
Formal Context Representation
and Calculus for Context-Aware

Computing

Ammar Alsaig(B) , Vangalur Alagar, and Nematollaah Shiri

Concordia University, Montreal, QC, Canada
{a alsaig,alagar,shiri}@encs.concordia.ca

Abstract. Context is a rich concept that is mostly understood and used
with different representations and interpretations in many different fields.
This variety of usage adds both richness and vagueness, thus creating
more complexity to comprehension, interpretation, and reasoning with
contexts. As pervasive computing technology becomes more and more
intrusive there is a need to construct formally verifiable context-aware
computing environment, in which human dignity is preserved through
safety, security, and privacy. These features cannot be ensured unless
context notion is formalized, both in representation and reasoning. Moti-
vated by this concern this paper introduces a formal context representa-
tion and a context calculus which can be used to build context models
for many applications.

Keywords: Context modeling · Context-awareness
Formal representation · Reasoning

1 Introduction

The term “context” has been around for centuries, and consists of the ancient
Greek words “con” (meaning “together”) and “texere” (meaning “to weave”).
Context provides the circumstances where an event, statement, or idea occurs,
and help to understand and evaluate the occurrence. Context has been the sub-
ject of numerous studies by philosophers, psychologists [7], and linguists [6]. Since
early 1980s, the importance of context has been recognized in different research
areas including information retrieval, knowledge representation and expert sys-
tems, mechanized formal reasoning in AI, and analysis of computer programs,
most notably by Weyhrauch [27], McCarthy [19], Akman and Surav [1], and
Giunchiglia [14]. Dowley et al. [10] was the first one to propose the notion of
dimensions for contexts after recognizing that “hidden contexts” add dimensions

This work was supported in part by grants from the Natural Sciences and Engineering
Research Council (NSERC) of Canada. The first author is supported by a scholarship
from the Saudi Arabian Government.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

P. Cong Vinh and V. Alagar (Eds.): ICCASA 2018/ICTCC 2018, LNICST 266, pp. 3–13, 2019.

https://doi.org/10.1007/978-3-030-06152-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06152-4_1&domain=pdf
http://orcid.org/0000-0002-6756-9766
https://doi.org/10.1007/978-3-030-06152-4_1

4 A. Alsaig et al.

to expressions. Much later in 1994, Schilit et al. [22] mentioned the necessity
of “dimensions” for “context-aware computing” in system development. How-
ever, they neither proposed a “dimension-based” representation nor developed
a reasoning framework. Almost 10 years later, Wan [25] proposed a context rep-
resentation using dimensions and tags and used them to introduce context as
a first class citizen in Lucid programming language extended with intensional
semantics. The formal semantics of intentional programming and architectures
for context-aware computing were also discussed by Wan [3,24].

In this paper, we pick up these notions, formalize, generalize and enrich them
in three tiers. In Tier 1 we define Context Schema, in Tier 2 we derive Typed
Context Schemas, and in Tier 3 we formalize Contexts as a set of families of
Context Instances generated from Typed Schemas. For all the three tiers a uni-
form representation is used, under set theoretical setting. We defined operations
in Tier 1 and show they are inherited in successive tiers, and in particular how
it can be enriched in Tier 3. Our approach, because of its generality and sim-
plicity, has the potential for generating different families of contexts for different
applications within an application domain.

2 Related Work

The literature on context is vast and diverse and a comprehensive survey of the
topic is beyond the scope of this paper. In what follows we review research most
relevant to our work on context modeling and formalism. We group the current
work on context into six categories detailed as follows:

1. Interdisciplinary Emphasis: The nature of diversity and interdisciplinary
research can be seen in LNAI publication series “Modeling and Using Con-
text”, proceedings of CONTEXT International conference being held from
1997 [18]. More recent collection of papers in [4] only reinforces the practice
of a variety of mostly informal notations and views in this interdisciplinary
research on context.

2. Human Computer Interface Group (HCI): Early in 2001 the works of
Dey et al. [8] and Winograd [28] in HCI are based on intuitive ad-hoc nota-
tions, bordering on vagueness and informality. These papers bring out also
the disagreement within this group in conceptualizing and modeling contexts.

3. Languages: The works of Dowley et al. [10], Sato et al. [21], and Alagar
et al. [3] use contexts at different levels of abstraction in intensional and
functional programming languages. Sato et al. uses a formal context rep-
resentation based on relational semantics while Sato et al. uses λ calculus
notation.

4. AI and Reasoning: The works of Weyhrauch [27], McCarthy [19,20],
Guha [16], Akman and Surav [1], Shoham [23], and Giunchiglia [14] are some
of the early ground-breaking works on logic of contexts and context-based
reasoning. None of them use any formal method to represent contexts.

Formal Context Representation and Calculus for Context-Aware Computing 5

5. Pervasive Computing: Based on the survey papers [9,11], it is evident that
the notion of context in pervasive computing is still mostly ad-hoc. The
formalisms attempted by a few are non-rigorous, either domain-specific or
application dependent [5]. Besides, there is no consensus on what a con-
text should be and how it should be represented for pervasive computing
application domain. While formal representation and reasoning procedures
are quite important to reason about pervasive computing applications that
involve human safety and privacy, they are not emphasized in these works.

6. Context-aware Computing: The introduction of dimensions by Dowley et
al. [10] to deal with hidden contexts in intensional programming languages
perhaps influenced Schilit et al. [22] to incorporate it in developing context-
aware systems, although there is no report such an attempt was made. Later
on, the context representation was formalized by Wan [25] and subsequently
used in building context-aware systems [3,24]. They also developed a context
calculus, and showed how to reuse their context toolkit in different applica-
tions such as privacy and security enforcement [2].

Against this background we claim our contribution in this paper is both novel
and new. In a computerized system context must capture both internal and
external settings. Since, the external world (environment) is composed of several
dimensions and the knowledge to execute different operations within the sys-
tem will come different “worlds”, context is “multi-dimensional”. The work of
Wan [25], which conceptualized this notion of context through an aggregation of
<dimension, tag> pairs had the restriction that each dimension occurs once in
the aggregation, and with each dimension only one atomic value is associated.
In our theory discussed below, context schemas, not just context instances, are
defined, thereby the restrictions in [25] are removed.

3 Tier 1: Context Schema Representation and Calculus

Context schema (CS) is abstract, and its generality gives flexibility for a practical
system designer to choose attributes to be associated with a dimension. Once we
fix the (non-empty) set of dimensions D and the (non-empty) set of attributes
A, the set SC (D,A) of all CSs is fixed. Formally, a CS over the pair (D,A) is the
set of pairs C = {d : Ad | d ∈ D ∧ Ad ⊆ A}.

Example 1. To define a conference context schema we first define the dimension
set D = {Date, T ime, Location}, and attribute set A = {a1, a2, a3, a4}. Next the
conference context schema can be defined as Cconf = {Date : {a1, a2}, T ime :
{a3}, Location : {a4}}.

In order to access information of an already constructed context schema, two
functions are defined. The “DIM” function extracts the set of dimensions in a
context schema, and the “ATT” function extracts the set of attributes associated
with a dimension in a context schema. Formally, DIM : SC → P(D), ATT :
D×SC → P(A), such that DIM(C) = {d| < d,Ad >∈ C }, and ATT (d,C) = Ad.

6 A. Alsaig et al.

Example 2. For the “conference context schema” introduced in Example 1
DIM(Cconf) = {Date, T ime, Location}, ATT (Date,Cconf) = {a1, a2},
ATT (Time,Cconf) = {a3}, and ATT (Location,Cconf) = {a4}.

For the sake of completeness we include “Null Context Schema” and “Full Con-
text Schema” in out theory. If DIM(C) = φ, Ad = φ we get the Null Con-
text Schema Cφ. If DIM(C) = D, Ad = A we get “Full Context Schema”.
McCarthy [19] postulated that “every context is contained in an outer context”.
In general, a context can contain many inner contexts. However, no formal def-
inition for “containment relationship” exists because of lack of formal represen-
tation. Using our formalism we can formally define containment relationship (�)
over the set SC (D,A). If C = {< d,Ad > |d ∈ D ∧ Ad ⊆ A} and C ′ = {<
d′, A′

d > |d′ ∈ D ∧ A′
d ⊆ A} are two Context Schemas in SC (D,A), we say that

C ′ � C if DIM(C ′) ⊆ DIM(C), and ∀ d′ ∈ C ′ • ATT (d′,C ′) ⊆ ATT (d′,C).
The relation � on the set SC (D,A) is a partial order because it is reflexive,
anti-symmetric, and transitive. Hence, 〈SC (D,A),�〉 is a partially ordered set
(poset).

Example 3. Consider the context schema C ′
conf = {Date : {a1}, T ime : {a3}}

defined on the same set of dimensions and attributes as in Example 1. Because
DIM(C ′

conf) ⊆ DIM(Cconf), and ATT (d′,C ′
conf)) ⊆ ATT (d′,Cconf)), for all

d′ ∈ DIM(C ′
conf) it follows that C ′

conf � Cconf .

3.1 Operations and Calculus

Based on containment relation � we define equality (=). For two context schemas
C and C ′, if C � C ′, and C ′ � C , then C = C ′. In order to relate and deal
with every pair of schemas in the poset 〈SC (D,A),�〉 we introduce the two oper-
ators “join” (⊕) and “meet” (�). The “join” of two context schemas produces
the “smallest” context schema that contains those two context schemas. The
“meet” of two schemas produces the “largest” context schema that is contained
in those two schemas. These operations, when implemented as part of context
tool kit in an application will enable “exporting knowledge and reasoning” across
contexts. Formally,

⊕ : SC (D,A) × SC (D,A) → SC (D,A)

C ⊕ C ′ = {< d′′, Ad′′ > |d′′ ∈ DIM(C) ∪ DIM(C ′) ∧
Ad′′ = {ATT (d′′,C) ∪ ATT (d′′,C ′}} �

� : SC (D,A) × SC (D,A) → SC (D,A)

C � C ′ = {< d′′, Ad′′ > |d′′ ∈ DIM(C) ∩ DIM(C ′) ∧
Ad′′ = {ATT (d′′,C) ∩ ATT (d′′,C ′}} �

Formal Context Representation and Calculus for Context-Aware Computing 7

It is easy to observe that for any three schemas C1,C2,C3 in {SC (D,A),�},
⊕ and � operators satisfy absorption, commutative, associative, and distributive
properties. In particular, ⊕ is distributive over � and vise versa:

– C1 ⊕ (C2 � C3) = (C1 ⊕ C2) � (C1 ⊕ C3)
– C1 � (C2 ⊕ C3) = (C1 � C2) ⊕ (C1 � C3)

Example 4. Applying the join and meet operations on the two conference context
schemas Cconf and C ′

conf in Examples 1 and 3 we get two new context schemas:

Cconf ⊕ C ′
conf = {Date : {a1, a2}, T ime : {a3}, Location : {a4}}

Cconf � C ′
conf = {Date : {a1}, T ime : {a3}}

3.2 Context Schema Lattice

With the join and meet operations on the poset 〈SC ,�〉 the set L = (SC ,�,
⊕,�) is a lattice [15]. In particular, the lattice L is also closed and distributive.
It is closed because its minimum element is the null context schema and the max-
imum element is the context schema composed with all dimensions in set D and
all attributes of A associated across the dimensions. It is distributive because for
x, y, z ∈ L , we can verify the two properties: (1) (x� y)⊕ (x� z) = x� (y ⊕ z),
and (2) (x ⊕ y) � (x ⊕ z) = x ⊕ (y � z). Hence L (D,A) = (SC (D,A),⊕,�,�)
is a complete lattice. These properties have enormous consequence on the sys-
tem level. First, when the set (D,A) is fixed, the set of all context schemas
in the lattice structure is closed with respect to the join and meet operations.
Consequently, no typed context and thus context instances (defined in the later
sections) are “left unaccountable”. That means, we have a “closed world” of
families of context instances and the knowledge they enclose. This closed world
property fulfills the requirement of “sufficient completeness of actions in con-
texts” for ensuring safety and privacy properties at system execution stage. The
distributive property enables “simplification” of expressions that involve context
instances and hence the evaluation of “predicates” that need to be evaluated at
context instances. In the rest of the discussion we agree that D,A is fixed and
simply use the notation SC for context schema and L for the complete lattice.

4 Tier 2: Typed Context Schema Representation
and Calculus

Typed Context Schema (TCS) is a context schema in which attributes are asso-
ciated with types. Each attribute is typed in the sense that it has a domain of
values with respect to the type associated with it. Representation and calculus
of schemas in TCS are inherited from the un-typed schemas defined in Tier 1.

8 A. Alsaig et al.

4.1 Typed Context Schema Representation

Let T = {T1, T2, ..., Tn} denote a finite set of types such that for each type
Tx ∈ T there exists a pair <Vx, OPx>, where Vx is a “maximal” set of values,
and OPx denotes a set of operations allowed on the set Vx. By “maximal” we
mean (1) Vx does not overlap with the set Vy of values of any other type Ty ∈ T,
and (2) if V ′

x is any other set containing the values of Tx then V ′
x ⊂ Vx. A

type assignment to attributes in A is a mapping (a finite function) M : A → T

that associates a unique type for every attribute in A. We denote the set of
all such type assignments by A

T. Two mappings M1,M2 ∈ A
T are equal only

if M1(a) = M2(a) for every a ∈ A. It is possible that two mappings M1 and
M2 are different while they could have some common attributes. Formally, with
respect to M ∈ A

T, the typed version of context schema C , denoted as CM , is
CM = {<d,AM

d >|d ∈ DIM(C), AM
d = {aM(a)|a ∈ Ad}}.

Example 5. Let D = {d1, d2}, and A = {a1, a2, a3}. A context schema C1 over
D and A is C1 = {d1 : {a1, a2}, d2 : {a2, a3}}. We emphasize that any standard
or abstract data type may be associated to an attribute, and more than one
attribute may have the same type. As an illustration, consider the set of types
such that T = {Int, Char,Range} where Int and Char are the standard Integer
and Character types. Assume that Range type has the set of operations {=
, After,Before, Lowest,Highest}, and has the domain of values [1 · · · 10]. Let
M1 = {a1 → Int, a2 → Char, a3 → Range} and M2 = {a1 → Int, a2 →
Int, a3 → Char} be two mappings. The typed attribute sets corresponding to
these mappings are {aInt

1 , aChar
2 , aRange

3 }, and {aInt
1 , aInt

2 , aChar
3 }. Thus, the two

distinct typed schemas are

CM1
1 = {d1 : {aInt

1 , aChar
2 }, d2 : {aChar

2 , aRange
3 }}

CM2
1 = {d1 : {aInt

1 , aInt
2 }, d2 : {aInt

2 , aChar
3 }}

Notice that CM1
1 �= CM2

1 because of the different type assignment M1 and M2.

Both schema calculus and lattice definition are extended to SC M , the family
of schemas that have the same type. Schema operations that are defined earlier
are well-defined only within each family. That is, operations are not extended
across families of typed schemas. Thus, the operations CM1

1 ⊕CM2
1 , CM1

1 �CM2
1

are not defined since M1 �= M2. However, for typed context CM1
3 = {d2 : {aInt

1 }}
we can define CM1

1 ⊕ CM1
3 and CM1

1 � CM1
3 . The family of context schema

SC M (D,A) with join and meet operators is a complete typed lattice L (D,A)M .
This lattice includes all possible context schemas of type M . In addition to the
schema operations it may be possible to define additional operations induced
by the operators associated with type T induced by mapping M . We emphasize
that if α = |AT| then there are potentially α mappings, each associating every
attribute of A to a type in T. Consequently, from one schema C ∈ SC (D,A) we
can generate α different typed schemas. Thus, for a fixed set of dimensions/at-
tributes set (D,A) we can generate α × β typed schemas where β = |SC (D,A)|.
As an illustration, for a set of dimensions D = {d1, d2} and a set of attributes

Formal Context Representation and Calculus for Context-Aware Computing 9

A = {a1, a2}, let L be a context schema lattice that includes the set of context
schemas SC = {Cφ, {d1 : {a1}}, {d2 : {a2}}, {d1 : {a1}, d2 : {a2}}}. Assum-
ing that we have applied M1 and M2 on all contexts in SC to construct the two
distinct typed schema types SC M1 and SC M2 . From these we can construct two
lattices L M1 and L M2 , which are different typed versions of the general context
schema lattice L .

5 Tier 3: Context Instance Representation and Calculus

In all practical applications [11,17] the term “context” has been used as “meta
information” annotating “certain scenarios” or “happenings”. This is achieved by
associating “values” (also called “tags”) to “dimensions”. In our theory we arrive
at such “contexts” as “instances” of context schemas. The rationale is to provide
a more abstract foundation from which we can generate several “families” of
context instances from each typed schema. The advantages include (1) levels of
abstractions to conceptualize and manipulate schemas and instances, (2) provide
a strong typing for attributes, and (3) achieve a potentially infinite number of
context instances corresponding to each “family of typed contexts”. This rigorous
and disciplined theory will enable the correct development of context toolkit and
promote reuse for ubiquitous computing applications.

5.1 Context Instance Representation

A Context Instance (CI) is an instantiated TCS in the sense that the attribute
names in a TCS are substituted by values from the associated type domain.
Hereafter we refer to context instance as context. To formalize, we start with
one CM be TCS of the lattice S(D,A)M , and use the substitution notation [x/v]
to mean that v is substituted for x. Let θ be a substitution function that assigns
to each typed attribute aT a value from the domain V of values associated
with T . By a substitution θ : CM → I1(CM), we get an instance Iθ(CM) for
the typed context schema CM , where DIM(Iθ(CM)) = DIM(CM), ∀ < d :
AT

d >∈ CM ,∃ < d : valV >∈ Iθ(CM), valV = {[aiθ/vi] | vi ∈ V }. That is,
from each node (schema) in L (D,A) we can generate a context instance for a
fixed substitution. Because an attribute can be substituted by any value from
its associated type domain, for each type assignment to an attribute we get a
family of contexts generated from one node in L (D,A). Therefore, in addition
to schema operations we can introduce the operations of the associated type to
contexts within a family.

Example 6. Let θ1 = {a1/1, a2/b, a3/[1−3]}. By applying θ1 on CM1
1 in Example

5 we get one context I1(CM1
1) = {d1 : [1, “b”], d2 : [“b”, [1−3]]}. By applying the

substitution θ2 = {a1/100, a2/e, a3/[2 − 4]} to CM1
1 , another instance is derived

I2(CM1
1) = {d1 : [100, “e”], d2 : [“e”, [2 − 4]]}. When θ3 = {a1/10, a2/20, a3/c} is

applied to CM2
1 we get the new instance I3(CM2

1) = {d1 : [10, 20], d2 : [20, “c”]}
of type M2. A noteworthy remark is that operational consistency exists only for
contexts within each family.

10 A. Alsaig et al.

6 Modeling Example

Many different adhoc notations for modeling contexts can be found in [18]. From
among them we have chosen “paper submission context” that has been modeled
graphically using contextual graphs [13]. This example has been also used in
[12]. The actors in “paper submission” process are “publisher, editor, author,
and reviewer”. They share some activities like “canceling, submitting, checking”.
However, each actor is independent with respect to many other activities. For
instance, editor can edit a paper, but cannot reject a paper, only a reviewer
can. We show in the following steps how this context example can be formally
represented using our 3-tier context representation. Through this case study the
flexibility and generality provided in our model are highlighted (Fig. 1).

Fig. 1. Snapshot of the paper submission example in [13]

Step 1. We develop the context schema after identifying a set of dimensions,
a set of attributes set, and a set of types from the graphical model. Each actor
has information such as “name”, “date-of-last-login”, thus we find “Info” dimen-
sion is necessary. An actor also has “unique activities” and “common activities”
shared among all types of actors. Therefore, the two dimensions “Unique”, and
“Common” should be included in our model. Therefore, the set of dimensions for
our model is D = {Info, Unique, Common}. The attributes of each dimension
can be identified by the information that a dimension holds. “Info” dimension
for instance, holds the “name”, “lastlogindate” attributes. These attributes can
simply be named anything, but meaningful names are used to make attributes
readable and comprehensible. Based on example, each author has a list of unique
activities, and a list of common activities. Therefore, both dimensions “Unique”
and “Common” may have one or more attribute. For the sake of simplicity let us
assume they have single attributes act common, and act unique. Thus, the set of
attributes for our model is A = {name, lastlogindate, act common, act unique}.
The types can be customized/user defined, or can be basic types like inte-
ger and string. The information in our attributes are either string, integer,

Formal Context Representation and Calculus for Context-Aware Computing 11

or list of a generic type. Therefore, we define the set of types T =
{
string,

date, common, editor, reviewer, publisher, author
}
. The domain of values and

operations for each type can be defined: (1) string: operations:
{
concat,

intersect
}
, domain: set of alphanumeric values; (2) integer: operations: {+,−},

domain: (date); (3) common : operations: {before, after, add, remove}, domain:
list of common activities; (4) editor : operations: {before, after, add, remove},
domain: list of unique activities for editor; (5) reviewer : operations:
{before, after, add, remove}, domain: list of unique activities for reviewer; (6)
publisher : operations: {before, after, add, remove}, domain: list of unique
activities for publisher; (7) author : operations: {before, after, add, remove},
domain: list of unique activities for author. Based on the above choice the “Paper
Submission Context Schema” is defined as

CPS = {Info : {name, lastlogindate}, Unique : {activities}, Common :
{activities}}.

Step 2. We assign types to attributes and generate typed schemas. The above
schema is general to all types of actors. The types are assigned as below:

C edi
PS = {Info : {namestring, lastlogindatedate}, Unique : {activitieseditor},

Common : {activitiescommon}}
C rev

PS = {Info : {namestring, lastlogindatedate}, Unique : {activitiesreviewer},

Common : {activitiescommon}}
C pub

PS = {Info : {namestring, lastlogindatedate}, Unique : {activitiespublisher},

Common : {activitiescommon}}
C aut

PS = {Info : {namestring, lastlogindatedate}, Unique : {activitiesauthor},

Common : {activitiescommon}}

Step 3. We generate context instances from the typed schema. In this level
values are “substituted” to attributes. For instance, an editor instance can be
C edi

PS = {Info : {“Jhon Dazer”, “2017 − 05 − 04”}, Common :
{
[submit,

cancel, delete]
}
, Unique : {[edit, submit notes, contact publisher]}. We can

generate a family of instances for each type assignment.

7 Conclusion

The three tier approach introduced in this paper generalizes previous attempts
for dimension-based context representation [3,25,26], and enriches context cal-
culus. Our approach is general, expressive, and flexible. Whereas the three tiers
provide generality through abstraction levels, within tiers 2 and 3 we achieve
regularity and extensionality. For certain types, such as “categorical types”, cat-
egories can be incrementally defined in order to suit the needs of specific applica-
tion in tier 3. We achieve generating a large number of specialized contexts and

12 A. Alsaig et al.

can keep track of them using the family structure. Consequently, context calcu-
lus remain formal and correct with respect to operations associated with types.
It promotes a disciplined approach to generating contexts that are correct with
respect to domain semantics, because the choice of dimensions, attributes, and
their types are essentially guided by domain semantics. As illustrated in Sect. 6
our formal approach can generate all meaningful contexts, whereas in informal
approaches, such as graphical notation, it is possible to identify contexts that
are not meaningful. Consequently context calculus implementation based on our
formalism will be type-correct, leading to dependable toolkit that can be reused.
We are currently working to explore of the algebraic structure of context families,
as well as integrating contexts with Datalog programs for contextual reasoning.
We are currently working on a reasoning system that will serve to infer new
facts from a knowledge-base systems, as well as prove formally whether or not
certain critical behavior is satisfied by context-awareness in pervasive computing
applications.

References

1. Akman, V., Surav, M.: The use of situation theory in context modeling. Comput.
Intell. Int. J. 13(3), 427–438 (1997)

2. Alaga, V., Wan, K.: Context based enforcement of authorization for privacy and
security in identity management. In: de Leeuw, E., Fischer-Hübner, S., Tseng, J.,
Borking, J. (eds.) Policies and Research in Identity Management. The International
Federation for Information Processing, vol. 261, pp. 25–37. Springer, Boston (2008).
https://doi.org/10.1007/978-0-387-77996-6 3

3. Alagar, V., Mohammad, M., Wan, K., Hnaide, S.A.: A framework for developing
context-aware systems. EAI Endorsed Trans. Context-Aware Syst. Appl. 14(1)
(2014). https://doi.org/10.4108/casa.1.1.e2

4. Brèzillon, P., Gonzalez, A.I.: Context in Computing: A Cross-Disciplinary App-
roach to Modeling Real World. Springer, Berlin (2014)

5. Brézillon, P.: Context in human-machine problem solving: a survey. LIP 6(1996),
029 (1996)

6. Carnap, R.: Meaning and Necessity. Chicago University Press, Chicago (1947).
Enlarged Edition 1956

7. Clark, H.H., Carlson, T.B.: Context for comprehension. In: Attention and Perfor-
mance, pp. 313–330. Lawrence Erlbaum Associates, Hillside (1981)

8. Dey, A.K., Abowd, G.D., Salber, D.: A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware applications. Hum.-Comput.
Interact. 16, 97–161 (2001)

9. Dey, A.K.: Understanding and using context. Pers. Ubiquit. Comput. 5(1), 4–7
(2001)

10. Dowley, D., Wall, R., Peters, S.: Introduction to Montague Semantics. Reidel Pub-
lishing Company, Amsterdam (1981)

11. Bettini, C., et al.: A survey of context modelling and reasoning techniques. Perva-
sive Mob. Comput. 6, 161–180 (2009)

12. Garćıa, K., Brézillon, P.: A contextual model of turns for group work. In:
Christiansen, H., Stojanovic, I., Papadopoulos, G.A. (eds.) CONTEXT 2015.
LNCS (LNAI), vol. 9405, pp. 243–256. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-25591-0 18

https://doi.org/10.1007/978-0-387-77996-6_3
https://doi.org/10.4108/casa.1.1.e2
https://doi.org/10.1007/978-3-319-25591-0_18
https://doi.org/10.1007/978-3-319-25591-0_18

Formal Context Representation and Calculus for Context-Aware Computing 13

13. Garćıa, K., Brézillon, P.: Contextual graphs for modeling group interaction. In:
Brézillon, P., Turner, R., Penco, C. (eds.) CONTEXT 2017. LNCS (LNAI), vol.
10257, pp. 151–164. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
57837-8 12

14. Giunchiglia, F.: Contextual reasoning. Epistemologia, special issue on I Linguaggi
e le Macchine 16, 345–364 (1993)

15. Grätzer, S.: Lattice Theory: First Concepts and Distributive Lattices. W. H. Free-
man, San Francisco (1971)

16. Guha, R.V.: Contexts: A Formalization and Some Applications, vol. 101. Stanford
University Stanford (1991)

17. Held, A., Buchholz, S., Schill, A.: Modeling of context information for pervasive
computing applications. In: Proceedings of SCI, pp. 167–180 (2002)

18. Interdisciplinary and Internal Conference Series. Modeling and using context
(1997)

19. McCarthy, J.: Notes on formalizing context (1993)
20. McCarthy, J., Buvac, S.: Formalizing context (expanded notes) (1997)
21. Sato, M., Sakurai, T., Kameyama, Y.: A simply typed context calculus with first-

class environments. In: Proceedings of FLOPs 2001: the 5th International Sympo-
sium on Functional and Logic Programming, pp. 359–374 (2001)

22. Schilit, B., Adams, N., Want, R.: Context-aware computing applications. In: 1994
First Workshop on Mobile Computing Systems and Applications, WMCSA 1994,
pp. 85–90. IEEE (1994)

23. Shoham, Y.: Varieties of context. In: Artificial Intelligence and Mathematical The-
ory of Computation: Papers in Honor of John McCarthy, pp. 393–408 (1991)

24. Wan, K., Alagar, V., Paquet, J.: An architecture for developing context-aware sys-
tems. In: Roth-Berghofer, T.R., Schulz, S., Leake, D.B. (eds.) MRC 2005. LNCS
(LNAI), vol. 3946, pp. 48–61. Springer, Heidelberg (2006). https://doi.org/10.
1007/11740674 4

25. Wan, K.: Lucx: lucid enriched with context. Ph.D. thesis, Concordia University
(2006)

26. Wan, K., Alagar, V., Paquet, J.: A context theory for intensional programming.
In: Workshop on Context Representation and Reasoning (CRR05). Citeseer, Paris,
July 2005

27. Weyhrauch, R.: Prolegomena to a theory of mechanized formal reasoning. Artif.
Intell. 13, 133–170 (1980)

28. Winograd, T.: Architecture for context. Hum.-Comput. Inter. 16, 401–419 (2001)

https://doi.org/10.1007/978-3-319-57837-8_12
https://doi.org/10.1007/978-3-319-57837-8_12
https://doi.org/10.1007/11740674_4
https://doi.org/10.1007/11740674_4

	Formal Context Representation and Calculus for Context-Aware Computing
	1 Introduction
	2 Related Work
	3 Tier 1: Context Schema Representation and Calculus
	3.1 Operations and Calculus
	3.2 Context Schema Lattice

	4 Tier 2: Typed Context Schema Representation and Calculus
	4.1 Typed Context Schema Representation

	5 Tier 3: Context Instance Representation and Calculus
	5.1 Context Instance Representation

	6 Modeling Example
	7 Conclusion
	References

