l‘)

Check for
updates

1

The notion of pseudo-probabilistic (PP) encryption was introduced in [1] as a
particular implementation of the shared-key deniable encryption (DE) [2]. The
notion of the DE is a special cryptographic primitive suitable for providing resis-
tance to so called coercive attacks [2], i.e., attacks from the part of some potential
coercive adversary has power to force a party of the communication session or

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Stream Pseudo-probabilistic Ciphers

Nikolay Andreevich Moldovyan', Dmitriy Nikolaevich Moldovyan!,
Quang Minh Le?, Long Giang Nguyen?, Sy Tan Ho*,
and Hieu Minh Nguyen*®

1 St. Petersburg Institute for Informatics and Automation
of Russian Academy of Sciences, St. Petersburg 199178, Russia
2 The Information Technology Institute (ITT),
Vietnam National University, Hanoi, Vietnam
3 Institute of Information Technology, Vietnam Academy of Science
and Technology, Hanoi, Vietnam
4 Academy of Cryptography Techniques, Hanoi, Vietnam
hieuminhmta@gmail.com

Abstract. The paper considers methods and algorithms for stream
pseudo-probabilistic encryption and introduces a novel design of such
ciphers. In the known algorithms of such type two independent messages
(fake and secret ones) are encrypted simultaneously (with using two dif-
ferent keys, fake and secret) and the produced ciphertext is computa-
tionally indistinguishable from the ciphertext produced by process of the
probabilistic encryption of the fake message using the fake key. However
in the known stream pseudo-probabilistic encryption schemes the algo-
rithms for decrypting the fake and secret messages do not coincide com-
pletely. Therefore a potential attacker can use the last fact to distinguish
the pseudo-probabilistic encryption from the probabilistic one. To pro-
vide resistance to such potential attacks in the paper there are proposed
stream pseudo-probabilistic ciphers satisfying criterion of the sameness
of the algorithms for decrypting the fake and secret messages. The intro-
duced ciphers are sufficiently fast and represent interest for practical
application to provide confidentiality of the communication protocols
performed using public channels. The randomized pseudo-probabilistic
stream ciphers have been also designed.

Keywords: Stream cipher - Pseudo-probabilistic encryption
Probabilistic cipher - Fake message + Secret message

Introduction

Published by Springer Nature Switzerland AG 2019. All Rights Reserved
P. Cong Vinh and V. Alagar (Eds.): ICCASA 2018/ICTCC 2018, LNICST 266, pp. 36-47, 2019.
https://doi.org/10.1007/978-3-030-06152-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06152-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-06152-4_4

Stream Pseudo-probabilistic Ciphers 37

the both parties simultaneously to open the encryption key and the ciphertext
after the last has been sent. The paper [2] initiated a lot of investigations devoted
to developing secure and efficient protocols for public-key DE [3,4] which have
practical interest as a method for preventing vote buying in the internet-voting
systems [3] and to provide secure multiparty computations [5].

The shared-key DS algorithms have practical significance as individual
method for providing the information protection against unauthorized access in
computer and communication systems in the case of coercive attacks. Such appli-
cation of the shared-key DE algorithms are considered in detail in paper [1] where
it had been also shown that for such application it is reasonable to implement
the DE algorithms in the form of some PP cipher that generates the ciphertext
indistinguishable from the ciphertext generated by some probabilistic encryp-
tion procedure applied to transform some fake message with some fake key.
Actually the ciphertext contains two messages, the fake and the secret ones that
have been encrypted simultaneously, however it is computationally infeasible to
distinguish PP encryption process from the probabilistic one while performing
cryptanalysis of the ciphertext. The paper [6] describes the block PP encryption
algorithms possessing sufficiently high performance and representing practical
interest. The papers [1,7] considers the stream DE ciphers, however the ciphers
from [1] have sufficiently low performance and the cipher from [7] uses differ-
ent algorithms for disclosing the fake and the secret message. Any differences
between algorithms implementing decryption process while disclosing fake and
secret messages can be potentially used by the coercive attacker to distinguish
the ciphertext produced as the result of the PP encryption from the ciphertext
produced as the result of the probabilistic encryption. Therefore, the criterion
of the coincidence of the decryption algorithms for opening the fake and secret
messages has practical significance.

Present paper introduces fast stream PP ciphers with the single decryption
algorithm for disclosing the fake and secret messages. The paper is organized
as follows. Section 2 describes the model of the coercive attack and the design
criteria. Section 3 discusses the stream PP cipher proposed in [1]. Section 4 intro-
duces a new stream PP cipher. In Sect. 5 there is considered randomized stream
PP cipher. Section 6 concludes the paper.

2 Model of the Coercive Attack and Design Criteria

It is assumed that some potential adversary attacks the sender of the encrypted

message or/and the receiver after the ciphertext has been sent via a public

communication channel. Besides. the adversary has possibility to intercept the

ciphertext and the both parties of the communication session to open the fol-

lowing:

— the source text corresponding to the ciphertext;

— encryption and decryption algorithms;

— the source software code used for performing decryption (not encryption) of
the ciphertext;

— the encryption key.

38 N. A. Moldovyan et al.

Accordingly to [1,6] the resistance to the described potential attack can be
provided using the stream PP cipher applied to performing simultaneous encryp-
tion of the fake and secret message which produces the ciphertext exactly the
same as the ciphertext produced by some stream probabilistic cipher applied
to encrypt the fake message (criterion of the computational indistinguishability
from probabilistic encryption [1]). Like in the PP ciphers introduced in [1,7]
the simultaneous stream encryption of the fake and secret messages is to be per-
formed using two different keys, the fake and secret ones correspondingly. At time
of the coercive attack the sender and the receiver of the ciphertext will open the
fake message and the fake key. Besides, they will open the stream probabilistic
encryption algorithm (called associated probabilistic encryption algorithm [1])
and related stream decryption algorithm. The last two algorithms are attributed
to some stream probabilistic cipher called associated probabilistic cipher. The
parties of the secure communication session will lie plausible they used the associ-
ated stream probabilistic cipher. While using the opened fake key, the decryption
procedure of the last cipher will transform the ciphertext into the fake message.
Therefore the coercer will have no arguments to expose their lie, until he shows
possibility of the alternative decryption of the ciphertext.

Thus, we propose the following design criteria for creating the stream PP
ciphers:

— the stream encryption should be performed as simultaneous transformation
of two messages, secret one and fake one, using secret and fake keys shared
by sender and receiver;

— astream probabilistic cipher should be associated with the constructed stream
PP cipher;

— the associated stream probabilistic cipher should potentially transform the
fake message with the fake key into the same ciphertext that is produced by
the stream PP cipher;

— disclosing the secret message, while performing cryptanalysis on the base of
the known fake massage and the known fake key, should be computationally
infeasible;

— the cipher should include encryption and decryption algorithms possessing
sufficiently high performance;

— the decryption algorithm should provided independent recovering of the secret
and fake messages;

— the algorithms for recovering the fake and secret messages should completely
coincide;

— using the fixed-size shared keys should provide performing secure PP encryp-
tion of messages having arbitrary length.

Stream Pseudo-probabilistic Ciphers 39

3 Pseudo-probabilistic of Two Different Messages
with the Single Decryption Algorithm for Independent
Disclosing Each of the Messages

In the paper [1] the introduced notion of pseudo-probabilistic encryption was
illustrated by the proposed stream encryption algorithm based on using some
one-way transformation function, for example on the base of some secure hash-
function Fp. Using the hash-function as the base primitive of the encryption
procedure is as follows. Suppose T' is a secret message represented as sequence
of u-bit symbols ¢;: T = {t1,ta,...,t;,...,t.}, for example u = 4 to 16.

The following algorithm proposed in [1] performs probabilistic encryption of
the message T" with using the hash-function Fy and the key Q.

Algorithm for Probabilistic Encryption

1. Set counter ¢ = 1 and random 128-bit initialization vector V. (The value V/
is not secret and is to be sent by sender to receiver of the secret message 7'.)

2. Set counter j = 0.

3. If j < 281 then generate a random k-bit (k > u) value r. Otherwise output
the message “The ith data block is not encrypted”, increment the counter
i =1+ 1 and go to step 2.

4. Compute the value t = F(Q||V]|é||r) mod 2%, where || is the concatenation
operation. If ¢ # ¢;, then increment j = j 4+ 1 and go to step 3.

5. Set r; = r. If i # z, then increment i = ¢ + 1 and go to step 2. Otherwise
STOP.

The described algorithm is a probabilistic procedure. Indeed, it uses random
selection of the current ciphertext symbol r; (see step 3). The size of the out-
put ciphertext R = {ry,ro,...,7;,...,7,} is larger than the size of the source
message T, since the size of symbols of the input text is larger than the size
of the symbols of the output ciphertext (k > u). As it was shown in [1] mech-
anism of random selection some part of the has-function argument, until the
hash value takes on the required value of the symbol of the source message, can
be put into the base of procedure of simultaneous encryption of two different
input message, fake and secret, using two different keys, fake and secret respec-
tively. In this case the generated ciphertext contains both messages and each of
the lasts can be decrypted simultaneously with the same decryption algorithm,
i. e., the procedure for decrypting the fake message coincide exactly with the
procedure for decrypting the secret message. Thus, the encryption procedure
of two messages produces the ciphertext that potentially could be produced by
process of encrypting only one fake message with using the fake key. There-
fore, the distinguishing the ciphertext produced by the process of simultaneous
encryption of the fake and secret messages from the ciphertext produced by the
process of probabilistic encryption of the fake message will require disclosing the
secret message. The process of simultaneous encryption of two messages, called
pseudo-probabilistic encryption, is described as follows.

40 N. A. Moldovyan et al.

Suppose the sequence M = {my,ma,...,m;,...,m,}, where symbols m;
have size u bits, represents the fake message and K is the fake key. The next
algorithm proposed in [1] encrypts the secret T' and fake message M with using
the secret @) and fake K keys.

Algorithms for Simultaneous Encryption of Two Messages

1. Set counter i = 1 and random 128-bit initialization vector V.

2. Set counter j = 0.

3. If j < 2%+1 then generate a random k-bit (k > 2u) value r. Otherwise output
the message “The ith data block is not encrypted”, then increment ¢ =i + 1
and go to step 2.

4. Compute the values ¢t = Fg(Q||V||i||r) mod 2% and m = Fy(K||V||i||r)
mod 2%.

5. If t # t; or m # m;, then increment j = j + 1 and go to step 3.

6. Set r; = r. If i # z, then increment i = ¢ + 1 and go to step 2. Otherwise
STOP.

The decryption algorithm corresponding to the both described encryption
algorithm is as follows:

Decryption Procedure

1. Set counter i = 1, decryption key X (X « @ or X «+ K) and random 128-bit
initialization vector V.

2. Compute the value w; = Fg(X||V]|i]|r;) mod 2*.

3. If ¢ # z, then increment ¢ = i 4+ 1 and go to step 2. Otherwise STOP.

The decryption algorithm outputs the sequence of u-bit data blocks w;: W =
{wy,wa, ..., w;, ..., w,}. The correctness of the decryption procedure is evident
and W = M, if X = K, or W =1T,if X = @. A major drawback of the
two encryption algorithms discussed above is applying the mechanism of the
exhaustive search for finding the value of each symbol of the ciphertext. On
the average, there are required about 2% and 22% trials for selecting appropriate
random value r at step 3 of the first and second algorithm respectively. Because
of this drawback, their productivity is very low. In order to increase the speed
of encryption, the next section proposes an encryption method that is free from
using the mentioned mechanism of the exhaustive search.

4 Implementation Using Block Encryption Function

4.1 General Method for Stream Pseudo-probabilistic Encryption

Suppose that the fake message M = (mq,ma,...,m;,...,m.) and the secret
message T = (t1,t2,...,t;,...,t,) are represented if the form of the sequences of
u-bit symbols m; and ¢;(i = 1,2,...,2) correspondingly and some secure block

encryption function Eg is used to generate the following three key streams I,

Stream Pseudo-probabilistic Ciphers 41

I, and I depending on the values of the used block-encryption key S = K,
S =@, and S = U correspondingly:

I'={a,a9,...,0;,...,0,},
FI:{ﬁlaﬂ%'"vﬂia"'aﬂz}v and
F” = {(Ahul)? ()\27H2)7') (Aivlu’i)a R (/\z“uz)}v

where elements «;, 8;, \;, and u; represent the u-bit symbols. The key stream I
is generated so that the bit strings 1||\; and 1||u;, where the sign “||” denotes
the concatenation operation, represent two mutually irreducible polynomials.
The fake key represents the pair (K,U) and the secret key represents the pair
(Q,U), where the random subkeys K and @ are generated so that they have
different oddness.
Transformation of the pair of the symbols ¢; and m;. is performed simulta-
neously as solving the following system of two linear congruencies:
¢ =m; ® a; mod n; (1)
c; =t; ® B; mod ¥

where ¢; is the ith symbol of the output ciphertext; & is the bit wise modulo
2 addition operation; (n:; i) = (1][As; 1]|:), i K is odd, and (5)= (1] s
1]|A), if K is even.

Elements of the key sequences I', I, and I depend on the subkeys K, Q,
and U correspondingly, on sequential number of the message symbol i, and on
the initialization vector V' that is not secret and can be sent by the sender to
the receiver via an insecure channel. While using random initialization vector V'
different pairs of input messages will be encrypted with different triples of the
key sequences I', IV, and I'”.

Decryption of the ith symbol of the fake and secret message is performed as
generating the respective elements of the key sequences and using the following
two formulas:

m; =c¢; ®a; modn; and t; =c¢; & F; mod Y;

4.2 Algorithms for Generating the Key Sequences

Suppose Eg be a secure block encryption function with 128-bit input (for exam-
ple, AES). The following algorithm performs generation of the elements «; of
the key sequence I' depending on the value S = K.

Algorithm 1.

1. Set the 64-bit counter ¢ = 1 and the value of the random 64-bit initialization
vector V. (The value V is not secret and is to be sent by sender to receiver
of the secret message T).

2. Compute the value «; = Eg(V|]i) mod 2“.

3. If i < z, then increment the value i: ¢ < 7 + 1 and go to step 2. Otherwise
STOP.

42 N. A. Moldovyan et al.

The next algorithm performs generation of the elements (; of the key
sequence I depending on the value S = Q.

Algorithm 2.

1. Set the 64-bit counter ¢ = 1 and the value of the random 64-bit initialization
vector V.

2. Compute the value §; = Eg(V||i) mod 2".

3. If i < z, then increment the value i: ¢ «<— i + 1 and go to step 2. Otherwise
STOP.

The next algorithm performs generation of the pair of key elements (\;, ;)
of the key sequence I'” depending on the value S = U. Note that in frame of
the Algorithms 1 and 2 there is executed the same sequence of operations. They
differ only by the value of the key used to compute the output value of the block
encryption function Fg(V|7).

Algorithm 3.

1. Set the 64-bit counter ¢ = 1 and the value of the random 64-bit initialization
vector V.

2. Compute the 2u-bit value (u;||\;) = Es(V||i) mod 22

3. Compute the greatest common divisor (ged) of the binary polynomials 1]|u;
and 1]|A;.

4. If ged(1]|ps; 1]|A;) # 1, then, considering the bit string A; as binary number,
modify the value \; as follows: A\; < A; + 1 mod 2%, where < denotes the
assignment operation, and go to step 3.

5. If i < z, then increment the value i: ¢ < i + 1 and go to step 2. Otherwise
STOP.

4.3 Algorithm for Stream Pseudo-probabilistic Encryption

The stream pseudo-probabilistic encryption of two input messages M and T is
performed as consecutive transformation of the pairs of the symbols m; and ¢;
(for i =1,2,...,2) into the 2u-bit symbols ¢; of the output ciphertext. The pair
(mj, t;) is transformed as follows:

Pseudo-probabilistic Encryption Algorithm
Input: the values K, Q, U, i, t;, and m;.

Using Algorithm 1 generate the key element «;.

Using Algorithm 2 generate the key element j;

Using Algorithm 3 generate the pair of key elements (A;, ;).

If the value K is even (and the value @ is odd), then define the values
7, = 1||u; and ¢; = 1||A; and go to step 6.

Define the values n; = 1||A; and ¢; = 1||p;.

6. Compute the 2u-bit symbol ci of the output ciphertext, using the following
formula that describes solution of the system of congruencies (1):

=W

ot

Stream Pseudo-probabilistic Ciphers 43

i = [(ms @ ;)i (; " mod m;) @ (t; @ Bi)ms(n; " mod ;)] mod miapi. (2)

Output: the ith ciphertext symbol c¢;.

Disclosing each of two source message from the ciphertext C = (¢q, ca, ...,
iy, ---, Cy) is performed independently as consecutive transformation of the
ciphertext symbols ¢;(i = 1,2,. .., z) using the following decryption algorithm.

Common Decryption Algorithm

Input: the value ¢, the ciphertext symbol ci, the initialization vector V', and
the decryption key (W,U), where W = K for disclosing the fake message or
W = @ for disclosing the secret message T'.

1. Compute the u-bit value v; = Ew (V]]i) mod 2.

2. Compute the 2u-bit value (u;]|\;) = Ey(V||i) mod 22%.

3. Compute the greatest common divisor (ged) of the binary polynomials 1]|u;
and 1||A;.

4. Tf ged(1]|pi; 1]|A;) # 1, then, considering the bit string A; as binary number,
modify the value 7 as follows: A\; < \;+1 mod 2%, where denotes the assigning
operation, and go to step 3.

5. If ¢ < z, then increment the value i: i < i 4+ 1 and go to step 2.

6. If the value W is even, then assign o <« 1||u; and go to step 8. Otherwise go
to step 7.

7. If the value W is odd, then assign o « 1||A;.

8. Compute the ith symbol 7; of the source message: 7, = ¢; ® v; mod o.

Execution of the last algorithm for i = 1,2,. .., z provides disclosing the fake
message M, if the fake key (W,U) = (K,U) is used, or disclosing the secret
message T, if the secret key (W,U) = (Q, U) is used.

The ciphertext produced by the pseudo-probabilistic encryption algorithm
potentially can be produced by the following probabilistic encryption algorithm
applied to encryption of the fake message with the fake key:

Associated Probabilistic Encryption Algorithm
Input: the values K, U, i, and m;.

1. Using Algorithm 1 generate the key element «;.

Using Algorithm 3 generate the pair of key elements (\;, 1;).

3. If the value K is even, then define the values n; = 1||u; and ¢; = 1||\; and
go to step 5. Otherwise go to step 4.

4. TIf the value K is odd, then define the value n; = 1||A; and v; = 1]||u;.

Generate random u-bit value p.

6. Compute the 2u-bit symbol ¢; of the output ciphertext as solution of the
following system of congruencies:

o

o

{ci =m; & a; mod n; 3)

¢; = p mod ;

Output: the ith ciphertext symbol c;.

44 N. A. Moldovyan et al.

System (3) has solution, since ged(n;,¥;) = 1 (see step 4 of Algorithm 3).
The solution is described as follows:

c; = [(mz @ ai)'l/)i('l/)i_l mod 7;) ® pni(ni_l mod 1/11)} mod 7;%;. (4)

The decryption procedure corresponding to the associated probabilistic
encryption algorithm is precisely described by the Common decryption algo-
rithm. This fact demonstrates that ciphertext generated by the pseudo-
probabilistic encryption algorithm applied to encrypt simultaneously the fake
M and secret T messages can be potentially generated by the associated
probabilistic-encryption algorithm applied to encrypt the fake M message.

It is easy to see that the initially proposed design criteria are satisfied by
the constructed stream pseudo-probabilistic cipher, including the criterion of
the computationally indistinguishability from probabilistic encryption. Since the
ciphertext contains two different messages, it is potentially possible to show that
the ciphertext had not been generated by probabilistic encryption algorithm,
however this would require to compute the secret message in the case when the
subkey @ is unknown.

Suppose the coercive attacker gets the fake key (K,U). Then he has pos-
sibility to compute the sequence of u-bit symbols ¢, = ¢; mod ¢; = t; @ 5.
The sequence Cy = (¢, ¢, ..., ¢, ..., c,) represents the intermediate ciphertext
obtained as result of encryption the secret message M with using the key stream
I'". The last is generated using secure block encryption function E (for example,
AES), therefore the generated key stream I'" and the sequence of the ciphertext
symbols is computationally indistinguishable from uniform random sequence and
computing the message T from C; is computationally infeasible.

5 Randomized Stream Pseudo-probabilistic Cipher

To provide a higher resistance of the stream PP encryption to the coercive
attacks at which the attacker has possibility to block the communication channel
and to cause repeated encryption of the same source messages in [8] it has been
proposed to imbed randomization into the block PP ciphers. Let us consider
construction of the randomized stream PP cipher as imbedding randomization
mechanism in the PP cipher described in the previous section. The idea of the
proposed randomization consists in using two random bit strings, u-bit string =
and (u+ 1)-bit string R, at step of computing the ciphertext symbol ¢;. The last
is performed as process of finding solution of the system of the following three
congruencies:

c; =m; & a; mod 1;
ci =t; © B mod 1; (5)
¢; =mmod R

where R is random binary polynomial of the degree u such that the following
conditions hold: ged(n;, R) = 1 and ged(v;, R) = 1.

Stream Pseudo-probabilistic Ciphers 45

The randomized stream PP encryption of two input messages M and T is
performed as consecutive randomized transformation of the pairs of the symbols
m; and ¢; (for i = 1,2,..., 2) into the 3u-bit symbols ¢; of the output ciphertext.
The randomized transformation of the pair of symbols (m;,t;) is executed as
follows:

Randomized Pseudo-probabilistic Encryption Algorithm
Input: the values K, U, i, t;, and m;.

Using Algorithm 1 generate the key element «;.

Using Algorithm 2 generate the key element j;.

Using Algorithm 3 generate the pair of key elements (\;, 1;).

If the value K is even (and the value @ is odd), then define the values n; =

1||p; and ¥; = 1||A; and go to step 8.

Define the values n; = 1||A; and t; = 1]|u;.

Generate uniformly random wu-bit string .

7. Generate random (u + 1)-bit string R such that ged(n;, R) = 1 and
ged(v;, R) = 1, where R is interpreted as binary polynomial of the degree w.

8. Compute the 3u-bit symbol ¢; of the output ciphertext, using the following

formula that describes solution of the system of congruencies (5):

Ll e

o ot

¢ =[(m; ® o) R(yp; "R~ mod n;) @ (t; @ B;)n; R(n; "R™" mod 1;)

& Rty (¥; 'n; ' mod R)] mod m;h; R. ©)

Output: the ith ciphertext symbol ¢; having size equal to 3u bits.
The probabilistic stream cipher associated with the described randomized
stream PP cipher is described as follows:

Associated Probabilistic Stream Cipher
Input: the values K, U, ¢, and m;.

1. Using Algorithm 1 generate the key element «;.

Using Algorithm 3 generate the pair of key elements (\;, 1;).

3. If the value K is even, then define the values n; = 1||u; and ¥; = 1||A\; and
go to step 5.

4. If the value K is odd, then define the values n; = 1||A\; and i = 1]|u;.

5. Generate uniformly random 2u-bit string .

6. Generate random (2u + 1)-bit string R such that ged(n;, R) = 1, where R is
interpreted as binary polynomial of the degree 2u.

7. Compute the 3u-bit symbol ¢; of the output ciphertext as solution of the
following system of two congruencies:

o

{ci = m; ® a; mod n;)

¢, =pmod R

Output: the ith ciphertext symbol ci having size equal to 3u bits.

46 N. A. Moldovyan et al.

The system (7) has solution, since ged(n;, R) = 1 (see step 6 of the algorithm).
The solution is described as follows:

ci =[(m; ® a;)R(R™* mod 1;) @ pni(n; * mod R)] mod 7;R. (8)

6 Conclusion

The design of stream PP cipher with the single decryption algorithm for dis-
closing the fake message and for disclosing the secret message, depending on the
used key (fake or secret respectively) has been proposed. The randomized stream
PP cipher constructed by means of embedding a randomization mechanism in
the first PP cipher has been also proposed. Each of the introduced stream PP
ciphers satisfies criterion of computational indistinguishability from probabilis-
tic encryption. The last fact has been confirmed with presenting the associated
probabilistic stream cipher that potentially generates the same ciphertext as the
corresponding stream PP cipher. The decryption algorithm relating to the prob-
abilistic cipher exactly coincide with the decryption algorithm relating to the
corresponding PP cipher.

In the paper it has been considered the case of equal size of the symbols of
the fake and secret messages, however the proposed PP encryption algorithms
can be easily extended for the case of different size of the symbols m; and t;.
Analogous remark can be attributed to the size of random bit string mixed
with the transformed symbols m; and ¢; in the proposed randomized stream PP
cipher.

The proposed designs of stream PP ciphers use the block encryption function
E for generating the key streams I', IV, and I'”, therefore performance of the
introduced two PP ciphers depends on the performance of the used function E.
It is mentioned case of using the block encryption standard AES as function
E. Since AES is sufficiently fast for hardware and for software implementations
the introduced PP-encryption algorithm have performance sufficient for many
potential practical implementations. They have significantly higher performance
than the stream PP ciphers described in [1].

To increase the performance it is possible to use block encryption functions
having comparatively small size of input data block, for example, 32-, 48-, and
64-bit block ciphers. However detailed consideration of such cases represent indi-
vidual research topic. It is also interesting to use the hash-functions for gener-
ating the key streams I', I/, and I'”.

Acknowledgements. The reported study was funded by Russian Foundation for
Basic Research (project #18 — 57 — 54002 — Viet_a) and by Vietnam Academy of
Science and Technology (project #QT RU01.08/18 — 19).

Stream Pseudo-probabilistic Ciphers 47

References

1. Moldovyan, N.A., Nashwan, A.A.-M., Nguyen, D.T., Nguyen, N.H., Nguyen, H.M.:
Deniability of symmetric encryption based on computational indistinguishability
from probabilistic ciphering. In: Bhateja, V., Nguyen, B.L., Nguyen, N.G., Satapa-
thy, S.C., Le, D.-N. (eds.) Information Systems Design and Intelligent Applications.
AISC, vol. 672, pp. 209-218. Springer, Singapore (2018). https://doi.org/10.1007/
978-981-10-7512-421

2. Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption. In: Kaliski,
B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90-104. Springer, Heidelberg (1997).
https://doi.org/10.1007 /BFb0052229

3. Barakat, M.T.: A new sender-side public-key deniable encryption scheme with fast
decryption. KSII Trans. Internet Inf. Syst. 8(9), 3231-3249 (2014)

4. Dachman-Soled, D.: On minimal assumptions for sender-deniable public key encryp-
tion. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 574-591. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0-33

5. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Efficient non-
interactive secure computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 406-425. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-20465-4_23

6. Moldovyan, N.A., Moldovyan, A.A., Tam, N.D., Hai, N.N., Minh, N.H.: Pseudo-
probabilistic block ciphers and their randomization. J. Ambient Intell. Hum. Com-
put. (2018). https://doi.org/10.1007/1265201807916

7. Moldovyan, N.A., Moldovyan, A.A., Moldovyan, D.N., Shcherbacov, V.A.: Stream
deniable-encryption algorithms. Comput. Sci. J. Moldova 24(1), 68-82 (2017)

8. Moldovyan, A.A., Moldovyan, N.A., Berezin, A.N., Shapovalov, P.I.: Randomized
pseudo-probabilistic encryption algorithms. In: Proceedings of 2017 20th IEEE
International Conference on Soft Computing and Measurements, SCM 2017, pp.
14-17 (2017)

https://doi.org/10.1007/978-981-10-7512-4_21
https://doi.org/10.1007/978-981-10-7512-4_21
https://doi.org/10.1007/BFb0052229
https://doi.org/10.1007/978-3-642-54631-0_33
https://doi.org/10.1007/978-3-642-20465-4_23
https://doi.org/10.1007/978-3-642-20465-4_23
https://doi.org/10.1007/1265201807916

	Stream Pseudo-probabilistic Ciphers
	1 Introduction
	2 Model of the Coercive Attack and Design Criteria
	3 Pseudo-probabilistic of Two Different Messages with the Single Decryption Algorithm for Independent Disclosing Each of the Messages
	4 Implementation Using Block Encryption Function
	4.1 General Method for Stream Pseudo-probabilistic Encryption
	4.2 Algorithms for Generating the Key Sequences
	4.3 Algorithm for Stream Pseudo-probabilistic Encryption

	5 Randomized Stream Pseudo-probabilistic Cipher
	6 Conclusion
	References

