q

Check for
updates

On the Compliance of Access Control
Policies in Web Applications

Thanh-Nhan Luong!2(®) Dinh-Hieu Vo', Van-Khanh To!,
and Ninh-Thuan Truong®

! VNU University of Engineering and Technology,
144 Xuan Thuy, Cau Giay, Hanoi, Vietnam
ltnhan@hpmu.edu.vn, {hieuvd,khanhtv,thuantn}@vnu.edu.vn
2 Department of Informatics, Hai Phong University of Medicine and Pharmacy,
72A Nguyen Binh Khiem, Ngo Quyen, Hai Phong, Vietnam

Abstract. Model-View-Controller (MVC) architecture has commonly
used in the implementation of web applications. These systems often
incorporate security policies to ensure their reliability. Role-based access
control (RBAC) is one of the effective solutions for reducing resources
access violations of a system. This paper introduces an approach to check
the compliance of a web application under MVC architecture with its
RBAC specification. By investigating the system architecture and source
code analysis, our approach conducts with extracting a list of resources
access permissions, constructing a resources exploitation graph and orga-
nizing an access control matrix according to roles of a web application.
The approach aims at checking two violation cases of web applications:
(i) the presence of unspecified access rules and (ii) the absence of speci-
fied access rules. We illustrate the proposed approach by a case study of
web based medical records management system.

Keywords: Compliance *+ Access control policy - RBAC
Web applications

1 Introduction

Web applications (WAs) which are designed according to Model-View-Controller
(MVC) architecture [15] have been using widely in many fields of the social life
such as training, e-commerce, healthcare, etc. Besides, these applications are
almost executed in the internet environment and their data is transported via
difference line types so they include many implicit security risks such as lost
data, leak information, refuse users’ service requests, or authorize for users incor-
rectly [10,16]. These problems can cause damage to system resources and users.
Therefore, the applications need adequate security policies and mechanisms to

ensure the interests of participants.

The confidentiality, integrity, availability, accountability, and non-repudiation
are basic security properties of a secure software [12]. However, each type appli-
cation demands some different properties. In practice, many techniques and

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019
Published by Springer Nature Switzerland AG 2019. All Rights Reserved

P. Cong Vinh and V. Alagar (Eds.): ICCASA 2018/ICTCC 2018, LNICST 266, pp. 58-69, 2019.
https://doi.org/10.1007/978-3-030-06152-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06152-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-06152-4_6

On the Compliance of Access Control Policies in Web Applications 59

mechanisms have deployed to guarantee these security properties. Role-based
access control (RBAC) [9] is one of the solutions to guard the confidentiality
and integrity of software systems. The implementing RBAC within the WAs
helps to assign the access rights to users through their roles. This can reduce
resources access violations for WAs.

WASs are increasingly complex and programming is prone to errors. In addi-
tion, the programmers may not be designers so they may not completely under-
stand about security requirements. Therefore, the application may not be con-
formed to specified requirements in its model. Furthermore, the cost to repair
flaws and overcome the consequence in the maintain stage is much higher than
it in the design phase. Checking the compliance of access control policies may
detect flaws, reduce costs and increase the reliability of software systems.

Checking the consistency between RBAC policy and its implementation have
been explored by some researches [1-3]. However, these studies have not been
considered checking of compliance between web applications under MVC archi-
tecture and RBAC policies by the static code analysis technique. Our work
introduces an approach to deal with this issue. The contribution of this paper
includes:

— Firstly, we introduce steps to build the access control matrix according to
roles from the source code of WA by the static analysis technique.

— Next, we propose a verification algorithm which can detect two violation cases
of WAs: (i) the presence of unspecified access rules and (ii) the absence of
specified access rules.

— Lastly, we illustrate proposed approach with a web based medical records
management system.

The rest of the paper is organized as follows. Section 2 presents some basic
knowledge about RBAC model, MVC architecture. In the next section, we dis-
cuss related studies. Section 4 presents a small WA in medical records manage-
ment system. Our proposed approach is described detail in Sect.5. We draw
some conclusions and future work in the last section.

2 Background

The RBAC model and MVC architecture are the background knowledge which
is used in our approach. In this section, we briefly describe them.

2.1 Role-Based Access Control

The RBAC model [8,9] is depicted in Fig.1. The Users, Roles, Permissions,
Objects and Operations are five main elements of this model. A user is referred
to as the agent that interacts with the system. Users do not perform actions
directly but through their roles. The role which is the central component of an
RBAC model, represents for a job position in an organization. The Permissions

60 T.-N. Luong et al.

Role Hierarch

User Permission

@ Assignment @ Assignment

Permissions

Fig. 1. Role-based access control.

includes Operations and Objects, this means that when users gain a permission,
they are allowed to execute an operation on an object.

The principle of least privilege and separation of duty help users in the RBAC
model only has sufficiently roles and permissions to carry out their duties. This
can prevent attackers from accessing system resources. The U ser Assignment,
PermissionAssignment and RoleHierarchy are basic relationships of RBAC
model. Specifically, a user can be assigned to many roles and a role can have
several users. Each role is assigned with some permissions, and defined depend-
ing on the regulations of each organization. The inheritances between roles are
described in RoleHierarchy.

2.2 Model-View-Controller Architecture in JavaEE

Model-View-Controller [13,15] is briefly called MVC which has been being a
popular software architecture pattern for building web applications with many
programming languages like Java, C#, Ruby, PHP, etc. Applications which are
designed under MVC architecture aimed at code reuse and parallel development
efficiently. Figure 2 depicts the MVC architecture in JavaEE.

@ |:€> Controll
ontroller
/ﬁ\&i — Request
N Jf \
\f\ﬁ/)/\\ / I Model
-7 <\?1\ Response (ava class)
c~T

Fig. 2. The MVC architecture in JavaEE.

Database

— Model is a component of the system that performs requests related to
databases from Controller. It is the classes *.java which include methods
to connect to databases and interact with data sources.

— View includes codes such as *.jsp to display user’s graphical interfaces. It
regulates the displayed data formula and communicates with Controller. In
addition, it also supplies the way to gather data from the input.

On the Compliance of Access Control Policies in Web Applications 61

— Controller creates the synchronization between Model and View by analyzing
the requests. It interacts with Model and gets the data to create View. In other
words, Controller is responsible for processing the events that are activated
by user’s interactions with the application or between processes of the system.

3 Related Work

Several papers have previously conducted for verifying web applications’ access
policies. In this section, we summarize some studies similar to our work.

The research works [1-3] recovered RBAC security model of a dynamic web
application for verifying and testing of its security properties. Their approach
builds a Prolog-based formal model from UML-based security model of the appli-
cation. They illustrate proposed approach for analyzing, testing, maintenance,
and re-engineering of the web application security. In the testing scenario for
unauthorized access, the authors check if a guest user can using the links that
an administrator can see. This study is similar to our research about user access,
but their problem relates to the testing for unauthorized access. They use both
of static and dynamic analysis to recovered SecureUML of WA. However, we
only use static analysis on the source code of a WA under MVC architecture.

The paper [11] proposes a tool called SeWAT which is used to model MVC
web applications graphically. In addition, the authors implement and validate
role-based access control policy with an example of patient management system.
The experiments with many realistic applications prove that their technique is
useful for checking and deploying access policies of web applications. However,
this study did not conduct with source code of WAs.

By using model checking in the design phase, Eun-Hye Choi and Hiroshi
Watanabe introduced an approach to verify class specifications of WAs [5]. The
authors modeled behavior of WA from its class diagram and method specifica-
tions. They proposed two aspects to verify the consistency: (i) between a class
specification and a page flow diagram, (ii) between a class specification and a
behavior diagram. The approach applied with real specifications of a certain
company’s developed WA and found several faults of the specifications which
had not been detected in actual reviews. Graph-based modeling methods are
presented by Di Sciascio et al. [6,7] and Castelluccia et al. [4]. The authors used
model checking techniques to verify the UML design of a WA automatically.
They introduced a tool called WAVer [4] which uses Symbolic Model Checking
techniques to verify WA designs. The verification is conducted with three main
stages: modeling WA in form of Finite State Machine (FSM), formalization of
application correctness with CTL formal language, using NuSMV model checker
to find a violation of specifications. These studies are only performed in the
design phase.

In above presented studies, the works [1-3] analyzed the resources access
policy from web application’s source code. However, the authors use it for testing.
The remained studies have not conducted with source code. In our study, we use
static analysis technique to check the conformance of a WA under MVC pattern
with its RBAC specification.

62 T.-N. Luong et al.

4 A Case Study

In a medical records management system, the security of patients’ information
are compulsory task according to regulations in HIPAA (USA’s Health Care
Insurance Portability and Accountability Act). Medical records must be confi-
dentially kept because they contain private information and they only are used
for monitoring and treating diseases or other tasks in regulated law. Medical
records have had many risks [14] so protecting them from unauthorized disclo-
sure has been attending.

The process of processing patient records in medical organizations or hospi-
tals is usually attended by receptionist, physician, patient, etc. who have some
privileges to do their tasks in the medical records management system. Medical
records of patients needs to be secure and it can only read by authorized persons.
Table 1 specifies access policy of system.

Table 1. RBAC policy to medical record.

Roles Permissions
Users Roles — -
— Receptionist |CreateMedicalRecord
Ann Receptionist -
ReadMedicalRecord
Bob Doctor Doctor)
Tom Pationt UpdateMedicalRecord
Patient ReadMedicalRecord

User-Role assi ts.
(a) User-Role assignments (b) Role-Permission assignments

Permissions Operation |Object

CreateMedicalRecord |Create MedicalRecord
ReadMedicalRecord |Read MedicalRecord
UpdateMedicalRecord |Update MedicalRecord

(¢) Permission mapping.

In our case study, the implemented medical records management system
is written by J2EE and designed following to the MVC architecture. Medical
records are stored in table Medical Record of the database management sys-
tem MySQL. Figure3 describes the components Model, View, Controller,
and roles within our application. Where users must log into the system by
their accounts and valid users are assigned some permissions to interact with
resources corresponding to their roles in the system. In our example WA, a
user assigned role Doctor can read, update and delete his/her patients’ med-
ical records. Users of role Patient, they can only read their medical records.
If users are assigned role Receptionist, they can create new medical records.
Pages Doctor.jsp, Patient.jsp and Receptionist.jsp help users perform their
jobs corresponding to their roles in the organization. We aim at checking the
web application’s access policy against its specification.

On the Compliance of Access Control Policies in Web Applications 63

v f# controller

)] CreateServietjava _ _The roles within
[J) DeleteServiet,java <
Controller 3] DoctorServet java Wlf (role equals(Patient)){< appllcatlon
[1) HomePageServlet, RequestDispatcher rd = request. g/eﬂ(equfstDlspatcher(Patient.jsp");
311 LoginServiet,java rd.forward(request, response) i
[J] PatientServiet.java } / 1
[J] ReceptionistServiet.ja \ ¢ !
L1J) UpdateServiet.java f (role.equals(" Doctorﬁ '
v # model RequestDispatcher rd = request,getRequestD|spatcher(Doctor.jsp");
-% Authenticator java rd.forward(request, response); 1
J] MedicalRecord java 1
odel | [J] MRExploitations.java eNsg(U
% ﬂ::;’:: if (role.equaIs(“Receptionist"}%
i Librarics ! RequestDispatcher rd = request.getRequestDispatcher("Receptionist.jsp");

P Fe B e rd.forward(request, response);

\ Referenced Libraries

View| -

b [Z] Patient jsp
[E] Receptionistjsp
[E] UpdateMRjsp
=| Viewl.jsp
LEI View2jsp

Fig. 3. The presence of RBAC and MVC architecture in the medical records manage-
ment system.

5 Owur Approach

We use static analysis technique to check the conformance of WAs with specified
RBAC policies. Our approach overview is described in Fig. 4. Generally, we use
the library JDT in JavaEE to parse each file x.java into an abstract syntax tree
(AST). From analyzed ASTs, we extracted the necessary information to serve
for each stage of the verification process.

5.1 List of Permissions

When users perform their functions within an application, the system has to
invokes methods that interact with resources. Firstly, we need to determine the
name list of system resources because software application often has may data
but some of them are critical resources need to be protected. Next, we specify
classes in Model that include resources interaction methods. These methods
encompass SQL operations (Select, Insert, Delete, or Update) corresponding
to action types (Read, Create, Delete, or Update) of users. Lastly, we use the
static analysis technique to extract these methods into a list of permissions
L = {{(mp,ac,rs)}. Where, the mp includes class name, return type of method,
method name, data type list of parameters; ac is an action type in the action
type set AC; and rs is an element of the protected resources set R.S.

64 T.-N. Luong et al.

file of RBAC !]

- a Y\
i Py

List of permissions
L={<mp, ac, rs>}
Set of tuples \L

S={<r, op, ob>}

Resources
exploitation graph (G)

!

‘ Access Control Matrix (M)

J
!
Checking Algorithm

gt

Report violation

Fig. 4. The approach overview.

5.2 Resources Exploitation Graph of WA

The component View is the set of pages and the Controller is used to navigate
transitions between pages. We can construct a direct graph which is a resources
exploitation graph G of the WA. The information of each vertex includes name
of each page in the component View and list of resources exploitation calls. Our
graph is built by following steps:

Step 1. Building a diagram of pages according to the following rules:

— Each node of graph is a page in the View.

— Edge goes from node A to node B (A # B) iff page A:
— has a link to page B or
— is redirected to page B or
— includes page B.

Step 2. By analyzing source code of the component Controller and View of
each page, we can gather all method calls from it and are also presented in the list
of permissions L. Next we attach them on the information of graph’s vertexes.
The resources exploitation graph of the example of medical record management
system is depicted in Fig. 5.

On the Compliance of Access Control Policies in Web Applications 65

Homepage.jsp

MREproWatlons
CreateMR i

ol Receplonsysg, | MedcalRecor
MRExploitations. \ = \ MREXp\oltatlonsﬂ -
UpdateMR] . - {DeleteMR(String);

View'jsp - View2.jsp {(MedicalRecord)} UpdateMR jsp DeleteMR jsp CreateMR jsp

Fig. 5. The resources exploitation graph of the medical record management system.

5.3 Access Control Matrix

We use a three-dimensional matrix to describe actions on objects of roles within
the WAs. It is constructed as follows:

— The first dimension of the matrix is ROLE. It contains the set of roles within
WA (R = {R1,Rs,..,R,}) that can be taken from analyzing file .java of
controller that handles login page. Each user logs in to the system through
an account (username, password). If the login is success then valid users are
redirected to the pages corresponding to their roles.

— The second dimension is ACTION which includes all executed atom actions
to exploit resources (AC = {ACy, AC,, .., ACp, }).

— The third dimension is RESOU RCES which includes list of resources need
to be protected (RS = {RS1, RS2, .., RS, }).

Suppose that, WA includes n roles, m action types, and p resources. The value
of an element MT[i][j][k] is ‘Yes® if role R; has permission to perform action
AC; on resources RSy with i = 1..n,j = 1.m,k = 1..p. Users are controlled
when they log into system to grant rights according to their roles. By visiting
sub-graphs from vertexes corresponding to roles, we can gather all action types
which are executed on resources of roles. Algorithm 1 converts the resources
exploitation graph to access control matrix and Fig. 6 is the access control matrix
of roles in the medical records management system.

5.4 Algorithm for Checking Compliance

The inputs of checking algorithm are S, M, R, AC, and RS, where M is
the access control matrix of WA; S is the system resources access policy
that is extracted through analyzing *. XML file structure; R, AC, RS are the
set of roles, actions, and resources within application respectively. Each tuple
s = {(r,op,ob)} € S means that role r is allowed to perform operation op on
object ob and S is extracted from RBAC policy.

66 T.-N. Luong et al.

Algorithm 1. Convert the graph G to the matrix. M
Input : G: the resources exploitation graph.
Output: M: the access control matrix.
Data : r,v: the element in the set of roles R, vertexes V, respectively.

Procedure Convert(G, M)
begin
foreach r € R do
UnmarkAll(G);
v « GetStartVertex(r);
Write(G,v, M);

Procedure Write(G, v, M)

begin

if (-Mark(v)) then

if (v.attach # () then

| M « Set(v.attach);

Mark(v) < true;

V — Adjacent(v);

if (V #0) then
foreach v € V do

L | Write(G,v, M);

ROLE
RS = {MedicalRecord}

Receptionist 3 Yes

Doctor 2] Yes | Yes | Yes

Patient 1] yes

1 2 3 4 ACTION
Read Update Delete Create

Fig. 6. The access control matrix of the medical records management system.

The proposed checking algorithm can detect two violation cases of WAs: the
presence of unspecified access rules and the absence of specified access rules. The
first case (D) shows that there is at least one role executed a permission which is
not specified in the access policy of WA. The second case (1) shows that specified
permissions in the WA’s access policy are not implemented inadequately. In two
violation cases, the former can lead to leakage resources and it is usually more
interested. The later is contradictory with the former but it helps to detect the
role’s permission shortcoming compared to its specification.

On the Compliance of Access Control Policies in Web Applications 67

Algorithm 2. Checking compliance.

Input : S: the resources access policy
M: the access control matrix of WA
R, AC, RS: the set of roles, actions, and resources within
application respectively
Output: Compliance result
Data : r,ac,rs: the element in the set of roles, actions, resources,
respectively.

Function isConformance(S, M, R, AC, RS)
begin
foreach r; € R do
foreach ac; € AC do
foreach rs;, € RS do
if MTJi][j][k] = Yes' then

m «— {(r;, ac;, rsE)};

if m ¢S then

| return false; @)
else

[S =S\ {m};

if (5 # 0) then
| return false; @

else
| return true;

6 Conclusion and Future Work

Ensuring the security of web systems is a very complex issue. It usually requires
the combination of many mechanisms and techniques. Therefore, verification
of security policy in web systems is an attractive topic by researchers. In this
paper, we have presented an approach to analyze source code of WAs into access
control matrix and compare it to their specified policy. The example WA of
medical records management system is deployed in the J2EE environment, so the
proposed approach use JDT library to analyze source code into AST tree. From
those, we extract Model into a list of permissions, build resources exploitation
graph of WA, and construct access control matrix according to each role within
the system. The proposed algorithm can be used to detect two specification
violation types: a role executed at least one permission not be presented in access
policy; at least one permission specified in access policy not be implemented in
the application.

Currently, our case study does not cover all cases of access control policies.
In the future, we are planning to investigate the approach with some larger
applications in domains such as healthcare system, bank system, etc. In addition,

68

T.-N. Luong et al.

we intend to improve our approach for checking multi-level control and other
security properties of WAs. A support tool is developing to check automatically
the compliance of access control policy in web applications.

Acknowledgments. This work has been supported by VNU University of Engineer-
ing and Technology under Project QG.16.32.

References

1.

10.

11.

12.

13.

Alalfi, M.H., Cordy, J.R., Dean, T.R.: A verification framework for access control
in dynamic web applications. In: Proceedings of the 2nd Canadian Conference on
Computer Science and Software Engineering, pp. 109-113. ACM (2009)

Alalfi, M.H., Cordy, J.R., Dean, T.R.: Automated verification of role-based access
control security models recovered from dynamic web applications. In: 2012 14th
IEEE International Symposium on Web Systems Evolution (WSE), pp. 1-10. IEEE
(2012)

Alalfi, M.H., Cordy, J.R., Dean, T.R.: Recovering role-based access control security
models from dynamic web applications. In: Brambilla, M., Tokuda, T., Tolksdorf,
R. (eds.) ICWE 2012. LNCS, vol. 7387, pp. 121-136. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31753-8_9

Castelluccia, D., Mongiello, M., Ruta, M., Totaro, R.: WAVer: a model checking-
based tool to verify web application design. Electron. Notes Theor. Comput. Sci.
157(1), 61-76 (2006)

Choi, E.H., Watanabe, H.: Model checking class specifications for web applications.
In: 12th Asia-Pacific Software Engineering Conference, APSEC 2005, p. 9. IEEE
(2005)

Di Sciascio, E., Donini, F.M., Mongiello, M., Piscitelli, G.: AnWeb: a system for
automatic support to web application verification. In: Proceedings of the 14th
International Conference on Software Engineering and Knowledge Engineering,
pp. 609-616. ACM (2002)

Di Sciascio, E., Donini, F.M., Mongiello, M., Totaro, R., Castelluccia, D.: Design
verification of web applications using symbolic model checking. In: Lowe, D.,
Gaedke, M. (eds.) ICWE 2005. LNCS, vol. 3579, pp. 69-74. Springer, Heidelberg
(2005). https://doi.org/10.1007/11531371_12

Ferraiolo, D., Kuhn, D.R., Chandramouli, R.: Role-Based Access Control. Artech
House, Norwood (2003)

Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed
NIST standard for role-based access control. ACM Trans. Inf. Syst. Secur. (TIS-
SEC) 4(3), 224-274 (2001)

Garg, A., Singh, S.: A review on web application security vulnerabilities. Int. J.
Adv. Res. Comput. Sci. Softw. Eng. 3, 222-226 (2013)

Idani, A.: Model driven secure web applications: the SeWAT platform. In: Pro-
ceedings of the Fifth European Conference on the Engineering of Computer-Based
Systems, p. 3. ACM (2017)

Mead, N.R., Allen, J.H., Barnum, S., Ellison, R.J., McGraw, G.: Software Security
Engineering: A Guide for Project Managers. Addison-Wesley Professional, Boston
(2004)

Principe, M., Yoon, D.: A web application using MVC framework. In: Proceedings
of the International Conference on e-Learning, e-Business, Enterprise Information
Systems, and e-Government (EEE), p. 10 (2015)

https://doi.org/10.1007/978-3-642-31753-8_9
https://doi.org/10.1007/11531371_12

14.
15.
16.

On the Compliance of Access Control Policies in Web Applications 69

Rubenstein, S.: Are your medical records at risk? Wall Street J. (2009)

Shklar, L., Rosen, R.: Web Application Architecture. Wiley, Hoboken (2009)
Touseef, P., Ashraf, M.A., Rafiq, A.: Analysis of risks against web applications in
MVC. NFC IEFR J. Eng. Sci. Res. 5 (2017)

	On the Compliance of Access Control Policies in Web Applications
	1 Introduction
	2 Background
	2.1 Role-Based Access Control
	2.2 Model-View-Controller Architecture in JavaEE

	3 Related Work
	4 A Case Study
	5 Our Approach
	5.1 List of Permissions
	5.2 Resources Exploitation Graph of WA
	5.3 Access Control Matrix
	5.4 Algorithm for Checking Compliance

	6 Conclusion and Future Work
	References

