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Abstract. WebRTC is an open source project which enables real-time
communication within web browsers. It facilitates web-based multimedia
applications, e.g. video conferencing and receives great interest from the
academia. Nevertheless understanding of quality of experience (QoE) for
the WebRTC video applications in wireless environment is still desired.
For the QoE metric, we focus on the widely accepted video freezing
event. We propose to identify a freezing event by comparing the interval
of receiving time between two successive video frames, named F-Gap,
with a threshold. To enable automatically tracking of video freezing, we
modify the original WebRtc protocol to punch receiving timestamp on
the frame overhead. Furthermore, we evaluate the correlation between
video freezing and quality of service (QoS) in WiFi network based on
experiments in typical indoor environment. We build a machine learning
model to infer whether QoE is unacceptable or not in the next time
window based on current QoS metrics. Experiments verify that the model
has good accuracy and the QoE state is mainly relevant to quality metrics
of Round-Trip Time, Link Quality and RSSI. This model is helpful to
highlight the providers in system design and improve user experience via
avoiding bad QoE in advance.
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1 Introduction

Wireless video real-time communication (RTC) is becoming a killer applica-
tion on mobile devices, such as Apple Facetime, Google Hangout, and Microsoft
Skype, etc. Evaluation results of these applications are reported in [1]. Recently,
the open source project WebRTC which enables RTC within webpages, has
received great interest from both academic and industry. Most popular web
browsers support WebRTC without the needs of installing extra software or
plugin.
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WebRTC also attracts academic interest, such as implementation schemes
of WebRTC [2], the congestion control mechanism for WebRTC [3], and video
conferencing system design [4,5] based on WebRTC for general realtime com-
munication or specialized purpose like tele-health. However, understandings of
QoE for WebRTC video or RTC video is still limited [6] due to tediousness of
the traditional methods of measuring user experience (e.g., MOS) corresponding
to video quality (e.g., Peak Signal-to-Noise Ratio). Nowadays with the previl-
lance of online service, it is widely accepted to characterize QoE with objective
quality metrics, e.g., buffering rate or bitrate [7], which are easily to obtained in
a large scale. Authors of [8] analyzed performance of WebRTC video in terms of
throughput, jitter, and packet loss under different LTE scenarios. Authors of [9]
focused on the comparison of smartphone configurations (e.g., CPU) on quality
ratings under WiFi network. A recent study reported that the freezing event is
an indicator of QoE that users care most [10]. Thus, in this paper, we focus on
the occurence possibility of freezing event as a metric of WebRTC video QoE.

To predict WebRTC video freezing in WiFi networks, we need to answer the
following three questions:

(1) How to identify and track WebRTC video freezing? Answer to this question
is the first step for the prediction. We find that the time interval between
two successively received frames, named F-Gap, can serve as a proper metric
to identify a freezing event. However, it is non-trivial to obtain the value of
F-Gap as WebRtc provides sending timestamps instead of receiving ones,
but the sending time cannot be used due to the delay variance. Authors of
[11] proposed to camera video playing screen with a stopwatch setting aside
as timestamps and recover the timing text of each frame from the camera
records with OCR (optical character recognition) tool afterwards. Thanks
to the openness of WebRTC, we modify the original WebRtc protocol to
insert receiving timestamps at each frame to enable the metric F-Gap to be
obtained directly and the video freezing event to be identified in realtime.

(2) How to build comprehensive measurements to evaluate the correlation of
video QoE state with wireless quality? To make this evaluation effective,
we systematically design and conduct extensive measurement experiments
in a typical indoor WiFi environment. During the experiments, we collect
the values of F-Gap and two types of network QoS metrics: (a) wireless
signal/link quality metrics, including Signal Quality, received signal strength
indicator (RSSI), etc.; (b) network data transfer quality metrics, including
packet loss rate and Round Trip Time. QoE state can be further inferred
based on setting a proper threshold for the F-Gap.

(3) How to predict QoE state of whether WebRTC’s video freezing is unaccept-
able from wireless network’s QoS metrics? Based on the observation that
wireless network quality correlates with the QoE state of whether the freez-
ing ratio is unacceptable, we propose a practical model predicating video
freezing event in the next time window based on the quality in current time
window. This model can be used for the system to adjust service strategy in
real time during a video call or for the user to avoid to access to the service
if a freezing is predicted.
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Fig. 1. Indoor measurement environment

In a word, our freezing evaluation method, measurement observation, and
prediction model provide valuable insights for improving performance of wire-
less WebRTC-based video communication system. The remain of this paper is
organized as follows. Section 2 describes our experimental methodology. Section 3
introduces our measurement results and the correlation analysis of the wireless
network quality metrics and the proposed QoE metric in terms of video freezing
state. Section 4 presents the freezing prediction model. Section 5 concludes this
paper.

2 Measurement Methodology and Metrics

2.1 Testbed and Experiment Datasets

In this paper, we focus on the typical two-party WebRTC video chat widely
used by users in WiFi environment. We set up a testbed consisting of laptops
and a 802.11n wireless LAN AP. We modify the official open-source reference
protocol of WebRTC to enable monitoring of video freezing events and network
quality. We design another program to collect wireless quality. To ensure that
the transmitted video contents are consistent and repeatable, we choose a high-
definition (HD) video sequence Big Buck Bunny, widely used in video-related
research, as the video sourceas. We inject this video sequence into WebRTC
clients with a virtual video camera tool1.

As most RTC communication takes place indoors with WiFi access, we con-
sider the typical office usage environment and multi-room home environment as
shown in Fig. 1. The AP is placed in room C. The white thick lines are the walls
between rooms, and the gray blocks are our experiment spaces. Room A to D
are typical office rooms with desks, chairs, computers, and other office supplies.
Besides, each room is covered by several other WiFi APs which work in channels
that different from our AP. We conducted independent experiments at each seat
in these rooms within the AP’s signal coverage range. We also divided the space
of corridor (i.e., area E) into 62 blocks with of similar size and conducted 10
1 e2eSoft. http://www.e2esoft.cn/vcam/.

http://www.e2esoft.cn/vcam/
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Fig. 2. Distribution of measured wireless network quality metrics.

experiments in each block. Totally we have 620 groups of basic experimental
data.

Moreover, we invited 10 volunteers to conduct extra experiments with the
following changes compared to the above basic experiments: (1) Use another AP
of different type; (2) Play another video sequence with plentiful facial expres-
sion change; (3) Each student conducted 20 groups of experiments in random
positions and accessed to the video sequence with his/her own laptop. Finally,
we choose 50 groups of data with freezing events among these 200 groups of
experiments as the extra dataset to verify our model.

2.2 Wireless Network Quality Metrics

To characterize the wireless network quality, we use the following metrics.

– Wireless signal/link quality metrics: We use all wireless physical layer metrics
reported by Microsoft Windows 7 OS through its API, including received
signal strength indicator (RSSI), Signal Quality (SQ), and Link Quality (LQ).

– UDP transportation quality metrics. As video transportation in WebRTC
uses RTP over UDP, we measure Packet Loss Rate (Loss) and RTT.

The cumulative distribution function (CDF) for each wireless network quality
metric is shown in Fig. 2. Our measurement covers a wide range of wireless
network conditions. For instance, Fig. 2(c) shows the RSSI ranges from −70 dB
to 0 dB, which is the general working range of WiFi network. Likewise, each of
other metrics covers working range respectively as shown. Such a result verifies
the effectiveness and generality of our measurement methodology.

2.3 QoE Metrics in Terms of Video Freezing

It is widely accepted that users of video services mainly care about the per-
cepted fluency and clarity of video. Video’s Structural SIMilarity (SSIM) index
of a received frame with the transmitted frame is newly accepted metric of video
clarity. However it is impossible to measure SSIM at a receiver client in a real-
time scenario. On the other hand, video fluency in terms of freezing ratio is
feasible to be measured with our modification of the WebRtc protocol by adding
a timestamp of receiving time at the receiver side.
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To identify a video freezing event, we first propose a metric F-Gap. We define
F-Gap to be the time interval or gap between two consecutively received video
frames. Then we compare it with the visual quality metrics. We find that the
F-Gap is a good video freezing indicator. For a WebRTC video with frame rate
of 30 frames/second, the regular interval of two successive frames is 33 ms. When
the F-Gap is longer than 33 ms, there are some frames delayed or lost. Due to
the limited visual sensitivity of human, short pause between two consecutive
frames cannot be sensed by human. Therefore, the detection of freezing event
is equivalent to find when the F-GAP is larger than a threshold. Specifically, to
determine this threshold value, we ask volunteers to label freezing events they
felt, and find that F-Gap of 1 s can be felt visually by human. Thus, We say it
is “Freezing” when F-Gap >1 s, otherwise, we say it is “No Freezing”.

We find that the F-Gap is correlated to video’s Structural SIMilarity (SSIM)
index.the freezing time approaches 20% of a session, SSIM would degrade about
0.172. This is because when the network condition is worsen, the video sender will
decrease its video encoding rate to ensure the communication smooth. Besides,
we change the threshold for F-Gap to 0.5 s, 2 s, 3 s, . . . , 10 s, and find that such
correlation between F-Gap and SSIM remains the same. This reveals that the
F-Gap metric reflects the visual quality partially. Hence it is proper to choose
the F-Gap to as the metric to identifying freezing.

Furthermore, the duration of freezing events in a time window above a frac-
tion, say 10% or 30%, of the window is often considered unacceptable QoE. For
the prediction of QoE, it is not feasible to make an realtime estimation of the
exact time when a freezing occurs. Instead, we will show that it is feasible to
make an prediction about whether the QoE is unacceptable or not in the next
time window of some length, say 10 s.

3 Correlation Between Wireless Network QoS and Video
Freezing

3.1 Statistical Perspective

In this section, we intend to find proper perspective to evaluate the relationship
between WebRTC’s user freezing and wireless network’s quality metrics. Figure 3
plots the temporal variance of the five QoS metrics for an experiment conducted
at a position in room B for 5 min. For clearness, we show parts of the result
from 210 s to 260 s. The Freezing and No Freezing events are marked with blue
‘*’ and black ‘o’, respectively. As shown in Fig. 3, the occurrence of Freezing
event seems correlated with wireless network QoS. For instance, the Freezing
seems correlated with wireless network QoS degradations, e.g. low RSSI and
link quality (LQ). However, such a perspective on a single experiment cannot
support drawing significant observation.

We then evaluate the correlation of wireless network quality metrics with
video freezing statistically in all experiments. To obtain a macroscopic analy-
sis of all experiments, we define a session (or a time window) of a video is of
unacceptable QoE if the ratio of freezing time is greater than 30% of the whole
session (or window).
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Fig. 3. Variances of wireless network QoS metrics in one experiment.

3.2 Feature Importance: Relative Information Gain

We then calculate the relative information gain [10] of the mean and variance
of the five wireless network QoS metrics to F-Gap unacceptable indicator of all
experiments, respectively. More specifically, Y denotes the random variable of
QoE state (unacceptable, acceptable), X denotes the random variable of a QoS
metric. For each random variable X for a QoS metric, we calculate the relative
information gain (RIG) of Y against X as

RIG(Y |X) =
H(Y ) −H(Y |X)

H(Y )
,

where H(Y ) is the entropy of random variable Y and H(Y |X) is the conditional
entropy of Y given random variable X. The relative information gain quantifies
how much uncertainty of knowing the F-Gap is unacceptable or not is reduced
by wireless network QoS metrics. The higher the information gain, the more
correlated the QoS metric is to the QoE state. Table 1 shows the result.

As shown in Table 1, the relative information gain of QoE state against the
variance of RTT, the mean of RTT and variance of link quality are 0.136, 0.087
and 0.082 respectively. Thus, we conclude that the video freezing relates to the
wireless network quality metrics, in particular the variance of RTT. Such a result
suggests that the current WebRTC’s video freezing problem is mainly due to
the volatility of RTT. This finding is reasonable. Although WebRTC congestion
control algorithm adjusts the video streaming rate for fluency partially based on
variance of network latency, it cannot remedy excessive churns. However, none
single QoS metric is strong enough to predicet QoE state so that we will choose
to use these metrics integratedly to predict QoE state.
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Table 1. RIG of network QoS
metrics vs. QoE state.

Feature RIG

RTT−V ariance 0.136

RTT−Mean 0.087

Link Quality−V ariance 0.082

RSSI−Mean 0.040

Link Quality−Mean 0.035

Signal Quality−V ariance 0.031

RSSI−V ariance 0.026

Signal Quality−Mean 0.017

Packet Loss−Mean 0.012

Packet Loss−V ariance 0.009

Table 2. Feature importance of QoE
models.

Feature Importance

RTT−V ariance 0.23

RTT−Mean 0.22

RSSI−Mean 0.15

Link Quality−Mean 0.13

Link Quality−V ariance 0.07

Signal Quality−Mean 0.07

RSSI−V ariance 0.05

Packet Loss−V ariance 0.04

Packet Loss−Mean 0.03

Signal Quality−V ariance 0.01

4 WebRTC Video Freezing Prediction Model

4.1 Model

We intend to build a machine learning model to predict the video freezing of a
user’s WebRTC video communication session from the wireless network quality
metrics. An intuitive idea is to map the QoS metrics into the QoE state in same
time window via training a classifier. However, such mapping is not effective in
practice as it leave no time for making a scheduling decision accordingly and
further deploying it. Hence, to make the prediction feasible and helpful in the
network scheduling in practice, we intend to design a model to predict the QoE
state in the future with present QoS condition considering the self-correlation of
each metric to itself.

We propose a video freezing prediction model as follows. We use the measured
wireless network QoS metrics in a current time window (say window A) to predict
the video F-Gap unacceptable event in the next time window (say window B), as
shown in Fig. 4. In Window A the wireless network quality metrics is collected
historically for predicting the QoE in the next window, i.e. the Window B. As
WebRTC use a 10-s video jitter buffer at the receiver side, we use 10 s as the size
of window B. We can investigate the size of window A to obtain best prediction
performance in our model training. The training and prediction can be done
online. During a user’s video communication process, we can keep collecting
wireless network quality metrics, predicting freezing extent in the next time
window, which can be used to in WebRTC’s rate control algorithm to improve
video playback continuity. Moreover, a WebRTC video call is started up at the
magnitude of seconds for establishing connection. Therefore we can use the short
window in the maganitude of seconds to estimate the QoE state for users and
even make a space for making scheduling decision. This will be verified with the
experiment results shown in Fig. 5.
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Fig. 4. Prediction window mechanism.

4.2 Performance

We use the wireless network quality features listed in Table 2 to train our video
freezing model. For each window, we calculate the mean and variance of each
metric, and then use them as the features. Thus, we totally have 10 features.
Besides, we mix the basic dataset and the extra-dataset into an integrated
dataset, 80% data are randomly selected as the training set and the remain-
ing are used as testing set.

We use Decision Trees (DTs), Random Forests (RandF), Support Vector
Machines (SVM) and Extra-Trees classifier (ExtraT) to train our models and
compare their performance. We evaluate the effectiveness of classification meth-
ods in terms of the following indexs: Precision, Recall and F 1 score [12]. Among
them, we use F1 score as the main metric, as it is a comprehensive index which
includes precision and recall. Moreover, the prediction accuracy of QoE bad is
more important to avoid users’ frustration of wrong prediction. Thus, we mainly
compare the algorithms’ F1 score of QoE bad prediction results, and our results
show the Random Forests method has the highest F1 score for QoE bad pre-
diction. After extensive experiments, we find that F1 score returned by SVM is
always below 0.3 and the performance of Extra-Trees and Decision Tree fluctu-
ates widely with the size of sliding window A. Based on comparison, Random
Forests method performs well and stably. Such a result is reasonable as Random
Forests is ensembles of a number of decision trees and is the most successful
general-purpose algorithm [13]. Thus, we finally select Random Forests model.

Figure 5 plots the performance of the Random Forests model against the size
of sliding window. As shown in Fig. 5, as the size of sliding window A increases
from 5 s to 120 s, the F1 score of the prediction model gradually increases, mean-
ing the model performs better when using more historical data. When the win-
dow size is of 5 s, the precision, recall and F1 score are 87.3%, 60.8% and 7.21
respectively. When the widow size is larger than 17 s, the precision, recall and F1

score keep relatively stable and larger than 90%, 80% and 0.8, which means the
model is of high accuracy. For instance, when the window size is 20 s, the preci-
sion, recall and F1 score of the model are 99.6%, 74.4%, and 0.84, respectively.
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Fig. 5. Performance of QoE prediction model versus the size of Window A.

Thus, in practice, we suggest that the size of sliding window can be selected in
the range from 20 to 30 s.

We list the features’ importance of the Random Forests model in Table 2.
As shown in Table 2, the RTT mean and variance are of top importance. Link
quality and RSSI are also important metrics which represent quality on network
level and physical level respectively.

5 Conclusions

In this paper, we studied the problem of accurate prediction of user video QoE of
WebRTC in WiFi networks. First, we proposed a new, simple, and efficient QoE
metric which is based on the time interval between two successive video frames.
Second, we conducted 620 basic experiments and some extra experiments in an
indoor WiFi environment and showed the strong correlation of WebRTC user
QoE with wireless network QoS metrics. Finally, we built a machine learning
models to predict a user’s WebRTC video communication QoE state based on
the current wireless network measurement results. The model can be used by a
system to adjust its servicing strategy in real-time during a video call. Exper-
imental result demonstrated that the model is accurate, with F1 scores above
0.7 with 5 s of measurements and .84 with 20 s of measurements. Moreover, our
analysis results and models clearly show that the current WebRTC implemen-
tation’s QoE problem is mainly due to volatility of RTT. Our QoE evaluation
method, analysis results, and prediction models provide valuable insights for
wireless WebRTC video communication system design.

For more parameter settings, such as values of several thresholds, and the
model targetted for multi-party meeting senario, we plan to make more investi-
gation in the future work.



Predicting Freezing of WebRTC Videos in WiFi Networks 301

References

1. Sun, W., Qin, X.: End-to-end delay analysis of wechat video call service in live
DC-HSPA+ network. In: Proceedings of International Conference on 6th Wireless
Communications and Signal Processing (WCSP), Heifei, China, pp. 1–5. IEEE
(2014)

2. Taheri, S., et al.: WebRTCbench: a benchmark for performance assessment of
webRTC implementations. In: Proceedings of 13th Embedded Systems For Real-
time Multimedia (ESTIMedia), Amsterdam, Netherlands, pp. 1–7. IEEE (2015)

3. De Cicco, L., Carlucci, G., Mascolo, S.: Experimental investigation of the Google
congestion control for real-time flows. In: 1st Proceedings of the ACM SIGCOMM
Workshop on Future Human-Centric Multimedia Networking, Hong Kong, China,
pp. 21–26. ACM (2013)
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