAL
systems using traditional machine learning, our solution is capable of
learning and inferring activities in an end-to-end manner. To demon-
strate the system, we developed a wireless sensor network composed of
Raspberry Pi boards with microphones as nodes. The audio classifica-
tion system results to an accuracy of 83.79% using a parallel network for
the Urban8k dataset, extracting constant-Q transform (CQT) features
as system inputs. The overall system is scalabale and flexible in terms of
the number of nodes, hence it is applicable on wide areas where assisted
living applications are utilized.
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1 Introduction

Advancements in sensor node technologies allowed the development of low-cost
and low-power multipurpose devices. These are usually integrated in a Wire-
less Sensor Network (WSN), where multiple sensor nodes communicate with
each other to monitor the environment and gather data periodically. WSNs
are already being utilized in different applications such as environment sens-
ing, health monitoring, and smart homes [1].

The main goal of this paper is to create a wireless sensor network that could
help in assisted living applications. In this work, audio streams are gathered by
the sensor nodes then the sink node analyzes the data to detect different events
in the environment. This paper has two main contributions: the exploration
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of techniques using Convolutional Neural Networks (CNNs) for audio and the
utilization of different audio input representations in audio event detection.

The rest of the paper is organized as follows. In Sect. 2, the related works are
presented. Section 3 describes the WSN set-up while Sect. 4 briefly mentions the
dataset used in the audio event detection. Section 5 presents the different CNN
architectures that were implemented and a thorough discussion of the results in
Sect. 6. Lastly, a summary of the findings and recommendations can be seen in
Sect. 7.

2 Related Work

Ambient Assisted Living (AAL) is being used to monitor elderly in health care
institutions [2]. A variety of sensors could be used such as mobile, wearable or
static (e.g. pressure sensors, cameras, and microphones) to create a reliable sys-
tem. For this application, microphones are more recommended since they are less
invasive compared to wearable and cameras. Early stages of AAL using Wireless
Acoustic Sensor Networks (WASN) implemented algorithms to lower the compu-
tational complexity of audio recognition by introducing a hybrid time-frequency
approach [3]. While other methods increase efficiency of the system in terms of
distribution and power consumption using real-time and scalable networks [4,5].
Detecting a few audio classes is one of the prominent limitations of these meth-
ods. Fortunately, homeSound, a distributed network where each node deployed
reports to a GPU-enabled concentrator, is capable of classifying fourteen dif-
ferent indoor events [6]. It results to a more secured reporting mechanism to
the sink since detection and classification is done locally before reporting to the
server. This type of implementation is scalable by enabling indoor appliances to
have specific alerts to report to a sink. This is possible in a smart home with
devices sending alerts to an Android application, providing assistance whenever
elderly people are left alone in the house [7].

Recently, classification using deep learning show exceptional results compared
to traditional machine learning algorithms. The simplest architecture that can
be constructed is the fully connected Deep Neural Networks (DNN). It is used
in the Detection and Classification Acoustic Scenes and Events (DCASE) chal-
lenge. The DNN is used as baseline, using Mel-Frequency Cepstral Coefficients
(MFCCs) for input features [8]. The problem of using MFCC is that it is more
appropriate in speech processing applications, because it discards characteris-
tics of environmental sounds. For this reason, features such as spectrogram and
Constant-Q Transform (CQT) gave better performance in the DCASE challenge
while using convolutional neural networks (CNN) [9,10,12]. CNN proved to be
more effective than DNN on audio classification tasks, achieving approximately
10% improvement in classification using spectrogram inputs [11]. However, CQT
input features produced an equal error rate of 16.6%, which is the best system
proposed for DCASE Challenge 2016 on domestic audio tagging [10].

Pre-processing techniques introduce additional computation time to arrive
to a prediction. Because of this, end-to-end networks using CNN extracts useful
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feature maps from input data on image classification architectures [12]. Similarly,
this option is explored for environmental audio classification, where instead of
2-dimensional inputs, a time-domain windowed signal is used [13]. This paper
discusses experiments using different input data to evaluate CNN architectures
in audio classification.

3 WSN Raspberry-Pi Setup

A Wireless Sensor Network (WSN), composed of multiple nodes and a central
base station, was implemented to facilitate the gathering and processing of audio
signals over an enclosed area. These wireless acoustic sensor nodes would capture
environmental audio signals, while a desktop computer would act as a base
station which receives all signals captured. Data processing techniques would
then be applied in the base station to detect specific audio events. A sample of
the implemented network is illustrated in Fig. 1a showing three nodes and the
main computer connected to the router.

Wireless sensor nodes used by the system are Raspberry Pi 3 devices, which
are interfaced with a microphone using an integrated sound card. Raspberry
Pi devices were chosen as the nodes for the network as it runs on a free open-
source Linux operating system. These devices offer good computing power and
are easily interfaced with audio components [14]. The devices record audio data
via a microphone and is set to do so continuously. Recordings are done every 3
s, and audio is generated with a sampling rate of 44.1 kHz as Waveform Audio
File Format. The audio data have meta-data, such as time stamps, in order to
prepare the data for analysis in the server.

Transfer of the audio files are done via Secured Shell (SSH) through a WiFi
network. Files are then retrieved by the server where classification using DNN
takes place. As each audio file comes from different source nodes, their energy
signatures would then be estimated to generate a consensus on which file would
be used for the analysis of the signal at a given time [15]. The set-up of the system
is shown in Fig. 1b, where a microphone is connected to the Raspberry-Pi and
encodes the audio data received that is immediately sent to the computer.

(a) Diagram. (b) Setup using Raspberry- Pi.

Fig. 1. Wireless sensor network implementation



108 J. M. Mendoza et al.

4 Dataset

The audio dataset used for training the classification model is the Urban Sound
Dataset [16]. It contains 8,732 sound sources with 10 classes. The sounds included
in the dataset are listed in Table 1. The audio data was split into 80% training set
and 20% test set. All audio files were converted to mono, sampled at 44.1 kHz,
and reduced to 3 s if the original data is too long and appended with silence if
shorter than 3 s.

Table 1. Classes of the urban sound dataset

Class Label Class Label

0 Air conditioner 5 Engine idling

1 Car horn 6 Gunshot

2 Children playing 7 Jackhammer

3 Dog bark 8 Siren

4 Drilling 9 Street music

5 Audio Classification

5.1 Sound Representations

Features are extracted using the Short-Time Fourier Transform (STFT) where
each frame is 30 ms long. Overlap of each frames are 15 ms and extracts 1024
Fast Fourier Transform (FFT) points to compute for the spectrogram at the
same frequency resolution.

Spectrogram Features are used as representation of a signal strength over
time at different frequencies. It expresses the signal in its time-frequency repre-
sentation, where the presence of frequencies are extracted per time frame.

Spectrogram Representative Images are used for visualization of the spec-
trogram which is common in audio processing, where time frames and frequencies
are placed in the x-axis and y-axis respectively. To indicate the intensity of the
frequency components, a color scheme is used in spectrogram images [18]. The
lighter the color, the higher the amplitude of the intensity is present. This type
of input turned out to be more effective than spectrogram features alone.

Constant-Q Transform is a time-frequency representation where the fre-
quency bins are geometrically spaced. Its frequency resolution is better for low
frequencies and the time resolution is better for high frequencies [10]. Different
parameters are set in this feature, with a hop length of 512 samples with 12 bins
per octave. Hamming window is used for short-time processing.
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5.2 CNN Architectures

The following CNN architectures use 2-D convolutional layers for feature map-
ping. It is followed by fully connected layers which increases the capacity of the
network during classification.

Sequential CNN is illustrated in Fig. 2. This implementation is similar with
the sequential layers in [9]. Batch normalization and dropout layers are also
included to explore their effects on the network. Moreover, dropout is imple-
mented in the fully connected layers to provide regularization for training.

Fig. 2. A sequential CNN using a combination of 2D convolutional and fully-connected
layers.

Parallel CNN is based on DeXpression architecture, a facial expression recog-
nition system [19]. Some of the convolutional and pooling layers in the archi-
tecture are done in parallel. In this case, batch normalization replaced the local
response normalization layer of the architecture. Dropout was also added at the
fully-connected layers similar to sequential CNN.

CNN for End-to-End Classification is also explored, which uses raw audio
as input by implementing a 1-D convolutional layer that acts similarly as a short-
time pre-processing technique [13]. The network is shown in Fig. 3. It involves
pooling layers for regularization and reshaping to allow the signals to be pro-
cessed using 2-D feature mapping. In this case, the audio feature representation
is extracted within the CNN architecture.

Fig. 3. An end-to-end CNN accepting a 1.5 s window for classification.
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5.3 Experiments

A 5-fold cross validation was done on the training set to tune and evaluate the
performance of the networks on different inputs. The batch size is set to 64,
running for 30 epochs. A dropout of 0.5 on the fully-connected layers is also
implemented. Rectified Linear Units (ReLU) are used for activation and the
ADAM optimizer to boost training. All architectures are implemented in Keras
using a NVIDIA GTX 960Ti GPU [20]. Training time took 2–3 h to finish for
each architecture.

Classification. The 3-second audio recorded at the nodes are sent to the sink
for audio event classification. The input features are then extracted and fed to
the network to predict the audio event sensed by the nodes. The predicted class
belongs to one of the classes in the Urban8k dataset. Moreover, the sink gives
an output for each 1 s interval.

For the end-to-end network, the system accepts the 3-second data while the
network extracts a 1.5-s window of raw audio from the initial input with an over-
lap of 200 ms. The class of the initial audio input is determined using probability
voting [21]. Furthermore, the latency for providing output classes depends of the
number of windows processed by the system, nwindows × delaynetwork.

6 Results and Analysis

6.1 Classification Accuracy

For evaluation, the average accuracy of each class is calculated to get an overall
accuracy of the network. Each CNN architecture will test the effects of batch
normalization (BN) and dropout (DO) to the performance of the system.

Feature-Based: Sequential Convolutional Neural Network. It can be
seen in Table 2 that the network with CQT input and with batch normalization
yields the highest mean accuracy of 72.98%. This is the effect of accelerating the
training that has regularization given that the model is trained for 30 epochs.

Table 2. Classification accuracies of the sequential CNN architecture on the Urban8K
test set

Input BN DO Mean Acc.

Spectrogram � 62.41%

Spec. Images � 57.91%

CQT � 72.98%

Spectrogram � 10.30%

Spec. Images � 34.83%

CQT � 21.62%
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Feature-Based: Parallel Convolutional Neural Network. Different results
were obtained using the parallel CNN. In Table 3, CQT input with dropout in
training yields 86.17%, beating the previous network with batch normalization.
It is also observed that spectrogram inputs are not effective when using dropout.
This regularization technique does not work if inputs are not images causing it
to have accuracies below 15%.

Table 3. Classification accuracies of the parallel CNN architecture on the Urban8K
test set

Input BN DO Mean Acc.

Spectrogram � 62.27%

Spec. Images � 77.36%

CQT � 73.32%

Spectrogram � 11.91%

Spec. Images � 82.59%

CQT � 83.79%

End-to-End: 1-D and 2-D Combination of Sequential CNN. The end-
to-end network performance is shown in Table 4. It is noticeable that if the model
is trained with dropout, it gives the best performance at 36.81% but not near
the performance of systems with initial pre-processing. The reason for its low
performance is the uneven distribution of data of Urban8k.

Table 4. Classification accuracies of the end-to-end CNN architecture on the Urban8K
test set

Input BN DO Mean Acc.

Raw audio � � 28.70%

Raw audio � 11.14%

Raw audio � 36.81%

6.2 Discussion

Among the three input representations, Constant-Q Transform is the most sig-
nificant feature for urban sound classification. Because of its advantage of mim-
icking the human auditory system, this feature captures the low and mid-to-
low frequencies better than spectrogram. This results to a classification system
achieving the best performing accuracy.
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As shown in Tables 2 and 3, the parallel CNN architecture is more stable and
yields high accuracies for models with batch normalization and dropout. How-
ever, it fails the configuration where the model has dropout and uses spectro-
gram features as input. The regularization caused by dropout have been proven
to work on images, but if it is a spectrogram which is time-frequency data impor-
tant information may be omitted at times leading to unstable training. Similar
experiments are also performed for the end-to-end network. The highest accu-
racy is observed with batch normalization shown in Table 4. Good performance
with batch normalization is caused by the reduction of the dependencies of the
gradients to the scale of the parameters when it is added.

A brief summary of the highest accuracies per architecture is shown in
Table 5. The CQT-based parallel architecture achieves the highest accuracy while
the end-to-end architecture has the lowest accuracy. The architectures are also
compared to an implementation of a very deep CNN classifying the Urban8k
dataset. For the end-to-end network, it is anticipated that it could be improved
if CQT related features could be extracted from the raw audio signal.

Latency of each network is also observed to determine the practicality of the
system. Compared to feature-based networks, the end-to-end approach have its
pre-processing qualities within the network which lessens the run time of the
system. Execution speed are seen in Table 5 where the parallel architecture per-
formed slowest because of the wide structure of the network.

6.3 Overall Performance

Figure 4 shows the confusion matrix for the evaluation of the test set using the
highest performing model which is the parallel CNN architecture with CQT
as input and dropout for regularization. The class with the highest accuracy is
engine idling (class 5) while the class with the lowest accuracy is children playing
(class 2). The network finds difficulty in classifying children playing due to its
wide difference of samples and relates it to street music because of the same
set-up environment during data collection.

Table 5. Classification accuracies and execution time of the best architectures per
implementation. Note that for the end-to-end network, multiple labels are obtained
from 1 s of audio

Network Mean Acc. Time

Sequential 72.98% 0.67 s

Parallel 83.79% 0.75 s

End-to-end 36.81% 0.56 s (0.055 s/win)

Deep CNN [22] 71.80% –
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The combination of the deep learning systems and the wireless sensor network
is illustrated in Fig. 1b. This scene depicts real-time processing, where the audio
event is captured by the microphone and the predicted class label is displayed
on the monitor.

Fig. 4. Confusion matrix of parallel CNN architecture, best performing system, on the
Urban8K dataset using CQT input features and dropout layers.

7 Conclusion and Recommendation

Deep learning techniques such as CNN used in wireless acoustic sensor networks
for audio event detection proved that the system could be reliable. Results show
that Constant-Q transform inputs are more appropriate to use in the system.
This feature transform may also improve the end-to-end implementation if the
features can be extracted within the network. The number of Raspberry-Pi nodes
could also be increased to check for the reliability of the system if it is scalable.
The continuous operation of the sensor nodes suggests that an energy efficiency
algorithm could also be explored.
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