
Caching on Vehicles: A Lyapunov Based
Online Algorithm

Yao Zhang, Changle Li(B), Tom H. Luan, Yuchuan Fu, and Lina Zhu

State Key Laboratory of Integrated Services Networks, Xidian University,
Xi’an 710071, China

{yzhang 01,ycfu}@stu.xidian.edu.cn, clli@mail.xidian.edu.cn,

{tom.luan,lnzhu}@xidian.edu.cn

Abstract. With the explosive increase of mobile data and users, data
tsunami seriously challenges the mobile operators worldwide. The vehic-
ular caching, which caches mobile data on widely distributed vehicles, is
an efficient method to solve this problem. In this paper, we explore the
impact of vehicular caching on cellular networks. Specifically, targeting
on network performance in energy efficiency, we first formulate a frac-
tional optimization model by considering the network throughput and
energy consumption. We then apply nonlinear programming and Lya-
punov technology to relax the nonlinear and nonconvex model. Based on
analysis, we propose a novel online task decision algorithm. Based on this
algorithm, vehicles determine to act either as servers or task schedulers
for the requests of users. The burden of cellular MBS (Macro Base Sta-
tion) then can be alleviated. Extensive simulations are finally conducted
and results verify the effectiveness of our proposal.

Keywords: Caching · Nonlinear programming
Lyapunov optimization

1 Introduction

As indicated in [1], the monthly global mobile data traffic would be 49 exabytes
by 2021 under 11.6 billion mobile connected devices, which increases about sev-
enfold between 2016 and 2021. Mobile users thus can enjoy a large number of
new applications and fairly rich network experience. However, the data tsunami
also pushes a huge challenge to the mobile operators all over the world for their
network capacity in terms of network throughput, and processing delay.

To solve above problem, a variety of techniques focus on the improvement of
edge process capacity by applying edge computing technology on network edge,
including offloading technologies [2,3], edge caching schemes [4,5]. However, most
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of these researches relay on the deployment of large-scale infrastructure, result-
ing in huge deployment and maintenance cost. To cope with this problem, we
aim to make a full use of the moving vehicles to cache mobile data and then
serve mobile users. Compared with traditional SBS (Small Base Station) or AP
(Access Point), vehicles as data carriers are widely distributed and cost-effective.
Besides, the V2X (Vehicle-to-Everything) technology has been specified in the
5G communication standard, which makes vehicle-to-user communications be
efficient and reliable.

In this paper, we aim to explore the impact of caching vehicles on the energy
efficiency of cellular network. To this end, we assume that the communications
with caching vehicles are default setting in mobile users, and caching vehicles act
as task schedulers to determine the requests of users are served by themselves or
MBS. Specifically, to obtain the optimal task decision from global perspective,
we first formulate a fraction optimization model towards to the minimization
of network energy efficiency. Based on the solution for the optimization model,
we then develop a new online algorithm, which is used to obtain the real-time
task decision for vehicles. Assisted by caching vehicles, the burden of MBS can
be alleviated. We proceed in three steps. (1) ProblemFormulation : Based on
the analysis on network throughput and energy consumption, we formulate the
task decision problem as a fraction optimization model. The task decision of all
caching vehicles can be obtained by solving this model. (2) AlgorithmDesign :
We then transform the nonlinear and nonconvex model as a linear and convex
model based on the nonlinear programming. To solve the transformed model,
a novel online task decision algorithm is developed based on Lyapunov opti-
mization theory. (3) Simulations : To evaluate the performance of the proposed
algorithm, we conduct extensive simulations. Results show that our algorithm
achieve obvious improvement in energy efficiency compared with traditional net-
work paradigm.

The remainder of this paper is structured as follows: Sect. 2 illustrates the
system models and formulate the optimization model. Section 3 presents the
algorithm design, which is based on the solution of the optimization model.
Section 4 evaluate the performance of the algorithm based on simulation results
while Sect. 5 concludes our study.

2 System Description and Problem Formulation

In this section, we mainly make a description about the system scenario in our
study, and finally formulate a fractional optimization problem.

2.1 System Description

We consider a scenario that includes three types of nodes, MBS, caching vehicles,
and mobile users. In this scenario, a part of vehicles caching the popular mobile
data act as task schedulers to alleviate the burden of MBS. Mobile users can be
served either by cellular MBS or caching vehicles. Specifically, when detecting the
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caching vehicle within the communication range, mobile users will send requests
to it and ask for services. According to the task decision, the caching vehicle
determines whether to serve the requests or not. Once the request of the user
are declined, it will receive a feedback from the vehicle and then switch to cellular
network. It is assumed that networks operate in slotted time, i.e., the time slot
t is within the time interval [t, t + 1), t ∈ {0, 1, 2, ...}. As such, our goal is to
determine the task decision T = {T1(t), T2(t), T3(t), ...Tn(t)} on caching vehicles,
where Tn(t) ∈ [0, 1] is a fractional variable and denotes the task decision of the
vehicle n. We make some basic assumptions to simplify our analysis as follows.

To represent the spatial distribution of mobile users, we refer to [6] and
use the Poisson point process (PPP) to calculate the distribution probability
with mean rate λu. The exponential distribution is commonly used to model the
distribution of vehicles on roads. In our analysis, the contact time between a user
and vehicles is assumed to follow the exponential distribution [7]. To simplify
the analysis, we assume the data catalogue consists of Nf files with same size,
i.e., F={F1, F2, ...FNf

}. This assumption is reasonable in the analysis of edge
caching since files can be divided into multiple fragments with same size [8]. To
model the request probability of different files, we apply the widely used Zipf-like
distribution [9]. Specifically, let pn denote the request probability of the file n,
it can be calculated as pn = 1(∑Nf

n=1 1/nφ
)
nφ

, where φ is the Zipf exponent.

2.2 Problem Formulation

Communication Model. There are two communication modes in our net-
work, i.e., vehicle-to-user communications and cellular communications. As
many existing communication protocols, such as DSRC, LTE-A, and upcom-
ing 5G for vehicular communicaions, rate adaptation mechanism is adopted to
characterize the diversity of data rates. Note that, the communication mode
of V2P (Vehicle-to-Pedestrian) is similar with V2V excepted the limited power
consumption on the mobile devices of pedestrian users [10]. In this paper, we
make a simplified assumption that data rates between users and vehicles are
determined by Euclidean distance, and the mean rate is Rv = 5 Mbps [11]. The
mean data rate in cellular network, due to the large-power MBS, is assumed as
Rm = Rv + ξ, where ξ ≥ 0. It means the data rate of cellular network is larger
than that from vehicle to user.

The total network throughput in our network is

Rtot(t) =
Nm∑

m=1

Rm{T(t)} +
Nv∑

v=1

Rv{T(t)}, (1)

where Nm and Nb are the number of requests served by caching vehicles and
MBS, respectively.

Energy Consumption. Energy consumption is considered an important met-
ric. On the one hand, green communications in wireless cellular networks have
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been an important task for a long time [2]. On the other hand, with the develop-
ment of battery electric vehicles, the energy consumption management in vehicu-
lar networks becomes an major challenge [12]. As such, we explore the vehicular
caching algorithm targeting at the full use of energy consumption. Since we
assume that Rm ≥ Rv, MBS may result in large throughput with a more trans-
mission power due to the large-power transmitter. By contrast, caching more
data on vehicles saves total energy consumption with a cost of the decrease of
throughput. For simplicity, we only consider the energy consumption that can
be impacted by the caching policy, i.e., transport energy from MBS, transport
energy and caching energy from caching vehicles. Therefore, we aim to find a
trade-off between the energy consumption and network throughout. A series of
energy consumption models are given below.

By referring to [13], we use the linear energy consumption model to calcu-
late the transport energy consumed by MBS. At each time slot, the transport
energy is

Pm(t) =
Nm∑

m=1

Rm{T(t)}ωm
t , (2)

where ωm
t denotes the energy consumption rate of transmission from MBS (in

Watt/bit).
The energy consumption at caching vehicles consists of two parts [4], trans-

port energy and caching energy, i.e., Pcv(t) = P v
t (t) + Pca(t). Specifically, P v

t is
a function of the transmit power of caching vehicles

P v
t (t) = ζvP

v
tx(t), (3)

where ζv is a simplified impact parameter for power amplifier cooling, and power
supply. The energy-proportional model is used to represent the caching energy

Pca(t) = Rv(t)ωc, (4)

where ωc is the caching factor (in Watt/bit).
Based on the analysis above, the total energy consumed at time slot t is

Ptot(t) = Pcv(t) + Pm(t) (5)

Fraction Optimization. The problem of task decision at vehicles can be for-
mulated as a fraction optimization model. Specifically, from the perspective of
long-term optimization, the network energy efficiency model is

min ηEE = lim
K→∞

1
K

∑K−1
t=0 Ptot(t)

1
K

∑K−1
t→0 Rtot(t)

=
P tot

Rtot

(6)

s.t. C1: Qn(t) are mean rate stable, ∀n ∈ {1, ..., Nu}
C2: 0 ≤ Tn(t) ≤ 1, ∀j ∈ {1, ..., Nv},

where C1 is the constraint that guarantees the stability of user queue. Tn(t) is
the task decision of vehicle n at time slot t.
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3 Algorithm Design

3.1 Problem Transformation

In this part, we refer to [14] and transform the fractional and nonconvex model
(6) to a linear and convex one.

To make the transformation, we have the following theorem.

Theorem 1. The problem (6) equals to minimizing Ptot − ηopt
EERtot subject to

the same constraints.

Proof. To prove Theorem 1, we assume that T∗(t) is the optimal task decision
at time slot t. The proof is divided into two parts, i.e., necessity proof and
sufficiency proof.

The necessity proof is to prove that T∗ is the solution of min Ptot−ηEERtot

because it is the solution of (6).
Specifically, since T∗ is the optimal solution of optimization problem (6), we

have

ηopt
EE =

P tot(T∗)
Rtot(T∗)

≤ P tot(T)
Rtot(T)

. (7)

We further transform (7) to

P tot(T∗) − ηopt
EERtot(T∗) = 0, (8)

P tot(T) − ηopt
EERtot(T) ≥ 0, (9)

Therefore, we can obtain the following equation.

min P tot(T) − ηopt
EERtot(T) (10)

= P tot(T∗) − ηopt
EERtot(T∗)

= 0.

The proof for the necessity of Theorem 1 is completed.
For sufficiency proof, we aim to prove that T∗ is the solution of problem (7)

with the assumption below that it is the solution of minPtot−ηEERtot. Firstly,
we assume the following equation hold

min P tot(T) − ηopt
EERtot(T) (11)

= P tot(T∗) − ηopt
EERtot(T∗)

= 0,

where T∗ is the optimal task decision. By rearranging above equation, we obtain

0 = P tot(T∗) − ηopt
EERtot(T∗) ≤ P tot(T) − ηopt

EERtot(T). (12)

Furthermore, we obtain

ηopt
EE =

P tot(T∗)
Rtot(T∗)

≤ P tot(T)
Rtot(T)

. (13)

It can seen that T∗ is also the solution of (7). The proof of Theorem 1 is com-
pleted.
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Hence, the fractional optimization problem (6) is transformed to

min P tot − ηEERtot (14)
s.t. C1, C2.

The original problem now becomes a linear and convex one [14].

3.2 Lyapunov Optimization Based Online Algorithm

In this part, we develop a Lyapunov optimization based online task decision algo-
rithm. The Lyapunov optimization theory is an effective method to deal with
the problems of resource allocation in wireless networks [15]. The application of
Lyapunov optimization in our paper is due to that the traditional heuristic or
iterative algorithm may incur large overhead and latency, which are not toler-
ant in the delay-sensitive vehicular environments. We first define the Lyapunov
function as follows.

Let Θ(t)
�
= Q(t) denote the combined queue backlog vector. The quadratic

Lyapunov function is defined as

L(Θ(t)) �=
1
2

Nu∑

n=1

Qn(t)2 (15)

Then, the one-slot Lyapunov drift can be obtained as

Δ(Θ(t)) = L(Θ(t + 1)) − L(Θ(t)) (16)

We further use the drift-plus-penalty method to guarantee the stability of
queues and solve the optimizaiton problem. The drift-plus-penalty is defined as

min Δ(Θ(t)) + V E{Ptot(t) − ηEE(t)Rtot(t)} (17)

The bound of drift-plus-penalty is defined as

Δ(Θ(t)) + V E{Ptot(t) − ηEE(t)Rtot(t)|Θ(t)} ≤ B

+
Nu∑

n=1

Qn(t)E{An(t) − Rn(t)|Θ(t)}

+ V E{Ptot(t) − ηEE(t)Rtot(t)|Θ(t)},

(18)

where

B ≥ 1
2

Nu∑

n=1

E{An(t)2 + Rn(t)2|Θ(t)} (19)

Proof. Assuming that the queue Qn(t) is updated as

Qn(t + 1) = max[Qn(t) − Rn(t), 0] + An(t), (20)
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where An(t) is the data arrival at time slot t, and Rn(t) is the service rate of
user n.

By squaring two sides of Eq. (20) and rearranging terms, we have

1
2
[Qn(t + 1)2 − Qn(t)2] ≤ 1

2
[Rn(t)2 + An(t)2] + Qn(t)(An(t) − Rn(t)) (21)

Summing over n ∈ {1, ...Nu} for (21) and taking a conditional expectation,
we have

Δ(Θ(t)) ≤
Nu∑

n=1

1
2
[Rn(t)2+An(t)2|Θ(t)]+

Nu∑

n=1

[Qn(t)E{An(t)−Rn(t)}|Θ(t)] (22)

By adding the term of V E{Ptot(t) − ηEE(t)Rtot(t)|Θ(t)} on both sides of
(22), it becomes

Δ(Θ(t)) + V E{Ptot(t) − ηEE(t)Rtot(t)|Θ(t)} ≤ B

+ V E{Ptot(t) − ηEE(t)Rtot(t)|Θ(t)}

+
Nu∑

n=1

Qn(t)E{An(t) − Rn(t)|Θ(t)}
(23)

Therefore, the Eq. (18) is proved, where

B ≥
Nu∑

n=1

1
2
[Rn(t)2 + An(t)2|Θ(t)] (24)

The proof of (18)–(19) is completed.
In this case, the optimization problem of (14) can be solved by minimizing

the right-side of inequality (23). Specifically, we finally obtain T∗ according to

min V {Ptot(t) − ηEE(t)Rtot(t)} −
Nu∑

n=1

Qn(t)Rn(t)

s.t. C1, C2. (25)

3.3 Online Algorithm

By the analysis in Subsects. 3.1–3.2, we successfully transfer the original opti-
mization model (6) into the minimization of the right side of the drifty-plus-
penalty (18). We hence define a novel online task decision algorithm to schedule
the requests of users, as shown in Algorithm 1. At the beginning of time slot,
the user requests are predicted by carrying out the Zipf-like model. Due to the
limitation of vehicular storage, only a part of requests can be served by vehicles.
After selecting the requests served by caching vehicles, the optimal task decision
is determined by solving (25). Finally, the queue Qn(t) and ηEE(t) are updated.
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Algorithm 1. Online task decision.
Input: t, Qn(t),ηEE(t)
Output: T∗

1: For time slot [t, t + 1)
2: while At the beginning of time slot t do
3: Step 1:Obtain the number of requests at time slot t based on Zipf-like model
4: Step 2:Determine the numbers of requests that can be served by caching

vehicles
5: Step 3:Calculate the T∗ by solve (25)
6: Step 4:Update Qn(t) according to (20) and update ηEE(t) according to

ηEE(t) =

∑K−1
t=0 Ptot(T

∗)
∑K−1

t→0 Rtot(T∗)

7: end while

4 Simulations

To evaluate the performance of the newly proposed algorithm, we conduct exten-
sive simulations using Matlab.

In all simulations, we consider a hexagonal cellular region with radius 350
m. Considering a four-lane bidirectional road within the coverage of cellular
network, the density of vehicles is assumed as 0.086 vehicle/m. Vehicles adapt
their velocity at each time slot following Normal distribution with the mean value
is within [20, 60] km/h and the standard deviation is 10 km/h. It is assumed that
50% vehicles cache the mobile data. The normalized cache capacity is denoted by
η, which is an important parameter in following performance evaluation. Mobile
users can get real-time communication with MBS, while the communication with
vehicles has a maximum distance of 300 m. The mean rate of user distribution
PPP is assumed as λu = 1/10 user/m2. For Zipf-like model, we assume that
φ = 0.7. For energy model, we assume ωm

t = 0.5 ∗ 10−8 J/bit, ζv = 15.13, and
ωc = 6.25 ∗ 10−12W/bit according to [13]. The energy efficiency performance is
shown in Figs. 1 and 2.

In Fig. 1, we assume that the arrival of the requests of users follows Poisson
distribution with mean rate is λr = 1 request/s. We evaluate the impact of
parameter V on the energy efficiency ηEE . The parameter V , as shown in (25), is
used to control the trade-off between network performance and queue stability.
We plot three data sets, determined by η = 0.001, η = 0.01, and η = 0.1.
From Fig. 1 we can see, the energy efficiency decreases with V increasing. It
means that the larger the V , the better energy efficiency can be achieved by
Algorithm 1. However, the high-efficiency energy consumption is achieved with
the cost of the stability of user queue. Therefore, Fig. 1 gives a reference for the
application of Algorithm 1. Besides, the large η means that vehicles can cache
more mobile data. It can be seen that large caching capacity achieves the lower
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energy efficiency, which however results in large cost. Therefore, there should be
a trade-off between energy efficiency performance and storage cost.

In Fig. 2, we set V to be 50 to evaluate the impact of user requests on energy
efficiency performance. From Fig. 2 we can see, when λr is small, the Algorithm
1 based vehicular task schedule achieves significant performance improvement
compared with no caching, especially when η = 0.1. However, with the increase
of λr, the advantage of energy efficiency in vehicular caching is gradually reduced
and approached that of no caching. In this time, the number of requests is too
large so that most of them must be served by MBS. The vehicular caching now
has a little influence on the energy efficiency performance. Besides, the similar
conclusion about different η with Fig. 1 can also be obtained.

5 Conclusion

This paper explores the performance of vehicular caching when alleviating the
burden of MBS. We first analyze the system model in the cellular network incor-
porating vehicular caching. The problem of energy efficiency is then formulated
as a fractional optimization model. However, this model is non-linear and non-
convex, which is difficult to solve directly. We further transform this model into
a linear and convex model based on the nonlinear programming. To relax the
time-related variable in the transformed model, we then explore the application
of the Lyapunov optimization theory on our optimization model. After detailed
derivation, the original problem is solved in a simple method. Based on this
solution, an online task decision algorithm is developed to schedule the requests
of users for vehicles. Extensive simulations are conducted to evaluate the perfor-
mance of the proposed algorithm. Results show that our algorithm achieves good
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performance in energy efficiency and gives a reference of application of vehicular
caching.
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