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Abstract. Design of efficient routing protocols has been a critical issue in
wireless sensor networks with mobile sinks (mWSN). In [1], Yu et al. proposed
a distributed lightweight ring based routing protocol for mWSNs, which builds a
multi-ring based network structure by creating a quasi-polar coordinate system
on the network in order to support efficient ring based routing. However, in [1],
only average case routing performance was reported via simulations. In this
paper, we derive the asymptotical path-length performance of the ring based
routing via extensive analyses. We hope the results reported in this paper can be
helpful for understanding the characteristics of ring based routing.
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1 Introduction

Wireless sensor networks with mobile sinks (mWSN) have the potential to be used in
many applications such as military operations, commercial, patrols, environment
monitoring, and etc. Design and evaluation of mWSNs have received a lot of attention
recently and much work has been carried out [1]. An mWSN typically consists of many
static sensor nodes and one or more mobile sink nodes (MSs). Efficient routing for
achieving high routing performance in mWSNs has been a critical issue.
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Existing routing protocols for mWSNs can be divided into location based protocols
and topology based routing. In location based routing, location information of mobile
sink is used to assist geographical packet forwarding. In [2], an Adaptive Location
Update based Routing Protocol (ALURP) was presented to restrict the scope of
location updates caused by sink mobility to a small area (called destination area) with
slight sacrifice on routing distance performance. The Elastic Routing (ER) protocol [3]
enables a source sensor node to keep obtaining the up-to-date location information of a
mobile sink during its continuous data reporting to the sink. In [4, 5], the authors
focused on how to design efficient location services for providing fresh location
information of a nearby mobile sink to a sensor node with data to report while having
low protocol overhead, where [4] presented a flat location service while [5] presented a
hierarchical location service. Topology based routing protocols can be further divided
into proactive routing protocols (e.g., AVRP [6] and MDRP [7, 8]) and reactive routing
(e.g., TRAIL [6] and DDRP [9]). In proactive routing protocols, data paths from sensor
nodes to mobile sink need to be established and updated from time to time, which can
cause a lot of protocol overhead for route maintenance. In reactive routing protocols,
overhearing on wireless channels (e.g., the passing of an MS in TRAIL [6] and
transmission of a data packet in the neighborhood in DDRP [9]) is often used for path
learning with minimal protocol overhead. When no such overhearing opportunity is
available or previously learnt routes are outdated, random walk has to be triggered.

In [1], Yu et al. proposed an efficient lightweight reactive routing protocol called
R3, which integrates ring-based routing and trail-based routing. R3 does not require
location information to be kept at nodes in the network. In R3, a data packet is
forwarded by using ring-based routing until it reaches a mobile sink or can be for-
warded to a mobile sink along a fresh trail along which the sink moves. To support
efficient ring-based routing/forwarding, R3 builds a multi-ring-based infrastructure on a
multihop wireless sensor network when the network is initially deployed by creating a
quasi-polar coordinate system on the network. When performing packet forwarding on
a particular ring, the next hop leading to the maximum angle progress is chosen until
reaching a mobile sink (or an agent node recruited by a mobile sink, or a fresh trail to
reach a mobile sink). When the searching on a particular ring failed, another ring will
be tried. This process continues until a mobile sink is found or no mobile sink can be
found after pre-determined number of rings are tried. In [1], simulation results show
that the R3 protocol outperforms existing work on average in different scenarios.

However, in [1], only average-case performance was reported. How long a shortest
path along a ring, in the best and worst case, could be is not answered. In this paper, we
shall tackle this issue via extensive analyses. We hope the results reported in this paper
can be helpful for understanding the characteristics of ring based routing in an mWSN.

2 The R3 Protocol

The R3 protocol [1] is a lightweight distributed routing protocol targeted for mWSNs.
The protocol only requires each node keep very limited routing information, which
includes its node id, ring id, angle, gradient, and also its one-hop neighbor list. To
support efficient data routing, R3 adopts ring-based forwarding. More specifically, each
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data packet is forwarded using ring-based forwarding until it reaches a mobile sink.
A ring is formed by a number of nodes, all of which have the same hop distance to a
base ring in the network and are expected to form an annulus for assisting packet
forwarding. Packet forwarding along such an annulus is referred to as ring-based
forwarding.

The network model used in R3 is as follows. A wireless multihop network can be
modelled by G(V, E), where V(G) is constituent of one or multiple mobile sink nodes
and multiple static sensor nodes and E(G) represents the set of links in the network.
Sensor nodes and sink nodes have the same communication range R. For each pair of
nodes u; v 2 V Gð Þ, we have link u; vð Þ 2 E Gð Þ if duv � R; otherwise u; vð Þ 62 E Gð Þ. we
let duv represent the geometrical distance between node u and node v. Each node is
equipped with a omni-directional antenna. Nodes are uniformly deployed in a two-
dimensional sensing field. Each mobile sink node moves randomly and freely in the
sensing field. Nodes do not have their location information.

To support ring-based forwarding, the R3 protocol needs to first build a multi-ring-
based structure on a wireless multihop sensor network when the network is initially
deployed. The ring-based structure creation contains three rounds of (signaling)
flooding operations. The first round of flooding prepares gradient information for
sensor nodes in the WSN. To achieve this goal, a designated root node (e.g., a sensor
node near the center of the WSN, see the node at the center point in Fig. 1 in our
example) is chosen to start the flooding of a signaling message across the network,
which enables each sensor node in the network to learn its hop distance to the des-
ignated root node as its gradient value. The second round of flooding is to build a base
ring and is initiated by a sensor node with gradient of two. This round of flooding
identifies a shortest cycled min-hop path, which tightly embraces a virtual topological
hole that is artificially created in the central area of the network. This cycled shortest
path is treated as the base ring. In the implementation of R3, all the nodes with
gradients 1 and 0 (as identified in the first round of flooding operation) form the virtual
hole. In Fig. 1, all the nodes in the most inner circle form the virtual hole. When
multiple such cycled paths are found, the path leading to the min hop distance is
chosen. In Fig. 1, the yellow nodes form the base ring. Each of the remaining (outer)
rings is constituted of those sensor nodes having the same hop distance to the base ring.
For example, in Fig. 1, all the green nodes have hop distance of one to the base ring.
Similarly, those red, blue, and deepred nodes form each of the remaining outer rings.
The creation of outer rings can be accomplished by a third round of flooding, triggered
by nodes on the base ring. It should be noted that to ease the understanding and also for
simplicity of illustration, in Fig. 1, each ring appears as a circular annulus. However, in
reality, since the distance between different rings are measured in hops instead of
geometrical distance, nodes in a ring does not necessarily form a circular annulus.
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When carrying out ring-based packet forwarding, data packets are forwarded along
nodes on a pre-selected ring along a pre-determined direction (either clockwise
direction or anticlockwise direction). To enable data packets to be able to steadily move
along the same direction and also minimize the path distance, virtual angle information
is assigned to sensor nodes in the network in the following way: Nodes on the base ring
are first assigned with virtual angles based on their positions on the cycled path
(measured by their hop distances to a preselected reference node on the base ring,
which can be randomly selected from nodes on the base ring, all in the same direction).
In Fig. 1, suppose the lower most node in the base ring is chosen as the reference node
with degree 0, then the other eight nodes in the base ring will respectively have degrees
(in the closewise direction): 40°, 80°, 120°,…, 320°. The virtual angles of nodes on
other outer rings are iteratively computed based on the virtual angles of their neighbor
nodes (can also be seen as their farther nodes) on their immediate inner rings. In this
way, a polar coordinate system can be built by assigning each node the following
information: (1) a ring ID based on its distance to the base ring, and (2) a virtual angle.
Such ring based structure is required to be created only once and at the network
initialization phase and accordingly very limited extra protocol overhead is generated.

When performing actual packet forwarding along a selected ring, the next hop
leading to max angle progress (on pre-selected direction, i.e., either clockwise direction
or anti-clockwise direction) is always chosen. This hop by hop packet forwarding
process continues until the packet reaches a mobile sink. A mobile sink can recruit agent
nodes on the ring-based structure, one on each ring, to increase the successful proba-
bility to find mobile sink on a selected ring. When the MS searching process on a chosen
ring fails, another ring will be tried. This process continues until a mobile sink is found
or no mobile sink can be found when pre-determined number of rings are tried. Figure 1
shows how such ring-based forwarding can work for a sensor node A to send a packet to
mobile sink M. For more details regarding how R3 works, please refer to [1].

Extensive simulation results in [1] show that R3 outperforms existing work in
different scenarios. However, [1] only reported R3’s average-case performance. How
long a shortest path by such ring based forwarding, in the best and worst case, could be
is not answered. In this paper, we shall address this issue via extensive analyses.

A

M

Fig. 1. Example illustrating how the R3
protocol works.

Fig. 2. Illustration of the shortest path in
the best case on the k-th ring.
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3 Analytical Results

This section analyzes how long a shortest route along a ring by R3 could be, in the best
and worst case, respectively.

Lemma 1: For a path P ¼ s ¼ 1; 2; 3; . . .;K � 1;K ¼ tð Þ, which is a path on a
particular ring returned by R3, we have: For any nodes x, y 2 P, y� xþ 2, we have
dxy [R. That is, the geometrical distance between any pair of non-neighbor nodes on
P must be larger than R.

This is obvious because otherwise removal of those node(s) sitting between x and
y from path Pwould have led to a shorter path by R3. More specifically, if dxy �R holds,
the decision that node x had not chosen node y as its next hop would have violated R3’s
forwarding policy that each node should choose its neighbor with the maximum angle
progress as its next hop. The holding of Lemma 1 also means that, for each node x 2 P,
we have that node x + 2 and its descendant nodes on P must have left x by at least R+

distance on the anticlockwise side, where R+ equals R plus positive infinitesimal.
Next, we present some results on the length of a shortest path constituent of nodes

on a particular ring. It is easy to derive that, on a very sparse and irregular network, the
length of such a path can be arbitrarily long, i.e., in the worst case, O(|V|). In our
analysis below, we assume that the network is densely distributed such that there exists
a node at arbitrary position. For such a dense network, the width of each ring is
obviously exactly R. Let o represent the common center of all the rings. To ease the
analysis below, with a slight abuse of notation, for the k-th (k� 2) ring, we say it cover
the space between two neighboring concentric circles, both of which are centered at
o but have radius (k − 1)R and kR, respectively. We call the circle with radius (k − 1)
R as its inner circle and the circle with radius kR its outer circle. Obviously, the so-
called base ring identified by R3 is located in the 2nd ring. In our analysis below, we
assume the exact location of each point in the network is known.

Next, we analyze the length of a shortest path to finish the travel (a closed tour)
along a k-th ring (k� 2), in the best and worst case, respectively. The key factor
affecting the length of such a path is the average central angle that each hop on such a
path can cover. To obtain the best-case shortest path, we wish each hop to obtain the
maximum angle progress. In contrast, to obtain the worst-case shortest path, we wish
each hop (on average) to obtain the minimum angle progress. Note that the R3 protocol
pursues short paths whenever available, by using one-hop topological information kept
at each node.

Result 1: A fastest way to finish a closed tour along the k-th ring (k� 2) is that each
hop advances R distance along a circle centered at o with the minimum radius on the
ring, unless the last hop, which may not be that long. Let Nk

min denote the length of the
shortest path in the best case in the k-th ring, we have

Nk
min ¼

2p

cos�1 2 k�1ð Þ2�1
k�1ð Þ2

� �
66664

77775þ 1; 8k� 2: ð1Þ
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Figure 2 illustrates how Nk
min can be obtained. For the k-th ring, its inner circle is a

circle centered at o with a radius (k − 1)R. The maximum angle progress each hop can
make is when two nodes are located on the inner circle and the distance between them
are exactly R. Let hk denote that maximum angle progress that a single hop can obtain
in the k-th ring. Based on the cosine theorem, we have the following equation

hk ¼ cos�1 2 k � 1ð Þ2�1

2 k � 1ð Þ2
 !

; 8k� 2: ð2Þ

It directly follows from the above equation that in the best case, the length of the

shortest path is 2p
hk

j k
þ 1 hops in the k-th ring. Table 1 shows some values of Nk

min.

The deduction of the worst-case length of a shortest path along a ring, however, is
not easy. The key point is how slow we can achieve for traveling along such a ring
along a fixed direction. Lemma 1 puts certain restriction on the slowness of the travel.
Based on how the fastest path is created, an intuition is that at each hop, the path head
node only moves forward R/2 (plus infinitesimal) distance instead of R (as done for
creating the fastest path). This strategy works if we wish to travel along a curve or a
line. We name this strategy as curve-based strategy. However, the worst case for
traveling along a circular slice with certain width can be much worse than that due to
the curve-based strategy because we can take a zigzag path along such a slice. To
illustrate this, we provide such an example in Fig. 3(a).

Table 1. Values of Nk
min.

k 2 3 4 5 6 7

Nk
min

7 13 19 26 32 38

Fig. 3. Cases that equilateral triangles are tightly arranged in an annulus.
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In Fig. 3(a), all the equilateral triangles are arranged on the dashed circle which
makes one vertex of each of the equilateral triangles is on the outer circle of the ring
and their height is exactly

ffiffiffi
3

p
R=2. The side length of all the equilateral triangles is R. In

Fig. 3(b), we further expand every vertex of the equilateral triangles to two nodes with
a distance d between them, where d is positive infinitesimal. Note that in this expanding
process, the length of each segment (A

00
i , A

0
iþ 1), 8i, is also expanded from R to R + d,

all in the same direction. This extra expansion is to keep Lemma 1 not violated in later
path discovery. We are interested in the length of path A0

1A
00
1a

0
1a

00
1A

0
2A

00
2a

0
2a

00
2 . . . . . . as

d!0+ or equivalently, how many such equilateral triangles can be tightly arranged
along the dashed circle. Obviously, traveling in such a zigzag manner and with such
node expansions can lead to a path with a length approximately double to that due to
the previously mentioned curve-based strategy1. We name this way of travel
arrangement as triangle-based strategy. Next, we derive how many equilateral triangles
can be tightly arranged on the dashed circle. Suppose the ring under study is the k-th
ring, then the radius of its inner circle r1 = (k − 1)R. Let x denote the middle point of
line segment A2A3 (see Fig. 3(a)). Consider the triangle A2oA3, we need to calculate its
associated central angle \A2oA3. Note that xo ¼ oa2 � xa2 ¼ kR� ffiffiffi

3
p

R=2. Let a1
represent \A2oA3. We have xA3 ¼ xA2 ¼ R=2. Note \oxA3 is a right angle and
a1 ¼ 2\xoA3, thus

a1 ¼ 2 tan�1 xA3

xo

� �
¼ 2 tan�1 1

2k � ffiffiffi
3

p
� �

ð3Þ

The number of equilateral triangles that can be arranged on the dashed circle in
Fig. 3(a), denoted by M1, is bounded by the following inequality,

2p
a1

� �
�M1 � 2p

a1

	 

: ð4Þ

Since we are interested in the worst case, we choose

M1 ¼ 2p
a1

	 

ð5Þ

Thus, the maximum hops of a shortest path (closed tour) on such a ring due to the
scenario shown in Fig. 3(a) (denoted by N1) is as follows.

N1 ¼ 4�M1 ð6Þ

1 In the analysis, we ignore the impact of the last triangle problem, which may not be well nested there
and thus lead to a few less hops on the worst-case shortest path derived based on number of
equilateral triangles. Since we here focus on how worse, in the extreme case, the length of a shortest
path taken by ring-based routing could be, the impact of the last triangle is ignored. Similar strategy
will also be used in later analysis.
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In the above expansion process, each node can only be expanded to two nodes,
which are infinitely close to each other. Expanding a node to three or more such nodes
will make a path containing such expanded nodes directly violate Lemma 1 and is thus
unacceptable. Also, in Fig. 3, it is seen that the distance between original nodes (i.e.,
those nodes before expansions) should be exactly R (for neighbors) or larger (for non-
neighbors). Let’s again take a look at a triangle DA1a1A2 in Fig. 3(a), increasing A1A2

further will make the triangle unnecessarily cover larger angle or central angle (i.e.,
\A1oA2), which would cause length reduction in the worst-case path; in contrast,
decreasing A1A2 to be smaller than R will cause violation of Lemma 1 because the
distance between the expanded nodes of A1 and those of A2 will be shorter than R. This
is why equilateral triangle can well characterize the relationship among each group of
three original nodes AiaiAiþ 1. In Figs. 3(a) and (b), we have seen the power of
expanding nodes in such a way for creating long paths. The purpose of such expansion
is to maximally slow down the travel along a long slice at each step before proceeding
further and it can easily double the worst-case path length at almost no cost.

Let us proceed to consider another extreme case as shown in Fig. 3(c) which may
lead to a longer worst-case path than that shown in Fig. 3(a). We first place an equi-
lateral triangle a2A2a1 with its two vertices a1a2 located on the outer circle, then we
arrange two additional equilateral triangles, one on each side of Da2A2a1 with a2A2 and
A2a1 as one edge of them, respectively. We then repeat this pattern as shown in Fig. 3
(c). Intuitively, it looks like dragging the nodes a1 and a2 in Fig. 3(a) closer along the
outer circle until their distance is reduced to R. Also, it can be easily derived that
A1a1a2A2 is an equiangular trapezoid. In Fig. 3(d), we expand each vertex in Fig. 3(c)
into two nodes with a distance d in between like we did in Fig. 3(b). We are again
interested in the length of the zigzag path A0

1A
00
1a

0
1a

00
1A

0
2A

00
2a

0
2a

00
2 . . ., and how many

equilateral triangles can be tightly arranged in the k-th ring as d!0+ without violating
Lemma 1. This is decided by the central angle associated with a triangle, which is the
angle a2 ¼ \A2oA3 (see Fig. 3(c)). Let y denote the middle point of line segment a1a2.
Note that \oA2A3 and \oya2 are both right angles, oa2 ¼ kR, and A2A3 ¼ R. Based on
the Pythagorean Theorem, we have

a2 ¼ tan�1 A2A3

A2o
¼ tan�1 Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2R2 � R2

4

q
�

ffiffi
3

p
2 R

¼ tan�1 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2 � 1

p
� ffiffiffi

3
p : ð7Þ

The number of subgraphs that can be arranged in the annulus in Fig. 3(c) in the
worst case, denoted by M2, is as follows.

M2 ¼ 2p
a2

	 

ð8Þ

So the maximum number of hops of a shortest path (closed tour) on a ring due to
the scenario shown in Fig. 3(c) (denoted by N2) is as follows.
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N2 ¼ 4�M2 ð9Þ

By comparing (3) and (7), we have the following lemma:
Lemma 2. a2\a1, for 8k� 2.
Lemma 2 can be easily derived from (3) and (7) by using trigonometry. Following

the Lemma 2, (6), and (9), we have

N1 � N2 8k� 2ð Þ: ð10Þ

It is interesting to ask whether N2 is the length of the shortest path in the worst case.
Figure 4 shows another extreme case such that one side of each of the equilateral
triangles is parallel to a radius of the ring. Intuitively, it looks like pushing nodes a1 and
a2 in Fig. 3(a) together until they merge to one node. Figure 4(a) shows how we
arrange the equilateral triangles. In Fig. 4(a), Ai, Bi, o, 8i, are on the same line. We
group two neighboring equilateral triangles together and called them a subgraph. We
are again interested in how many such subgraphs can be embedded into a circular slice
without violating Lemma 1. In Fig. 4(b), like what we have done in Fig. 3(b), we
expand each vertex of the equilateral triangles into two nodes with a distance d between
them2.

We are interested in the length of path A0
1A

00
1B

0
1B

00
1C

0
1C

00
1A

0
2A

00
2B

0
2B

00
2 . . .. . . when

d!0 + . Note that in Fig. 4(a), lowering down Ci (even slightly) would cause a vio-
lation of Lemma 1 since the distance between Ai and Ci would be smaller than R; In
contrast, moving up a node Ci would unnecessarily increase the central angle
\Aiþ 1oAi. This is the reason why we choose to use equilateral triangles here. Next, we
shall deduce the value of a3. Note that zo ¼ ðk � 0:5ÞR, C1z ¼

ffiffiffi
3

p
R=2, and

\C1zo ¼ p=2. Thus, \C1oz ¼ tan�1ð C1z
k�0:5ð ÞRÞ ¼ tan�1ð

ffiffi
3

p
2k�1Þ. We have

Fig. 4. Cases that equilateral triangles are perpendicular to radius of the ring.

2 Actually, in the expansion, B0
i (8i) should also be put (moved) to the anticlockwise side of line oA00

i

with a distance e = infinitesimal in order to keep A00
i B

0
i � R because all the points on inner circle

actually do not belong to the current ring under study. Because this extra procedure has no (or
negligible) impact on the asymptotical performance, we will not discuss its impact later and simply
assume o, A00

i , B
0
i are on the same line and A00

i B
0
i � R, 8i.
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a3 ¼ \C1oA1 þ\C1oA2 ¼ 2� \C1oz ¼ 2� tan�1ð
ffiffiffi
3

p

2k � 1
Þ: ð11Þ

The number of subgraphs that can be arranged along a circular slice in the worst
case in Fig. 4(a), denoted by M3, is as follows.

M3 ¼ 2p
a3

	 

ð12Þ

Thus, the maximum number of hops of a shortest path (closed tour) on a ring due to
the scenario shown in Fig. 4(a) (denoted by N3) is as follows.

N3 ¼ 6�M3 ð13Þ

Based on (9), (10), and (13), we have a lower bound on the worst-case length of a
shortest path along the k-th ring, denoted by Nk

max, as follows.

Nk
max ¼ max N2;N3f g: ð14Þ

In reality, we may imagine to take a ring tour using quadrilateral style (e.g., squares
with side R). Figure 5(a) shows such a case. However, the scenario in Fig. 5(a) will not
lead to a longer worst-case path than that due to the previously used strategies because
the distance between C1 and B2 is smaller than R such that for each square we can only
visit three of its four vertices, which makes the resulting path shorter than that due to
Fig. 3(a) because the dashed circle in Fig. 3(a) is longer than the inner circle used in
Fig. 5(a) for arranging the squares. Or otherwise, we need to separate the squares in a
way such that the distance between the closest vertices belonging to neighboring
squares is exactly R (see Fig. 5(b)). In this case, a path (tour) can cover all the vertices
of each square. However, it can be easily deduced that such a path is still shorter than
that shown in Fig. 3(a). Note that the scenario shown in Fig. 4(a) can also be explained
as a traversal of a series of identical quadrilaterals if we treat CiBi+1Ci+1Ai+1 (e.g.,
C1B2C2A2) as a quadrilateral and in this case, we traverse two sides and a diagonal of it.
Furthermore, other regular polygons (e.g., pentagon, hexagon, etc.) are not possible to
be embedded into a ring without violating Lemma 1 due to the limited ring width if
their side length is set to R.

Fig. 5. Cases that quadrilaterals are arranged along the inner circle.
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Now, we wish to know how close Nk
max obtained by using (14) is to the worst-case

path length. Regarding this, we have the following. In Figs. 3 and 4, it is seen that the
returned path, if excluding the impact of the last triangle (or called subgraph) problem,
consists of two types of links, type I has length d and type II has length R and these two
types of links appear alternately on the path. The length of each link belonging to type
II needs to be exactly R, or otherwise violation of Lemma 1 will be seen when node
expansion is done. Accordingly, we have the following. For the two endpoints of an
individual link to be expandable, the length of the link must be exactly R, otherwise,
violation of Lemma 1 will be seen. Then, we have the following.

Observation 1: One way for creating the worst-case path is to identify a longest path
consisting of original nodes (i.e., nodes before expansion) while meeting Lemma 1 and
further keeping the distance between each pair of neighbor nodes on the path is exactly
R, and then expand each original node to two nodes as we described earlier. The
resulting path will be the worst-case path falling into our interest.

Observation 2: The worst-case shortest path can be obtained due to a number of
identical subgraphs due to the isotropic property of a ring, if we ignore the last sub-
graph problem. Moreover, each subgraph itself should be symmetric with respect to a
radius of the ring, in which case no extra distance (penalty) for conjunction of
neighboring subgraphs will be introduced; otherwise, extra distance must be taken like
the case in Fig. 5(b). For each of the identical subgraphs, we wish to traverse all its
vertices (in the anticlockwise direction) along its sides and/or diagonals. Each of the
traversed sides/diagonals should have length R for their endpoints to be expandable.

Obviously, all the scenarios shown in Figs. 3, 4, and 5 meet the above observa-
tions. Furthermore, using other types of quadrilateral (e.g., parallelogram, trapezoid,
except those used in Figs. 3(c) and 4(a)) for guiding the tour would not lead to longer
path than that using square (see Fig. 5) or parallelogram (see Fig. 4) since they will
either unnecessarily occupy larger angles or not symmetric such that conjunction of
neighboring such units will cause unnecessary extra costs. In this sense, we have
reached a close lower bound for the longest closed tour using triangles and quadri-
lateral, while other polygons like pentagon, hexagon, etc., will not lead to worse paths
as we discussed earlier. In this sense, we say the Nk

max obtained by (14) is a close lower
bound on the worst-case path length for a closed shortest tour along a ring.

Result 2: Based on (14), it can be easily known that the base ring, in the best case,
contains 7 hops and, in the worst case, it can contain at least 36 hops.

The base ring is a shortest cycled path on the 2nd ring. Based on the results in
Table 1, we can know that the base ring, in the best case, can contain 7 hops. Based on
(9), N2 = 36, and based on (14), N3 = 36. Thus, based on (14), the worst-case length of
the base ring is lower bounded by 36 hops. However, as k exceeds a certain threshold, a
worst-case path due to (9) will be longer than that due to (13). Specifically, when k = 3,
Nk
max ¼ max N2;N3f g ¼ max 64; 60f g ¼ 64; when k = 4, Nk

max ¼ max N2;N3f g ¼
max 84; 78f g ¼ 84. As k increases further, the gap between N2 and N3 will keep
increasing.
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