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Abstract. Cooperative sensor localization plays an essential role in the
Global Positioning System (GPS) limited indoor networks. While most of
the earlier work is of static nodes localization, the localization of mobile
nodes is still a challenging task for wireless sensor networks. This paper
proposes an effective cooperative localization scheme in the mobile wire-
less sensor network, which exploits distance between nodes as well as
their mobility information. We first use multidimensional scaling (MDS)
to perform initial location estimation. Then second-order cone program-
ming (SOCP) is applied to obtain the location estimation. To make full
use of the mobility of nodes, we further utilize Kalman filter (KF) to
reduce the localization error and improve the robustness of the localiza-
tion system. The proposed mobility assisted localization scheme signifi-
cantly improves the localization accuracy of mobile nodes.
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1 Introduction

In many sensor network applications, the availability of accurate information
on the location of the node is essential, such as target tracking and detection,
cooperative sensing and energy-efficient routing. Cooperative localization is a
relatively new concept, trying to overcome the limitations of traditional set-
tings, in addition to the measurement between nodes and anchor nodes, dis-
tance measurement among nodes is also considered. Many studies have shown
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that accurate inter-node distance measurement can be achieved using techniques
such as sound signals or Ultra Wide Band (UWB) technology. This provides a
broad application space for cooperative localization.

MDS is a widely used cooperative localization algorithm [2,11]. It can accu-
rately restore the topological relationships among nodes under precise distance
measurement between nodes. Authors in [3] proposed a cooperative localiza-
tion method which not only utilized the initial results of the fingerprint-based
algorithm but also used MDS to refine the location estimates for multiple users
simultaneously. Another approach is to relax the original non-convex localization
problem to obtain a convex optimization problem, which can be efficiently solved
using existing algorithms. The two main convex relaxation techniques which uti-
lized widely are SOCP [4,5], and semidefinite programming (SDP) [6,7]. Com-
pared to SDP relaxation, SOCP relaxation is weaker, but its structure is simpler
and potential to be solved faster.

At present, most studies about cooperative localization focus on the localiza-
tion of static nodes. However, in practical applications, the localization of mobile
nodes deserves more attention. Recently, authors in [1] studied the problem of
maximum likelihood (ML) localization via SDP in the case where mobile sensor
nodes utilize their movement information in the localization. In [9], the authors
used RSS measurements for distance estimation and formulated the localization
problem as an SDP. The inertial measurement unit (IMU) data is used to improve
the localization performance further. However, SDP is not suitable for mobile
nodes due to its high complexity. Extend Kalman filter (EKF) is widely used
in the mobile nodes tracking algorithms is proposed in [8]. Authors in [10] uti-
lized pair-wise range measurements and relative velocity measurements between
communicating nodes to obtain the relative positions by EKF. However, EKF
is a sub-optimal method compared to KF because it uses a Jacobian matrix to
apply KF to nonlinear systems. Although this method expands the application
space of KF, the consequences will be severely divergent in a strongly nonlinear
scenario. Moreover, EKF has high computational complexity due to the calcula-
tion of the Jacobian matrix, which is not appropriate for real-time localization
systems.

In this paper, we propose a novel cooperative localization scheme based on
node’s mobility in the indoor environment, combines the advantages of MDS and
SOCP to improve the accuracy and robustness of the mobile localization system.
To better take advantage of the node’s mobility information, we apply KF to fuse
the location estimation of SOCP-based and velocity-based. Simulation results are
presented to confirm that mobility information and KF can effectively improve
the localization accuracy.

2 System Model

We consider a 2-dimensional mobile wireless sensor network, there are Ns mobile
nodes with unknown position and Na anchor nodes with known position. Each
mobile node move independently from their position at time instant t to a new
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time instant t + 1, for t = 1, 2, ..., N , where N is the total number of observation
time instants. In addition, we assume that each mobile node could obtain its
velocity which is assumed to be constant between two successive time instants.
Let ak be the position of the k-th anchor node and xi

(t) be the position of the
i-th mobile node at time instant t. Let W be defined as W = {(i, t), 1 ≤ i ≤
Ns, 2 ≤ t ≤ N}. The velocity between time instants t − 1 and t is denoted by
vi

(t)

vi
(t) = (xi

(t) − xi
(t−1))/ΔT + wi

(t),∀(i, t) ∈ W (1)

where ΔT is the sampling length and wi
(t) is the measurement noise which

follows a zero-mean Gaussian distribution N(0, σe
2). Let us define A as A =

{(i, j, t)|∥∥xi
(t) − xj

(t)
∥
∥ ≤ R}, where R is the communication range, i =

1, 2, ..., Ns, j = 1, 2, ..., Ns + Na, t = 1, 2, ..., N . The distance measurement
between the i-th mobile node and the j-th node at time instant t is denoted
by δij

(t)

δij
(t) =

∥
∥
∥xi

(t) − xj
(t)

∥
∥
∥ + nij

(t),∀(i, j, t) ∈ A (2)

where nij
(t) is the measurement noise which follows a zero-mean Gaussian dis-

tribution N(0, σλ
2).

The localization problem can be described as that given the distance mea-
surement between nodes and the instantaneous velocity vector of each node,
estimating the location of all mobile nodes in the network.

3 Cooperative Localization

The proposed algorithm utilizes the velocity and distance measurement to locate
multiple mobile nodes simultaneously. Figure 1 illustrates the overall system
architecture.

Fig. 1. System architecture.
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The localization system uses MDS to perform initialization. Then according
to distance and velocity measurement, we derive the localization problem as a
non-convex optimization problem and utilize the SOCP relaxation method to
estimate the position of nodes. In addition to this, we apply a mobility model
based on velocity information and precious estimation to obtain the other loca-
tion estimation. The KF fusion algorithm is used to enhance the location esti-
mation further.

3.1 MDS-Based Initialization

Firstly, according to the distance between nodes at the initial time, we build the
distance matrix D:

D =

⎡

⎢
⎢
⎢
⎣

δ212 δ212 . . . δ21n
δ221 δ222 . . . δ22n
...

...
. . .

...
δ2n1 δ2n2 . . . δ2nn

⎤

⎥
⎥
⎥
⎦

(3)

where δij is the distance measurement at time instant 0.
Let us define the true location of the nodes as X(0) = [x1

(0), x2
(0), . . . , xn

(0)],
and the corresponding estimated location is X̂(0) = [x̂(0)

1 , x̂
(0)
2 , . . . , x̂

(0)
n ]. It can

be shown that [11]

B
Δ= (X(0))T X(0) = −1

2
JDJ (4)

where J = I − eeT

n , I is the n × n identity and e is the n-dimensional vector of
all ones, n = Ns +Na. B is symmetric and positive definite, and we can perform
eigenvalue decomposition of B

B = QΛQT (5)

Then we sort the eigenvalues of matrix B in descending order and select the
first two largest eigenvalues to form the matrix Λ

′
, the corresponding eigenvector

matrix is Q
′
, the relative coordinates of n nodes are approximated by

X
(0)

= Q′Λ′1/2 (6)

Finally utilizes the Procrustes analysis [12] to convert the relative location
to absolute location X̂(0).

3.2 SOCP-Based Localization

Let D = {δij
(t)|(i, j, t) ∈ A} be the set of all available distance measurement

and V = {vi
(t)|(i, t) ∈ W} be the set of velocity measurement. Given D, V,

and the location of mobile nodes estimated from last time instant X̂(t−1), the
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location estimation X = {xi
(t)|(i, t) ∈ W} at time instant t can be obtained by

maximizing the conditional probability distribution function [1]

f(D,V, X̂(t−1)|X ) = f(D|X )f(V, X̂(t−1)|X )

=
∏

(i,j,t)∈A
1√

2πσλ
2

exp− (δij
(t)−‖xi

t−xj
(t)‖)2

2σ2
λ

×
∏

(i,t)∈W
1√

2πσe
2 exp(−‖vi

(t)−(xi
(t)−x̂i

(t−1))/ΔT‖2

2σe
2 )

(7)

By taking the logarithm to the above equation, the localization problem can
be written as

min
X

∑

(i,j,t)∈A

(δij
(t) − ∥

∥xi
(t) − xj

(t)
∥
∥)

2

σλ
2

+
∑

(i,t)∈W

∥
∥
∥vi

(t) − (xi
(t) − x̂i

(t−1))/ΔT
∥
∥
∥

2

σe
2

(8)
(8) is non-convex, to obtain SOCP relaxation of (8), we first define M =

{mij
(t)|(i, j, t) ∈ A}, S = {si

(t)|(i, t) ∈ W}, (8) can be written as the following
equivalent form

min
X ,M,S

∑

(i,j,t)∈A
(mij

(t))
2

+
∑

(i,t)∈W
(si

(t))
2

s.t.
1

σλ

∣
∣
∣δij

(t) − ∥
∥xi

(t) − xj
(t)

∥
∥

∣
∣
∣ ≤ mij

(t), (i, j, t) ∈ A
1
σe

∥
∥
∥vi

(t) − (xi
(t) − x̂i

(t−1))/ΔT
∥
∥
∥ ≤ si

(t), (i, t) ∈ W

(9)

Next we define u Δ= {mij
(t)|(i, j, t) ∈ A, si

(t)|(i, t) ∈ W} and Q = {qij
(t)|(i, j, t) ∈

A}. Then we can obtain the following SOCP problem

min
X ,Q,u,v

v

s.t

‖u‖2 ≤ v
∥
∥xi

(t) − xj
(t)

∥
∥ ≤ qij

(t), (i, j, t) ∈ A
1

σλ

∣
∣
∣qij

(t) − δij
(t)

∣
∣
∣ ≤ mij

(t), (i, j, t) ∈ A
1
σe

∥
∥
∥vi

(t) − (xi
(t) − x̂i

(t−1))/ΔT
∥
∥
∥ ≤ si

(t), (i, t) ∈ W

(10)

3.3 Fusion Algorithm

Given the position of the mobile node at the last time instant and velocity
information, we can easily get the current node’s position in each time instant
by the following mobility model

xi
(t) = xi

(t−1) + Δt • vi
(t) cos θi

(t)

yi
(t) = yi

(t−1) + Δt • vi
(t) sin θi

(t) (11)
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The proposed localization system applies KF to fuse the position estimation
provided by velocity-based and SOCP-based algorithm. At each time instant t,
the state of the nodes is represented by X̂(t) = [x̂(t)

1 , x̂
(t)
2 , . . . , x̂

(t)
n ]T .

The KF estimates a posteriori state X̂(t|t), given the above algorithm location
estimates z(t), and z(t) = X ′ , where X ′ is the location estimated by SOCP.

According to the dynamical system model and measurement model, the state
equation and measurement equation of the localization system are formulated
as follows [13]

X̂(t) = FX̂(t−1) + v(t) + w(t−1) (12)

z(t) = HX̂(t) + r(t) (13)

where F = I2N , H = I2N , w and r are the process noise and measurement noise,
which covariance matrix are Q and R. The KF equations can be derived as
Prediction equations

X̂(t|t−1) = FX̂(t−1|t−1) + u(t) (14)

P (t|t−1) = FP (t−1|t−1)FT + Q(t−1) (15)

Update equations

K(t) = P (t|t−1)HT (HP (t|t−1)HT + R(t))−1 (16)

X̂(t|t) = X̂(t|t−1) + K(t)(z(t) − HX(t|t−1)) (17)

P (t|t) = P (t|t−1) − K(t)HP (t|t−1) (18)

4 Simulation Results

We assume that there are ten mobile nodes and five anchor nodes in a
50 m × 50 m area. The nodes follow the Markov mobility model at each time
instant, each node randomly selects a velocity and a direction, where velocity
is uniformly distributed between 0 and νmax. Upon reaching the boundary, the
node keeps the velocity while moving in the opposite direction. The distance,
velocity, and direction errors are 5% respectively. The performance of different
algorithms is compared using RMSE and CDF through MATLAB simulations,
where all expectations are calculated empirically over 1000 independent runs.

We first studied the positioning performance of static nodes using the MDS
algorithm and SOCP relaxation. Figure 2 is the RMSE curves of MDS and SOCP
algorithm over ranging error under the static scenario, both of which increase
with the increase of ranging error. Combining the CDF of Fig. 3, we can see that
the MDS has higher localization accuracy than the SOCP. This is because SOCP
relaxes the objective function and only obtains suboptimal location estimation.
Moreover, in the static scenario, the objective function only contains the distance
information between the nodes, without the help of the velocity vector. The
positioning scene diagram in Fig. 4 further validates this result.
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Fig. 2. The RMSE curves of MDS and SOCP against distance measurement error when
nodes are static.

Fig. 3. The CDFs of MDS and SOCP against distance measurement error when nodes
are static.

Figures 5 and 6 respectively show the comparison of the RMSE and CDF
between the four algorithms when nodes are moving. Figure 5 shows that the
MDS-based localization algorithm has the largest localization error compared
to the other three algorithms. The RMSE of velocity-based location estimation
shows an upward trend with time. Although the localization error of the velocity-
based at the beginning is less than that based on the SOCP relaxation algorithm,
the performance of the SOCP relaxation algorithm quickly increases over time
and exceeds the velocity-based algorithm. This is due to that it relies on the
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Fig. 4. Location of static nodes estimated by the MDS and SOCP.

Fig. 5. The RMSE curves of the four algorithms when nodes are moving.

location estimation at the last moment, and the error will accumulate over time.
After the SOCP-based relaxation algorithm has incorporated the mobile infor-
mation, the localization error is significantly lower than that of the MDS. The
CDF of Fig. 6 further validates this result. The Kalman filter is applied to fuse
the velocity-based location estimation with the location estimation of the SOCP
relaxation algorithm, which improves the localization accuracy and robustness
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Fig. 6. The CDFs of the four algorithms when nodes are moving.

of the entire localization system. As can be observed in Fig. 6, the localization
error after fusion is within 0.8 m, which is better than other algorithms.

5 Conclusion and Future Work

In this paper, we proposed a new cooperative localization scheme of exploiting
the distance and mobility information of nodes in the process of localization
under mobile wireless network. We utilized the node’s mobility to enhance the
SOCP-based relaxation localization algorithm and further applied KF to improve
the positioning accuracy and robustness of the localization system. The simu-
lation results confirm the effectiveness of the localization scheme. Cooperative
localization in heterogeneous networks and NLOS environment will be the focus
of our further work.
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