
HACIT2: A Privacy Preserving, Region
Based and Blockchain Application for
Dynamic Navigation and Forensics in

VANET

Decoster Kevin(B) and Billard David

University of Applied Sciences Western Switzerland in Geneva - HES-SO, Geneva,
Switzerland

{kevin.decoster,david.billard}@hesge.ch

Abstract. The current architecture for VANET related services relies
on a Client-Server approach and leads to numerous drawbacks. Among
them, data privacy concerns and service availability are of prime impor-
tance. Indeed, user data collected and stored in servers by providers may
be used by third-party services. Particularly for navigation, users sub-
mit their GPS position in order to obtain road traffic information and
alternative paths. These services treat user privacy for their own pur-
pose (commercial or not) (Beresford and Stajano, 2004) even if GPRD
(European Parliament, 2014) is now enforced in Europe. We propose
an innovative approach using blockchain technology to avoid the use of
third parties services, which enable dynamic navigation rerouting within
a fixed geographic zone while ensuring user anonymity. Furthermore, the
approach will allow for legal authority to enable forensic analysis of the
ledger without unnecessary violation of the user anonymity and privacy.

Keywords: VANET · Raspberry Pi · Android
Navigation · Hyperledger Fabric · Privacy · Blockchain · Forensics

1 Introduction

While many services offer dynamic rerouting navigation based on collaborative
data (such as Google maps), none grants the user with a total control of its
data. The proof of concept presented in this paper focuses on the collaboration
of intelligent cars for determining the best driving route and avoiding traffic jams
similarly to what current services do, but without the use of a central Internet
service. By forbidding the use of centralized services like Google Maps or Tomtom
Go Mobile, the traffic state shared by every users is kept at every peer’s side in
the form of a shared ledger. This ledger is updated using a consensus algorithm
which guarantees that all peers share the same blockchain. Using the cellular
network, a user can submit a transaction containing the newly measured road

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

J. Zheng et al. (Eds.): ADHOCNETS 2018, LNICST 258, pp. 225–236, 2019.

https://doi.org/10.1007/978-3-030-05888-3_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05888-3_21&domain=pdf
https://doi.org/10.1007/978-3-030-05888-3_21


226 D. Kevin and B. David

speed in order to update the ledger. Besides, using the event system of the peers,
a user can listen for newly submitted transactions and, if necessary, updates its
current navigation instructions by computing the new shortest path given the
current road weight states. The proposed project is currently being implemented
using the IBM blockchain framework (IBM, 2017) on top of Hyperledger Fabric
developed by the Linux Foundation (linux Foundation, 2016), which enable an
extensive framework for blockchain technology implementation.

The challenge of this approach is the feasibility of the communication and
computing in the mobile device. Indeed, running a blockchain node requires
computations and communication capacities which can lead to difficulties in a
dynamic mobile network. We will discuss the pros and cons and propose a system
using an external device such as a Raspberry Pi to delegate the computing and
the storage of the peer client. A consequent part consists in designing an efficient
communication protocol between the mobile device and the computing unit.

To handle the geographic graph, OpenStreetMap (OpenStreetMap contrib-
utors, 2017) files, GraphHopper Java library (Graphhopper dev, 2017) and
OSMAnd Android library (OSMAnd dev, 2017) are respectively used for the
map file, the graph handler and the dynamic navigation UI on Android.

Finally, using this innovative approach, the application can enable forensics
capabilities. As a matter of fact, legal officers should access navigation path in
the immutable ledger without violating user anonymity. For instance, we can
foresee that in case of an accident, a user would have an interest to prove its
behaviour. This is possible using the data transaction chain.

2 Related Work

The problem of navigation in VANET using only local information has been
widely studied this last decade. For instance, the authors of (Wang et al., 2017)
propose an anonymous and secure navigation schemes in VANET. While they
satisfy all requirements for security and privacy, they still assume the use of third
parties as Trusted Authorities (TA) to de-anonymize the car ids. Furthermore,
they use direct vehicle communication (through Wifi or radio wave communica-
tion) within a dynamic ad-hoc network and as a result, only partial and local
information regarding the traffic is shared among moving nodes, as opposed to
a system that centralizes all road traffic information such as Google Map.

To the best of our knowledge, although the security in VANET is a well-
researched field (Raya and Hubaux, 2007), no paper fully addresses the forensics
concern. Indeed, no work already proposes a system enabling dynamic rerout-
ing and forensics for the mobile device using a fully implemented blockchain
technology. For instance, (Leiding et al., 2016) uses blockchain in VANET. How-
ever, they use it for monetary applications such as an automatic smart contract
for insurance or tolling and uses Ethereum to host the smart contracts (see
(Wood, 2014)). Without the need for a monetary support (and thus proof of
work through mining), our blockchain can achieve consensus without compu-
tationally expensive proof-of-work, for instance with Practical Byzantine Fault
tolerance (PBFT) algorithm.



HACIT2 227

3 Hyperledger Fabric

Hyperledger Fabric (HF), developed by the Linux Foundation, proposes a frame-
work for developing permissioned blockchain technology. As opposed to bitcoin
network, the access to the blockchain is controlled by an entity called the Mem-
bership Service Provider, which grant access to users and peers with the crypto-
graphic material (certificate and keys) delivered by a certificate authority (CA).

The blockchain includes a ledger of transactions but also a representation
of the world state through a key-value database. Access, queries, modifications
and Smart contract are defined using the blockchain rule called Chaincode. This
allows efficiently querying and modifying the dataset without having to analyse
the whole chained data transactions.

We distinguish 3 different types of nodes:

– Peers: a basic node which stores an up-to-date copy of the ledger and chain-
code rules. It continuously keeps tracks of information through the gossip
protocol running among all peers, see (Shah et al., 2009).

– Client (user): Which consists of the end-user who owns an authorized cryp-
tographic material. It runs an SDK which grants him access to the peers API
functions. The client connects to a peer to submit transaction proposals.

– Orderer : The orderer is a special peer node, whose role is to gather and order
validated transactions until a block can be made and broadcasted to all peers.
It can either be running on a server (centralized) but can be chosen randomly
among peers (peer elected to act as the Leader peer).

To update the ledger, a client creates a transaction and sends it to one or
several peers for endorsement (depending on chaincode rules). Once the transac-
tion meets the endorsement policy, it is forwarded back to the client who sends
it to the orderer for verification and broadcasting. Upon verification, the orderer
broadcasts the transaction to all peers that will check it and update the ledger
accordingly. An extensive documentation of the Hyperledger Fabric framework
can be found in (linux Foundation, 2016).

4 System Model

Inside our system model, we distinguish the traffic congestion detector client,
which is the module in charge of detecting a traffic jam situation and submitting
speed changes to the shared ledger and the dynamic navigation rerouting server,
which is the module in charge of detecting a road speed change (from an HF
event) on a user’s path and recompute the route accordingly.

4.1 The Chaincode

The following listings show how the chaincode fits into our application. In List-
ing 1.2, we state the different assets accessible in the ledger. Note that all



228 D. Kevin and B. David

users are only identified with a unique random ID and that a road asset con-
tains an ID roadId, a list of submitted speeds speeds (and the correspond-
ing list of associated timestamps timestamps) and the edge segment default
speed defaultSpeed initialized from OpenStreetMap predefined tag informa-
tion. Finally, the transaction SubmitSpeedChange which, given a new speed
newSpeed and new timestamp newTimestamp for a road asset whose ID is
assetId, modifies the roadAsset using the function shown in listing 1.1.

Furthermore, in listing 1.1, we observe the transaction
onSubmitSpeedChange that fires an event SubmitSpeedChangeNotification
when submitted. Basically, it simply appends the new speed and timestamps to
the corresponding stored list within that asset. It ensures that the list size is
no longer than N , a predefined constant, defined in function of the number of
edges in the geographically bound map. Indeed, greater is N , more storage for
the initial state database will be required.

Last but not least, all aforementioned functions are accessible through a
REST API on the device storing the peer node, this allows cross-platform and
convenient communication in the local network interface between our graph han-
dler and the Hyperledger Fabric peer.
function onSubmitSpeedChange(x) {

push(submitSpeedChange.roadAsset.timestamps , x.newTimestamp , MAX_NUMBER);
push(submitSpeedChange.roadAsset.speeds , x.newSpeed , MAX_NUMBER);
return getAssetRegistry(’org.hacit.hes.RoadAsset ’)

.then(function (assetRegistry) {
var event = getFactory ().newEvent(’org.hacit.hes’, ’

SubmitSpeedChangeNotification’);
event.roadAsset = x.roadAsset;
emit(event);
return assetRegistry.update(x.roadAsset);

});}

Listing 1.1. Chaincode

event SubmitSpeedChangeNotification { --> RoadAsset roadAsset }
participant User identified by assetId { o String assetId }
asset RoadAsset identified by roadId {

o String roadId
o Integer [] timestamps
o Double defaultSpeed
o Double [] speeds }

transaction SubmitSpeedChange {
o Double newSpeed
o String assetId
o Integer newTimestamp
--> RoadAsset roadAsset }

Listing 1.2. Ledger Model

4.2 Traffic Congestion Detector Client

Given an accumulated list of the user’s GPS coordinates, we find the correspond-
ing edge and extracts its road ID r using a map matching algorithm provided
by the GraphHopper library (Newson and Krumm, 2009). Figure 1b shows the
process for a user to update its current speed cs measured at timestamps ts to



HACIT2 229

the corresponding road asset r (in the ledger) and thus, the process to create
the proper corresponding transaction tx.

The challenge in this step is to decide whether or not the vehicle is in a
traffic jam, or simply stopped at the red light for example. Basically, it gathers
GPS coordinates until it detects that the road has changed. By computing the
average speed in the middle part of this GPS trace, we can apply a threshold to
decide if there is congestion.

4.3 Dynamic Navigation Rerouting Server

The other module is the dynamic navigation server, which listens for ledger
update (i.e. new events submitted by peers). Alongside the main algorithm,
we created a speed extractor, that given all submitted speed changes for a given
road, extract the current road speed while removing outliers, using unsupervised
clustering.

Algorithm. The process describing our dynamic navigation is shown in Fig. 1a
and can be summarized as follows:

– An event is fired for a given road id: The HF module connects to our OSM
graph handler with a POST request through the localhost interface, in order
to send the road id and the corresponding list of speeds S and timestamps T
(defined in Listing 1.2).

– The Graph Handler feeds the speeds and timestamp list to a speed detector,
which will perform Algorithm 1 in order to find the weight from the most
recent speed cluster centre while removing outliers.

– If the road modified is within the future road path, and if the change is
significant, the user recomputes the navigation path against the up-to-date
weighted graph.

Speed Extractor. The HF peer forwards the list of speeds S and timestamps
T contained within the road Asset whose is firing the event. The goal of the
speed extractor (described in Algorithm 1) is to cluster the 2D dimensional array
X = [T, S] and finds the earliest cluster using the DBScan algorithm, initially
proposed in (Ester et al., 1996), using the Java library (Apache Fondation, 2017).
Once the centre cx, cy is found, we forward cy (i.e. the speed) to the graph
handler.

If there is not enough data or if the clustering fails, we simply use the weighted
average Eq. (1) so that speed measurements with earlier timestamps have more
weight:

ŝ =
∑N

i=1 wisi
∑N

i=1 wi

with wi = 1 − ti
∑N

j=1 tj

⇒ ŝ =
∑N

i=1 si
N − 1

−
∑N

i=1 tisi

(N − 1) · ∑N
i=1 ti

(1)



230 D. Kevin and B. David

Peer listening for event

Peer forwards road as-
set r to graph handler

Get speed ŝ from r.S
and r.T using Alg 1

Update weight of edge r.id with ŝ

The client computes R: the list
of all roads in the current path

R.contains(r)? Discard

Change
significant?

Recompute navigation path

Event

Yes

Yes

No

No

(a) Schema for dynamic navigation rerout-
ing

Client on road with id rid at
speed cs and timestamp ts

Congestion
Detected?

Client create new transaction tx
executing chaincode UpdateRoadSpeed

with roadid = r and speed = cs

Client sends tx for en-
dorsement from peer

Is tx valide? Discard

Peer sends signed tx and
chaincode response res:

os = res.oldSpeed, lu = res.lastUpdate

Client sends signed tx to
Ordorer for broadcasting

tx broadcasted to all peers and
added to block. An event e is fired

Yes

No

Yes

No

(b) Schema for road traffic information up-
date to shared ledger

Fig. 1. Procedures

5 Communication System

This section aims to describe how the system communicates between all the
modules presented in the previous Sect. 4. Particularly, how and where are exe-
cuted the HF peer loop, the Graph handler loop and the UI client for dynamic
navigation in both the external device (i.e. Raspberry Pi) and mobile device
(i.e. Smartphone).

5.1 Peers on External Device

A Raspberry Pi is a small computer having a dedicated operating system running
Linux. The version 3 Model B contains 1 GB RAM, Wifi antenna and an external
SD card for storage, see (Upton and Halfacree, 2014). Therefore, it has enough
capabilities to run efficiently the HF peer node and the graph handler on such
device. It communicates with the mobile device through wifi as shown in Fig. 2a,



HACIT2 231

Algorithm 1. Speed extractor algorithm
Require: X a 2-D array

1: function Extract speed(X)
2: cx ⇐ Null
3: cy ⇐ −Inf
4: if shape(X)[2] > 15 then
5: db ⇐ dbscan(X, eps : 4.5, min : 5)
6: labels ⇐ db.labels
7: for k in unique(labels) do
8: mask ⇐ (labels == k)
9: x ⇐ X[mask]

10: [cxx, cyy] ⇐ mean(X)
11: if cyy < cy then
12: cx ⇐ cxx
13: if cx is Null then
14: t ⇐ X[0, :]
15: v ⇐ X[1, :]
16: cx ⇐ weightedAverage(t, v) � “Equation (1)”

return cx

to exchange new road path to the UI, or new speed estimate alongside GPS
coordinate.

Then, we have two servers, the graph handler running on port 4567 and
the HF module running on port 8080 and we expose the REST client with the
following API:

– The mobile Android app:
1. updatePosition: PUT request to submit current speed and position.
2. getPathStatus: GET request returning true if path was modified since

last query.
3. getPath: GET request to retrieve the list of navigation instructions. It

will immediately update the current navigation instruction to the user
interface.

4. initializeJourney: POST request to initialize the graph handler with the
destination and starting point.

5. updatePath: PUT request to force the re-computation of the shortest path
using Dijkstra algorithm (Dijkstra, 1959), return the newly computed
navigation instruction.

– The HF module Client:
1. putRoadAsset: PUT request executed whenever the HF module detects

a new event (i.e. a road speed update) and forward the corresponding
road asset to the graph handler.

– The graph handler Client (to HF module server):
1. postTransaction: Executed by the graph handler whenever a traffic jam is

detected. It forwards the transaction to the HF module, in addition with
the road ID, new speed, and timestamp. After some time, this should fire
an event for all listening peers on the network.



232 D. Kevin and B. David

We assume that the initial ledger state contains all edges within the imported
OSM file. This can be done while creating and instantiating the production
chaincode by the administrator before deploying the peer’s network.

5.2 Internet Connection and UI Client on Mobile Device

A prerequisite for our system to work, the HF module needs to be connected to
the internet. Therefore, we share the connectivity of the Android device with the
raspberry pi and thus connect it to the internet through the Android Wifi Access
Point. The pre-configured device will automatically try to connect to the router
(i.e. The android device) and will obtain IP address 192.168.43.155 once the user
enables shared connectivity. This IP is then used to perform the REST client
calls, expressed in the previous part, between the two devices.

Finally, once initialization is completed and first navigation path instructions
are received, the application opens OSMAnd dynamic navigation (see Fig. 2b)
through Intent and the OSMAnd API. While the UI shows the navigation, a
background process is continuously checking for new path updates, and if any,
sends the updated path instructions to the OSMAnd UI. This causes OSMAnd
to drop the current instructions for the new ones, and thus, updating the UI.

(a) Communication between devices
(b) OSMAnd UI

Fig. 2. The system

5.3 Limitations

The presented blockchain application, running on the mobile device, leads to
several complications:

– The communication burden and latency:
The system relies on the cellular network shared by the mobile device to listen
to other peers and submit transactions. Therefore, we expect a fair use of the



HACIT2 233

user’s cellular plan. Nowadays, it is common to have unlimited bandwidth
usages but most of the data will be synchronized through WIFI before the
user drives with the up-to-date system. Moreover, the responsiveness of the
system is bounded to the block broadcasting frequency, which can be tuned
to meet a trade off between resources usage and more frequent information
updates. We are confident that submitting a new block every few minutes is
feasible.

– The storage cost:
Table 1 shows the different ledger sizes regarding the size of the initial asset for
the transactions and road asset initialization. Overall, we expect a ledger of
around 842MB (317 + 525) for one day of utilization for the average Geneva
traffic per day (500000 transactions). By having a ledger pruning mechanism
inside the chaincode rules, we can guarantee that the data size does not exceed
a certain limit. Given the storage size available on our device, we can easily
extend these limits to more than dozen of gigabytes.

– The geographically bounded application:
In this project, we assumed the use of our system within the boundary of the
city of Geneva. Indeed, we realized that most traffic information is only useful
within close range for most of the users. From that conclusion, we assumed
the use of a chaincode (i.e. ledger) per geographically bounded zone (e.g.
city). In the future, other zones will be used and a system acting as CA to
assign dynamically users to the proper chaincode (i.e. area) will be studied
and implemented.

– User incentive:
As every dynamic navigation system, the efficiency of the routing is directly
related to the quality and quantity of the data. More user use the system,
more precise can the routing be. As for every blockchain application, the
principal of decentralization makes the system more complicated to use for
the end-user and is often the bottleneck for world-wide acceptance.

5.4 Case Study

Table 1. Ledger size per asset size

Asset Road Transactions
nb 1 68580 1 50000
size (MB) 0.48 317 0.11 525

Let’s imagine a person using our sys-
tem going to work in a croweded city.
At first, he will have to take the sta-
tion (external device), which was syn-
chronizing/charging at home, with him.
The station will automatically connect
to the mobile device while the user opens the specific system app. Upon naviga-
tion initial instruction, the station will listen for new transaction (i.e. road traffic
update) and if necessary, forward new instructions to the end-user through the
mobile application. In the background, the station will perform all processes to
keep the distributed ledger up-to-date and handle user’s GPS position (and thus,
traffic information). Upon arrival, the user will synchronize the station with the
local WIFI and charge it until next departure.



234 D. Kevin and B. David

Such scenario will be numerically simulated to assess the performance of the
overall system.

6 Forensics

The architecture of the proposed application allows any user to have access to
the history of transactions and thus, it enables forensics.

6.1 Ledger Back-Crawling

The architecture allows forensics capabilities for judiciary or insurance claims.
With a public shared and immutable ledger provided by the permissioned
blockchain, all users can access all submitted transaction and thus, the history
of road speed modifications. In another words, by crawling the ledger of chained
transactions and given a specific user ID, one can extract the transactions sub-
mitted by this user. Thus, given the list of all these submitted transactions, one
can extract the road segment ID alongside the corresponding timestamps and
speed to create a navigation timeline for this user. The user can then guarantee
that he had signed the extracted transactions using his private key.

The efficiency of the forensics system is directly related to the frequency at
which the user submits transactions. In another word, if the user does not submit
any transaction, there will be no possibility to backtrack his whereabouts. As
such, we only provide with this system a tool to help the judiciary or insurance
to make the decision, as an extension to the main application.

6.2 A Word on Privacy

Regarding our back-crawling algorithm and the confidentiality of our system
in general, we grant access to the application through cryptographic material
obtains from our CA. Even though the state database contains only the up-to-
date list of road asset, the ledger contains the transactions submitted by any
user, hidden behind his userId.

Although our approach is not anonymous, it is close to pseudonymous (sim-
ilar to the bitcoin network, see (Androulaki et al., 2013)). However, one can
analyse the ledger and extract meaningful pattern that can lead to the real
user’s identity.

Fortunately, Hyperledger Fabric will introduce in the version 1.2 a privacy
technology known as Zero-Knowledge (ZK) Proof-based implemented has an
Identity mixer (Au et al., 2006) and ZK-AT (Zero-Knowledge Asset Transfer).
As a result, the identity of the participant issuing the transaction will stay hidden
behind the identity mixer and thus, guaranteeing total privacy, similar as what
is used in cryptocurrencies such as ZCash.



HACIT2 235

7 Conclusion

7.1 Summary

This project proposes an innovative variant for a decentralized system of nav-
igation that emancipates the user from using a centralized service. Instead of
communicating directly with nearby cars to retrieve only local traffic informa-
tion, the users submit through cellular network global information about the
traffic. This information is stored in assets within a permissioned ledger and can
be updated with transactions. A system of event listens for new transactions (and
thus, traffic update from other users) which forwards the information to another
module handling the locally stored weighted graph. If necessary, the shortest
path is recomputed and forwarded to the navigation user interface running on
the mobile device making the navigation dynamic.

By using an external device such as a Raspberry Pi to run the blockchain
and graph modules, we delegate the computing and storage cost to a unit able to
easily handle all processes and make the experience as user-friendly as possible.
The user can just plug the device to the car power and share his or her mobile
wifi connection.

Furthermore, every user can access the shared ledger and thus, retrieve the
list of submitted transactions for forensics purposes. By having a zero-knowledge
mechanism implemented in the next version of Hyperledger Fabric, we will be
able to guarantee that the identification of the user is not possible and thus,
protecting his or her privacy.

7.2 Future Works

Our work so far was to design and implement a system able to dynamically
route user using blockchain technology. However, a numerical simulation must
be undertaken in order to optimize several parameters such as the size of the
array in a road asset (currently equals to 100), the real latency, the storage cost
and the ledger pruning time, the bandwidth used or the percent of user using
our application in order to make it efficient.

In that manner, we are currently working on a numerical traffic simulation of
Geneva, where a percent of the agents (acting as a driver) use our decentralized
system. The simulation uses the framework Sumo (Krajzewicz et al., 2012).
After these parameters are optimized, we will perform a full-size test assessing
the functionalities of our system.

Moreover, an interesting variant would be to use a Road Side Unit (RSU) to
store the ledger. In other words, these units would act as a peer for the blockchain
network. The cryptographic material identifying a user and the graph would still
be stored on the user’s mobile side alongside the SDK to create transactions.
Once a user comes into range within the RSU, it will send the list of congestion
information as transactions and expect the RSU to sign them and send back
the list of transactions since the user last connects. However, as of now, the
feasibility of such system is not known and must be studied.



236 D. Kevin and B. David

References

Androulaki, E., Karame, G.O., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating user
privacy in bitcoin. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 34–51.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1 4

Apache Fondation: Commons Math Java library (2017). http://commons.apache.org/
proper/commons-math/userguide/ml.html

Au, M.H., Susilo, W., Mu, Y.: Constant-size dynamic k -TAA. In: De Prisco, R., Yung,
M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 111–125. Springer, Heidelberg (2006).
https://doi.org/10.1007/11832072 8

Beresford, A.R., Stajano, F.: Mix zones: user privacy in location-aware services. In:
Proceedings of the Second IEEE Annual Conference on 2004 Pervasive Computing
and Communications Workshops, pp. 127–131. IEEE (2004)

Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1),
269–271 (1959)

Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al.: A density-based algorithm for
discovering clusters in large spatial databases with noise. In: KDD, vol. 96, pp. 226–
231 (1996)

European Parliament: European Parliament legislative resolution of 12 March 2014 on
the General Data Protection Regulation. Technical report (COM(2012) 0011 C7–
0025/2012 2012/0011(COD)) (2014)

Graphhopper dev: Graphhopper Java Librairy (2017). https://www.graphhopper.com/
IBM: IBM Blockchain Platform (2017). https://ibm-blockchain.github.io/develop/.

Accessed 21 Apr 2018
Krajzewicz, D., Erdmann, J., Behrisch, M., Bieker, L.: Recent development and appli-

cations of SUMO - simulation of urban mobility. Int. J. Adv. Syst. Meas. 5(3&4),
128–138 (2012)

Leiding, B., Memarmoshrefi, P., Hogrefe, D.: Self-managed and blockchain-based vehic-
ular ad-hoc networks. In: Proceedings of the 2016 ACM International Joint Confer-
ence onPervasive and Ubiquitous Computing, pp. 137–140. ACM (2016)

Linux Foundation, T.: HyperLedger Fabric docs (2016). https://hyperledger-fabric.
readthedocs.io/en/release/. Accessed 21 Nov 2017

Newson, P. Krumm, J.: Hidden markov map matching through noise and sparseness. In:
Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems, pp. 336–343. ACM (2009)

OpenStreetMap contributors: Planet dump (2017). https://planet.osm.org. https://
www.openstreetmap.org

OSMAnd dev: OSMAND (2017). https://osmand.net/
Raya, M., Hubaux, J.-P.: Securing vehicular ad hoc networks. J. Comput. Secur. 15(1),

39–68 (2007)
Shah, D., et al.: Gossip algorithms. Found. Trends R© Networking 3(1), 1–125 (2009)
Upton, E., Halfacree, G.: Raspberry Pi User Guide. Wiley, Hoboken (2014)
Wang, L., Liu, G., Sun, L.: A secure and privacy-preserving navigation scheme using

spatial crowdsourcing in fog-based vanets. Sensors 17(4), 668 (2017)
Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum

Proj. Yellow Pap. 151, 1–32 (2014)

https://doi.org/10.1007/978-3-642-39884-1_4
http://commons.apache.org/proper/commons-math/userguide/ml.html
http://commons.apache.org/proper/commons-math/userguide/ml.html
https://doi.org/10.1007/11832072_8
https://www.graphhopper.com/
https://ibm-blockchain.github.io/develop/
https://hyperledger-fabric.readthedocs.io/en/release/
https://hyperledger-fabric.readthedocs.io/en/release/
https://planet.osm.org
https://www.openstreetmap.org
https://www.openstreetmap.org
https://osmand.net/

	HACIT2: A Privacy Preserving, Region Based and Blockchain Application for Dynamic Navigation and Forensics in VANET
	1 Introduction
	2 Related Work
	3 Hyperledger Fabric
	4 System Model
	4.1 The Chaincode
	4.2 Traffic Congestion Detector Client
	4.3 Dynamic Navigation Rerouting Server

	5 Communication System
	5.1 Peers on External Device
	5.2 Internet Connection and UI Client on Mobile Device
	5.3 Limitations
	5.4 Case Study

	6 Forensics
	6.1 Ledger Back-Crawling
	6.2 A Word on Privacy

	7 Conclusion
	7.1 Summary
	7.2 Future Works

	References




