
Simplicial Complex Reduction Algorithm
for Simplifying WSN’s Topology

Wenyu Ma1, Feng Yan1,2(B), Xuzhou Zuo3, Jin Hu4, Weiwei Xia1,
and Lianfeng Shen1

1 National Mobile Communications Research Laboratory, Southeast University,
Nanjing 210096, China

{mwy,feng.yan,wwxia,lfshen}@seu.edu.cn
2 State key Laboratory of Networking and Switching Technology,

Beijing University of Posts and Telecommunications, Beijing, China
3 School of Information and Software Engineering,

University of Electronic Science and Technology of China, Chengdu 610054, China
zuoxuzhou@uestc.edu.cn

4 724 Research Institute of CSIC, Nanjing 211153, China
hj662@163.com

Abstract. In this paper, a reduction algorithm aiming at simplifying
the topology of wireless sensor networks (WSNs) is proposed. First,
we use simplicial complex as the tool to represent the topology of the
WSNs. Then, we present a reduction algorithm which recurrently deletes
redundant vertices and edges while keeping the homology of the network
invariant. By reducing the number of simplexes, we make the simpli-
cial complex graph nearly planar and easy for computation. Finally, the
performance of the proposed scheme is investigated. Simulations under
different node intensities are presented and the results indicate that the
proposed algorithm performs well in reducing the number of simplexes
under various situations.
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1 Introduction

There is a growing interest in the research of wireless sensor networks due to
the extent of their applications and the progress made in decreasing the costs
and sizes of the sensor nodes. Wireless sensor networks can be applied in bat-
tlefield surveillances, environmental monitoring, target tracing and so on. In
most of these applications, coverage is one crucial factor to ensure the quality
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of service provided by the network. However, in practical situation, sensors are
randomly deployed in the target field and the topology of the network can be
time-variant due to many reasons, such as node destruction or lack of energy.
Thus, the knowledge of the network’s topology and coverage is necessary for
practical applications. Extensive research has been dedicated to coverage prob-
lem in wireless sensor networks and they can be classified into three categories:
location-based, range-based and connectivity-based. Location-based and range-
based approaches need either the precise coordinate information of all sensors or
the distance information between each two neighboring nodes, which are difficult
to obtain and the performance of the algorithms rely heavily on the accuracy
of coordinate and distance measurements. In recent years, connectivity-based
approach attracts particular attention due to its powerful tools for discovering
coverage holes which only using connectivity information.

The connectivity-based approach uses algebraic tools to study the topologi-
cal properties of the network. In this category, Čech complex and Rips complex
are two most useful abstract simplicial complex to study the coverage problem.
The authors in [1] first introduced homology to discover coverage holes by con-
structing Čech complex to represent wireless sensor networks. This approach can
discover the existence and location of the coverage holes accurately. However,
the complexity to compute Čech complex is rather high and may explode with
the size of the simplicial complex. Another simplicial complex named Rips com-
plex is more easily computable, while it may miss some holes. The relationship
between Čech and Rips complexes in terms of coverage holes detection in planar
target field was analyzed in [2], and the author shown that the proportion of
the holes’ area missed by Rips complex is related to the ratio between com-
munication and sensing radius of sensor nodes. In [3], the author presented a
scheme based on combinational Laplacians for coverage verification and local-
ized the coverage holes by formulating the problem as an optimization problem
for computing a sparse generator of the first homology. The authors in [4] intro-
duced a method for detection and localization of coverage holes by processing
information embedded in the hole-equivalent planer graph of the network. In [5],
the author classified coverage holes into triangular and non-triangular holes, and
proposed a connectivity-based algorithm to discover non-triangular holes.

However, the computation complexity of the above algorithms still remain
high for the size of simplicial complex increases sharply with the number of sensor
nodes. In addition, for wireless sensor network with nodes randomly deployed,
there may exist redundant nodes which can be turn off to save energy. Therefore,
we can remove a subset of simplicial complex while keep the homology of the net-
work unchanged. In [6], the author proposed a distributed scheme based on game
theoretic approach for power management. This method need precise coordinate
information which is either impractical or expensive in practical applications.
In [7], a distributed algorithm involved reduction and co-reduction of simplicial
complexes for coverage verification was proposed. The work in [8] removed ver-
tices and edges according to a homology-preserving transformation rule without
changing the homology while making Rips complex sparser and nearly planar.
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In [9] and [10], two reduction algorithms which reduced the number of vertices
while keeping connectivity and coverage unchanged were proposed. However,
both of the schemes need to calculate the k -th Betti number of the network
which is of high computation complexity.

In this paper, we present a reduction algorithm for abstract simplicial com-
plex. The algorithm aims at simplifying the network’s topology while keeping
the connectivity and coverage intact. We simplify the topology of the wireless
sensor network by recurrently deleting vertices according to a strong collapse
approach and remove redundant edges to make the simplicial complex graph
as planar as possible. Simulations under different node intensities are presented
and the results indicate that the proposed algorithm performs well in reducing
the number of simplexes under various situations.

The remainder of the paper is organized as follows. First, we give some def-
initions and properties of simplicial complex and homology in Sect. 2. Then in
Sect. 3, we describe the reduction algorithm in details. The performance of the
proposed scheme is investigated in Sect. 4. Finally, Sect. 5 concludes the paper.

2 Simplicial Complex and Network Models

The wireless sensor network can be denoted as a graph G = (V,E), which
models 2-dimensional information of the network through vertices and edges [11].
Furthermore, graph can be generalized to more generic combinatorial objects
known as simplicial complexes. Given a set of vertices V, a k -simplex σ is an
unordered set {v0,v1,...,vk} ⊆ V , where vi �= vj for all i �= j and k is the
dimension of the simplex. As illustrated in Fig. 1, a 0-simplex is a point, a 1-
simplex is an edge, a 2-simplex is a triangle including its interior and a 3-simplex
is a tetrahedron with its interior included. Any subset of {v0,v1,...,vk} is called
a face of σ. Note that when k > 2, the k -simplexes are no longer planar.

A simplicial complex χ is a collection of simplexes that satisfies the following
conditions.

1. Any face of a simplex from χ is also in χ;
2. The intersection of any two simplexes σ1 and σ2 is a face of both σ1 and σ2.

An abstract simplicial complex is a purely combinatorial description of the
geometric notion of a simplicial complex, and it does not need the second prop-
erty. For simplexes in χ, a maximal simplex is a simplex that is not a face of any
other simplex, which is also called a facet of the complex.

Definition 1 (Rips complex). For a set of vertexes V and a parameter ε, the
Rips complex is the abstract simplicial complex whose k-simplex satisfies that the
(k+1) vertexes are all within the distance ε of each other [12].

Consider a wireless sensor network comprised of a collection of stationary
sensors (also called nodes), nodes are deployed randomly on a planar target field
according to a Poisson point process with intensity λ. All nodes are isomorphic
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Fig. 1. 0-, 1-, 2- and 3-simplex.

and each sensor is capable of monitoring a region within a circle of sensing radius
Rs and communicating with adjacent nodes within its communication radius Rc,
as shown in Fig. 2(a). For any two nodes that locate within the sensing radius of
each other, they are said to be neighbors. Each node u is capable of acquiring
the complete knowledge of its neighbor set Nu. The Rips complex of the wireless
sensor network can be constructed as follows. Each node in the target field can
be denoted as a 0-simplex. For any two neighboring nodes, they can be denoted
as a 1-simplex. For a set of nodes Vk= {v0,v1,...,vk}, they compose a k -simplex
if vi ∈ Nj for any vi, vj ∈ Vk.

Then, the wireless sensor network can be modeled by constructing the corre-
sponding Rips complex, as shown in Fig. 2(b). Note that the induced simplicial
complex graph can be very complicated and non-planar. When analyzing the
coverage, it is not necessary to keep all the information of the simplexes, we can
remove a certain subset of simplicial complex and make the complex as planar as
possible to reduce the computation complexity. It is important to mention that
these deletions of simplexes do not change the homology of the network, which
means the properties of the network such as connectivity, number and size of
coverage holes remain the same.

Fig. 2. The network and the corresponding Rips complex.
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3 Simplical Complex Reduction Algorithm

In this section, we present a reduction algorithm for wireless sensor network,
aiming at simplifying the topology of the network while keeping the homology
invariant. The algorithm consists of two component, node collapse and edge
collapse. Both of these two components only use connectivity information. In
the first component, we delete nodes according to a strong collapse approach.
By deleting several nodes, we reduce the number of simplexes while maintain
the number and size of coverage holes unchanged. In the second component,
we firstly present and prove a corollary that indicates the relations between the
maximal simplexes and the common neighbor set incident to an edge. Then
we propose a scheme to decide whether an edge is dominates by another. The
simplicial complex is further simplified by removing these dominated edges. After
that, there may exist new nodes that can be deleted, and the above two steps
iterates until the simplicial complex stabilizes. The whole process of the reduction
algorithm is illustrated in Fig. 3.

Fig. 3. The algorithm flowchart

3.1 Node Collapse

The strong collapse approach is firstly presented by Barmak and Minian in [13].
The authors introduce the theory of strong homotopy type of simplicial complex,
and the strong homotopy type can be described by elementary moves like strong
collapse. For a vertex u ∈ V , if there exists another node v that every maximal
simplex that containing node u also contains node v, it is considered that node
u is dominated by node v and can be removed. Two theorems introduced in [14]
shows that strong collapse does not change the connectivity and coverage of the
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network, as well as the number and location of the coverage holes. We define the
size of a coverage holes in Definition 2. As illustrated in Fig. 2(b), the size of the
coverage hole on the left is 6 and the one on the right is 5 according to length of
the shortest path around each hole. We can know from Theorem2 that strong
collapse also keep the size of the coverage holes invariant.

Theorem 1. The strong collapse leaves the homology of the complex
unchanged [14].

Theorem 2. The strong collapse preserves at least one of the shortest paths
around each coverage hole in the network [14].

Definition 2 (Size of the coverage hole). For a coverage hole in the network,
the size of the hole is the length of the shortest path that bordering the hole.

In [15], the authors prove that for two neighboring nodes u and v, every
maximal simplex incident to u is also incident to v if and only if Nu belongs to
Nv. Thus, we can decide whether a node u is dominated by one of its adjacent
nodes through comparing their neighbor nodes set.

Firstly, we construct the corresponding Rips complex of the network, which
only using the connectivity information. We can see from Fig. 2(b) that for any
edge uv that has at most one neighbor, the edge locates beside a boundary hole.
We call these edges as boundary edges and the nodes that compose them as bound-
ary nodes. For these special nodes and edges, we mark them with a label and the
labeled edges and nodes cannot be deleted. Then, for each unlabeled node u ∈ V ,
check whether there exists a node v that is adjacent to all neighbors of node u. If
node v dominates node u, remove node u and all the simplexes that containing
node u. Note that a node can be dominated by several different nodes at the same
time, we choose the node with the most neighbors as the domination node and it
cannot be deleted in the current round of strong collapse. The corresponding Rips
complex of the network after the first strong collapse is shown in Fig. 4.

Algorithm 1. Node Collapse
1: for each active interior node u do
2: vdom = 0
3: Nvdom

= ∅
4: if u is not labeled and u is not a domination node then
5: Nu = {vj} is the immediate neighbors of node u
6: for j = 1 → m do

7: if Nu ⊆ Nvj
and

∣
∣
∣Nvj

∣
∣
∣ >

∣
∣Nvdom

∣
∣ then

8: vj → vdom

9: end if
10: end for
11: if vdom �= 0 then
12: node vdom dominates node u
13: mark node u for removal and node vdom for domination node
14: update the neighbor set of node u’s neighbors
15: end if
16: end if
17: end for
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Algorithm 2. Edge Collapse
1: for each unlabeled edge uv do
2: Nuv is the common neighbor of node u and v
3: if edge uv is only incident to one maximal simplex then
4: continue
5: else
6: for each two node vi, vj ∈ {Nuv/{u, v}} do
7: if vi ∈ Nvj

and edge vivj is not a domination edge then

8: if Nuv ⊆ Nvivj
then

9: edge uv is dominated by edge vivj

10: mark edge uv for removal and vivj for domination edge
11: update neighbor set of node u and v
12: end if
13: end if
14: end for
15: end if
16: end for

3.2 Edge Collapse

After the strong collapse for nodes, the Rips complex of the network are simpli-
fied to a certain extent. However, as shown in Fig. 4, there still remains many
overlapped simplexes. In the second component, we proposed a scheme for delet-
ing edges, i.e. the 1-simplexes in the complex.

We extend the strong collapse approach for 1-simplex. For an edge uv, we
say a different edge wx dominates uv if every maximal simplexes that contains
uv also contains wx. Note that edge uv and wx do not share common nodes.
Similar to the theorem given in [15], we can reach to the following corollary,
where Nuv denotes for the union set of {u, v} and common neighbors of node u
and v.

Corollary 1. For two edges uv and wx without common nodes, Nuv belongs to
Nwx if and only if every maximal simplex that contains edge uv also contains
edge wx.

Proof: (⇒) Let Δ be a maximal simplex that incident to edge uv, without loss
of generality, Δ = {v1, v2, ..., vn, u, v}. We have vi ∈ Nuv for every i = 1, 2, ..., n.
According to the assumption, vi also belongs to Nwx for every i = 1, 2, ..., n, so
{w, x}∪Δ is a simplex incident to edge uv. While Δ is a maximal simplex of edge
uv, we have {w, x}∪Δ ⊆ Δ, which means there exist different j, k ∈ {1, 2, 3, ..., n}
for which vj = w and vk = x. Therefore Δ also contains edge wx.

(⇐) Let Δ be a maximal simplex that incident to edge uv, any two nodes in
the simplex are neighbors of each other. According to the assumption, edge wx
is also in the simplex, thus node w and x are common neighbors of edge uv. For
any node vi belongs to Nuv, there is at least one maximal simplex Δi of edge
uv that contains node vi, i.e. {u, v, vi} = σj ⊆ Δi, since edge wx is also in Δi,
we have {w, x, vi} = σj ⊆ Δi, and so Nuv belongs to Nwx.

If an edge wx dominates uv, edge uv and the simplexes incident to it can
all be removed without creating new coverage holes. However, it is important
to mention that unlike strong collapse for nodes, removing edges that locate
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adjacent to a coverage hole may enlarge the size of the hole. The proposed
scheme aims at reducing the number of simplexes to make the simplicial complex
planar, while keeping the size of the coverage holes invariant as far as possible.
Therefore, a few more restrictions need to be draw when we decide whether an
edge is dominated by others and can be removed, and avoid mistaken deletion
of edges that neighboring coverage holes as far as possible.

For all of the unlabeled edges, we calculate the number and dimension of
maximal simplex incident to the edge. If the edge only has one maximal simplex,
we do not delete the edge. The remaining edges are checked whether there exists
a dominating edge. All edges that are dominated by another edge are deleted
and the corresponding dominating edge cannot be deleted in the current round
of edge collapse.

After the edge collapse, there may exists more nodes that can be collapse,
the node and edge collapse processes iterate until the complex stabilizes. After
several rounds of collapse, the stable simplicial complex of the network is shown
in Fig. 5. It can be observed from the figure that the complex are simplified to
nearly planar.

Fig. 4. The Rips complex after the first
node collapse.

Fig. 5. The stabilized simplicial com-
plex after collapse.

4 Simulation and Performance Evaluation

In this section, complexity of the proposed algorithm will be analyzed and per-
formance of the algorithm will be presented.

4.1 Complexity Analysis

In the node collapse component, each node need to determine whether there
exists a dominating node by checking all of its neighbors. Complexity of this step
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is O(n), where n is the number of neighbors of each node. In the edge collapse
component, each edge firstly need to check whether it is incident to only one
maximal simplex. This can be achieved by checking whether there exists two
nodes in the neighbor set of the edge that are not neighbors of each other. In
the worst case, computation complexity of this step is O(n2). Then, for all edges
that are incident to more than one maximal simplexes, each of them needs to
determine whether there exists an edge that dominates it, and complexity of
this step is O(n2). Therefore, the overall complexity of edge collapse component
is O(n2). The total worst-case computation complexity in each round of the
proposed algorithm is O(n2), where n is the average number of neighboring
nodes.

4.2 Performance Evaluation

The algorithm is simulated with MATLAB and we choose a square area of
60 × 60 m2 to be the target field. The sensing radius of each node is set to be
10 m and the communication radius is 20 m. Sensors are deployed randomly in
the target field according to a Poisson point process with intensity λ, and the
algorithm also works for other random distributions.

Figure 6 illustrates the average number of different dimensional simplexes
before and after the reduction algorithm (RA), in which 100 different simulations
are performed under average number of nodes 35. It shows that the proposed
algorithm can reduce a significant number of different dimensional simplexes in
the network, especially simplexes with higher dimension.
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Fig. 6. Numbers of different dimen-
sional simplexes before and after reduc-
tion algorithm under average number
of nodes 35.
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before and after reduction algorithm
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Figure 7 shows the average number of 0-simplex and 1-simplex before and
after conducting the algorithm, simulations are implemented under various node
densities for evaluating the different performance of the proposed algorithm. For
each node density, 100 different simulations are performed. It is shown in Fig. 7
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that the reduction algorithm can reduce more than 60% of nodes (0-simplex) in
the original network under different situations. The number of edges (1-simplex)
in the original network raises sharply with the increase of nodes, while there
is only a slight increase in the number of remaining edges after the reduction
algorithm.

5 Conclusion

In this paper, we propose an efficient reduction algorithm for wireless sensor
network, which only uses connectivity information. The proposed algorithm sim-
plifies the corresponding Rips complex of the network by recurrently deleting
vertices and edges, while keep the coverage and hole locations invariant. The
algorithm is simulated under different node intensities, and the results show
that the algorithm can reduce a significant number of different dimensional sim-
plexes under various node intensities. The complexity of our algorithm is O(n2),
where n is the number of neighboring nodes.
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