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Abstract. Field Programmable Gate Arrays (FPGAs) provide great
flexibility and speed in Software Defined Radio (SDR). However, as
a mobile wireless protocol, the LTE system needs to maintain coding
procedures for different channels, and the hardware’s implementation is
more complex than other wireless local area network (WLAN) speci-
fications. Thus a compact and resource reusable LTE channel coder is
needed as hardware resources and speed are the main pain points in SDR
implementation. Traditional FPGA design and synthesis only focus on
low levels of resource reuse, and IPs are independently designed with-
out considering the whole system, which causes resource waste. In this
paper, we describe a LTE downlink channel encoder processing chain
implemented in FPGA hardware. Reuse in the whole system is done at
a channel level and above, and scarce resources like BRAM are shared
between processing units to maximize reuse. The system can efficiently
process data and control channel signals at the same time using the same
hardware. For the data channel, we use cross-component optimization to
reduce the usage of BRAMs up to 25% for high volume data buffering.
A novel rate matching design reduces the latency which improves the
performance. By applying high-level reuse, the cross-component design
can reduce resource usage while maintaining a good processing speed.
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1 Introduction

To keep up with the pace of updating standards, an SDR should have reconfig-
urability and software programmable hardware; FPGAs provide a good imple-
mentation platform that achieve these goals. The gap between wireless commu-
nications and hardware design requires developers to be proficient in both these
areas. Libraries of Intellectual Property (IP) for wireless communications sim-
plify hardware design for those proficient in SDR. However, without considering
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the whole processing chain and dependencies between different IPs, systems may
suffer from resource waste and lower than optimal speed.

To implement the LTE system, many features can be efficiently implemented
on a general purpose processor. Some blocks, such as Orthogonal Frequency-
Division Multiplexing (OFDM), are best placed in hardware. Further, as mas-
sive MIMO and wideband OFDM will be applied in next generation systems,
resources for baseband channel encoding will be quite limited. For the Downlink
Shared Channel (DL-SCH) using QAM256 modulation, the maximum size of the
transport block is 97896 bits and 105528 bits in releases 12 and 14 respectively.
This requires the encoding system to be compact and efficient. In addition we
design our system to accommodate processing for several different channels.

The contributions of this paper are: (1) We process both data and control
channels using the same hardware, (2) we optimize rate matching to reduce
latency, and (3) we optimize across the whole system to improve on-chip memory
usage. In our implementation, reuse is considered across different channels and
between IPs, which saves resources.

Previous research has focused on optimizing individual components for chan-
nel encoding independently. Researchers have investigated paralellizing the CRC
and turbo encoder [3], and optimizing code block segmentation [5]. Santnanam
et al. [8] examine choosing the FPGA Block RAM to achieve optimal power
consumption and resource usage. Others have proposed a high speed architec-
ture and a solution to reduce latency and resource usage in rate matching [2,4].
Fahmy et al. [7] introduces a method to improve resource sharing for DSP blocks,
which can reduce the DSP consumption in OFDM systems. Hassan et al. [1]
have designed a LTE downlink transceiver with synchronization and equaliza-
tion; however, implementation details are missing. While excellent work has been
done on each processing unit independently, to make the system work as a whole
requires consideration of components’ compatibility and resource usage.

2 Background

In LTE systems, information in the logical channel from the MAC layer are
assigned to the transport channel in the physical layer for encoding. At the same
time, control information is added for encoding which is irrelevant to the higher
layer. The standard defines turbo encoding, tail biting convolutional coding,
block coding etc. as coding schemes. For turbo and tail biting convolutional
coding, each has its own rate matching scheme.

In the downlink, turbo coding is applied to DL-SCH, Paging Channel (PCH)
and Multicast Channel (MCH). Tail biting convolutional coding is applied to
Broadcast Channel (BCH) and Downlink Control Information (DCI). We refer
to the DL-SCH, PCH and MCH as data channels and BCH and DCI as control
channels. In each Transmission Time Interval (TTI), the CRC encoder receives
data from the MAC layer and attaches parity bits to the transport block bit
stream. The padded transport block is segmented into code blocks for turbo
coding in predefined sizes. To align the size of padded transport block with dif-
ferent segmented code blocks, a number of F filler bits may be added to the
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Fig. 1. Hardware architecture

head of the first code block as null bits. For data channel encoding, if the total
number of segmented code blocks is larger than one, an additional CRC encoding
process will be added to each code block before the turbo encoding process. For
the control channel, the data will be sent directly to the convolutional encoder
for processing. Next, each code block is processed by the turbo encoder, a Par-
allel Concatenated Convolutional Code (PCCC) with two 8-state constituent
encoders with one (Quadratic Polynomial Permutation) QPP interleaver, and
code rate 1/3. For control, The convolutional encoder first initializes its regis-
ters in the Shift Registers (SR) to the last 7 bits of each code block. Then the
encoder encodes the data with these initialized SR with constraint length 7 at a
coding rate of 1/3. Rate matching, which contains bit selection and pruning, is
the last step of channel coding. It merges three bit streams (one information bit
stream and two parity bit streams) generated by the turbo (or convolutional)
encoder into one. After rate matching, the data will be send to the rest of the
LTE physical layer processing.

3 Hardware Architecture

The processing chain for our hardware architecture, shown in Fig. 1, contains
CRC encoder, code block indicator, Forward Correction Coder (FCC) encoder
and multi-channel rate matching. To support encoding different channels’ data
using the same hardware, we merge different processing units by sharing hard-
ware resources. The first CRC encoder is the same for different channels. To
make the control channel’s processing chain compatible with the data chan-
nel, we redefine the use of the code segmentation processing unit as code block
size indicator without changing the hardware design. This redefinition scheme
allows CRC encoded control information to be passed to the FCC encoder while
using the same hardware architecture. The convolutional and turbo encoder are
merged into one FCC encoder, and their rate matching is also merged into multi-
channel rate matching with some resource sharing. In this design, the data and
control information can be encoded using the same hardware. Optimized rate
matching is also applied to improve the performance for both the data and con-
trol channels.

3.1 Rate Matching

The sub-block interleaver is based on matrix interleaving. Bit streams d
(0)
k , d

(1)
k

and d
(2)
k of each code block are first reshaped into a R × 32 matrix, where
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R = �K/32�, and K is the size of each code block after turbo encoding. The bit
stream is stored in the matrix in row-wise order and ND dummy bits padded to
the head of each bit stream as null bits if K is less than KΠ (defined as R×32).
Then a column-wise permutation is performed for the resized bit streams. For
the convolutional encoder, all bit streams use the same permutation pattern.
For turbo coding, the permutation is applied to bit streams d

(0)
k and d

(1)
k and

bit stream d
(2)
k uses the permutation pattern shown in Eq. 1.

π(k) =
(

P

(⌊
k

R

⌋)
+ 32 × (kmod R) + 1

)
mod KΠ (1)

where π(k) is the index of the kth bit in d
(2)
k after permutation.

In bit collection, the permuted bit streams v0
k, v1

k, v2
k are read out from the

matrix in column-wise order and written into a circular buffer in interleaved
order, where wn is the nth data bit in the circular buffer:

wk = v0
k, for k = 0, 1, 2...,KΠ (2)

wKΠ+2k = v1
k, for k = 0, 1, 2...,KΠ (3)

wKΠ+2k+1 = v2
k, for k = 0, 1, 2...,KΠ (4)

In bit selection and pruning, data is read out from the circular buffer skip-
ping the null bits until the data size reaches the capacity of a channel. The
read starting point for turbo coding is chosen through the calculation of redun-
dancy version (rv) and bits capacity for each code block (Ncb). For convolutional
coding, the data is read from the first bit of v0

k.
In DL-SCH processing, the rate matching process slows down the whole sys-

tem’s speed which needs to merge three bit streams into one. Researchers [4]
have optimized this performance by implementing two RAM sets for sub-block
interleaving and bit collection, directly following the process described in the
LTE standard. In hardware, the interleaving process can be done by calculating
the address while writing data bits to RAM; thus, the sub-block interleaving
and bit collection can be done using only one RAM set. In this way, the RAM
cost will be cut in an half. This work does not clearly describe how to design the
FSM for bit selection, which needs to select information bits and skip dummy
bits. Without proper optimization, at least one clock cycle is needed for skipping
the dummy bits which results in extra latency. This latency is obvious when the
code block is small. A patent [6] describes an approach to reduce this latency by
calculating and storing the number of dummy bits before the information bits.
However this approach cannot be efficiently implemented in hardware because
storing the number of dummy bits before the information bits requires large
amounts of RAM, and eliminates the ability for parallelization, which results in
extra latency.

The proposed rate matching hardware architecture is shown in Fig. 2. Three
RAMs are used for sub-block interleaving to mimic a circular buffer. Compared
to [4], which uses two RAMs for each bit stream to do matrix resize and inter-
column permutation in sub-block interleaving, we use only one RAM for each
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bit stream to finish interleaving. After address permutation, the data streams
are written into BRAMs in interleaved order. By reading out the parameters
from LUTRAM, the read controller controls the address read from the RAMs
and selects the correct output from the three RAMs.

In bit selection and pruning, the processing unit should distinguish null (filler
and dummy bits) bits that are scattered in valid bits (the information, parity
bits0 and parity bit1, shown in Fig. 3). Solutions include using 2 bits to store valid
and null bits or locating the address of null bits using Eq. 1 and the permutation
table. However, the first solution doubles the cost of RAM and both solutions
consume at least one clock cycle to read out or calculate whether a null bit is
there. This reduces the performance of rate matching, especially when the code
block is very small. The difficulty in skipping the null bits is how to locate these
bits before the address generator reaches their addresses. To do this, we must
have knowledge of where these null bits are. Because the null bits are always
padded at the head of each bit stream, after inter-column permutation, these
null bits will be located in the first several rows of each matrix (see Fig. 3). If
we know how many null bits exist in each column, the address generator can
preload this number and increase the address from that number in column-wise
order, so the null bits will be skipped. After the address number reaches the last
row, it moves to the next column and repeat this process.

As each bit stream is reshaped into a R × 32 matrix, the number of null bits
dc for each column c is represented as:

dc =
⌊

N

32

⌋
+ J(c)

(
J(c) =

{
1, if P−1(c) < Cd

0, if P−1(c) ≥ Cd

)
(5)

where P−1() is the inverse of the inter-column permutation function for different
coding schemes, and Cd is the pattern of null bits calculated using:
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Cd =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Cd01 = (ND + F ) mod 32,

(for d
(0)
k , d

(1)
k in turbo)

Cd2 = ND mod 32,

(for d
(2)
k in turbo and d

(0)
k , d

(1)
k , d

(2)
k in convolutional)

(6)

In hardware implementation, term
⌊

N
32

⌋
can easily be calculated by bit shift-

ing. Permutations are parity permutation without overlap, which share the same
pattern as their inverses. Therefore, for d

(0)
k and d

(1)
k streams in turbo code and

all the bit streams in convolutional code, the function P−1(c) is the same as
the permutation P (c). Thus a 32 × 5 (LUT) can implement function P−1(c).
However, the permutation of d

(2)
k in turbo code involves the calculation of Eq. 1

whose inverse cannot be directly implemented as a small LUT. Looking at Eq. 1,
we find it cyclic shifts the d

(1)
k stream and then applies the sub-block interleaving

using the same turbo permutation. Therefore, to implement function P−1(c) for
that bit stream, we only need to add one to the LUT for permutation to repre-
sent the cyclic shift. In a real implementation, all the permutation LUTs should
be left-cycle shifted by one; this helps the row address generator load the null
bit number before the next column’s read begins. To reduce latency, parameters
calculated in Eqs. 5 and 6 are stored in LUTRAM as ks and kc for read starting
point, R, Cd01, Cd2 and FL32 for filler bits information (Fig. 2).

We use three BRAMs with control logic to mimic a circular buffer structure.
However, the interleaving order shown in Eqs. 3 and 4 introduces another chal-
lenge to the control logic’s implementation for the circular buffer. The problem
is that the d

(2)
k stream uses a different permutation and the null bits it contains

are also different from the other two bit streams. This may result in the data not
being read from BRAM1 and BRAM0 in sequential order. Sometimes, a number
of data bits may need to be read from a single BRAM continuously, for example
when the data is read from the column (red circle in Fig. 3). To solve this BRAM
iteration problem, we use Algorithm 1 to decide which BRAM to select while
comparing the row address of different BRAMs dynamically. Here, dc01 and dc2

are calculated as in Eq. 5. In this way, BRAM selecting can be easily done using
a comparator.

3.2 High Level Resource Reuse

Xilinx Vivado provides IP including 3GGP Turbo Encoder and LTE DL Chan-
nel Encoder which provide ease of use but remove freedom for the designer.
The LTE DL Channel Encoder includes the downlink channels in LTE. It is
powerful however it consumes a lot of resource which restricts its usage in lim-
ited resource situations such as MIMO and OFDM transceiver. The independent
3GGP Turbo Encoder IP cannot be optimized with other packaged IPs when
directly connect to them. We use a high level of resource reuse between blocks
for more compact systems. We fully merge the CRC encoder for control and
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Algorithm 1: Circular Buffer Interleaved Data Read Out with null Bits
if row address1 == R & row address2 == R then

row address1 ← dc01;
row address2 ← dc2;

else
if row address1 < row address2 then

row address1 ← row address1 + 1 ;
select BRAM1;

else
row address2 ← row address2 + 1 ;
select BRAM2;

end

end
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Fig. 4. High level resource reuse

data channels by simply using the same hardware, as shown in Fig. 4, because of
their same options for the coding polynomial. Compared to the control channel,
the data channel has additional code block segmentation and a CRC encoder.
Code block segmentation divides a long code into small code blocks and outputs
their sizes. The control channel also needs that code block size information for
encoding; however no segmentation is needed. In the data channel’s encoding,
if there is only one code block in the TTI, this code block will be bypassed to
the turbo encoder without a second CRC encoding. The control channel code
blocks can also bypass the second CRC encoding. To apply this, the code block
segmentation in the control channel’s processing is redefined as a code block size
indicator that segments the control information into a single code block to avoid
the next CRC encoding. In this way, the encoding before the FCC encoder can
share the same resources without changing the hardware architecture. The FCC
is designed to use the same control logic and memory to finish these two coding
schemes. The convolutional encoder shares one RAM with the turbo encoder
for data buffering and register initialization. Independent design of the convo-
lutional encoder alongside the turbo encoder costs resources. In multi-channel
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rate matching, we use the same hardware for the data channel by making some
slight changes. Another permutation table for convolutional coding is added.
The algorithm for the circular buffer data read works for both channels. As the
code blocks in the control channel have no filler bits, the null bits pattern will
be the same as Cd2 in turbo rate matching. In this way, the bit collection and
bit selection and pruning elements can also be applied to control data’s rate
matching using the same hardware.

3.3 Buffer Optimization

For the FPGA implementation, the largest code block size requires a 13-bit
address. As a result, the 18 Kb BRAM is divided into two areas for code block
storage and the 36 Kb BRAM is divided into four areas for data buffering. There-
fore, a simple ping-pong buffer can be realized using one 18 Kb BRAM for the
CRC while two 18 Kb BRAMs are need for turbo encoding as it uses two inde-
pendent data streams. Maximum delay is achieved when the lowest code rate is
chosen at 1/3 which requires the largest amount of data buffering. To reach this
rate, the total number of code blocks is 6, and the output size is three times the
input size. If the data ports timing strictly follows the timing diagram shown
in Fig. 5, the rate matching can only process five continuous code blocks at a
time with a 36 Kb BRAM for each bit stream. However, the output code block
size may exceed the size shown in Fig. 5 because the output data size of each
code block needs to match the modulation order, the number of bits coded into
one modulated symbol. Consider that the system has some timing slack, more
than four code blocks should be stored in RAM. Therefore, two 36 Kb BRAMs
are needed per data stream. Because the rate matching process uses three data
streams, a total of six 36 Kb BRAMs are needed. These are the BRAM resources
needed if we independently implement the processing units. Turbo encoding
triples the size of RAM needed for data buffering and rate matching because
three bit streams are generated. However, if the system is optimized together,
the buffer usage in rate matching can be greatly reduced. The buffers in CRC
and turbo encoder can help rate matching to buffer data. A simple approach
is to assign one code block to the turbo encoder processing unit and four code
blocks to rate matching. When the rate matching processing finishes any code
block’s encoding, which frees the space for one code block’s buffering, the turbo
encoder can then transfer its buffered data to the rate matching processing unit.
If the system is optimized as a whole, the rate matching processing unit needs
only three 36 Kb BRAMs to buffer four code blocks. As a result, the whole sys-
tem can buffers more code blocks while using fewer RAMs than if the processing
units are implemented independently.

4 Results

We use Mathworks and Xilinx tools to support our design flow. Simulink is used
with HDL Workflow Advisor to generate HDL code from Simulink blocks and
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Matlab code. Xilinx Vivado 2016.4 is used for synthesis and implementation.
Except for the LTE CRC and turbo encoder blocks provided by Mathworks, we
formulate and implement the whole system in our design and run the results on
a Zedboard. Resource usage on a Zedboard is shown in Table 1 along with the
percentage reduction achieved compared to the design without resource sharing.
BRAM usage is shown in Table 2. Note that the turbo encoder uses 5 18 Kb
RAMs, two for data buffering and three for the QPP interleaver. Thus, the non-
resource sharing design costs more resources, with 33% more BRAMs consumed.
Although a single LTE downlink encoding system consumes very few resources,
the LTE OFDM modulator requires a large amount of resources, which won’t
leave abundant resource for the encoder. As a result, the resource consump-
tion should be kept as small as possible. In addition, MIMO requires multiple
encoders to work together to achieve high throughput. When multiple encoders
are implemented, the resources they save together can be considerable. Because
the size of filler bits may vary from 0 to 31 randomly, we pick the mean of 16
bits for testing. Results show that optimized rate matching can reduce delay by
28.6% for small blocks when compared to non-optimized running at the same
clock frequency. For very large blocks the optimized design has lower delay, but
only 1% delay improvement.

Fig. 5. Data ports timing of rate matching

Table 1. Resource usage of downlink encoder (with resource sharing)

Resource Utilization Available Utilization% Utilization reduced%

LUT 1073 53200 2.02 27.34

LUTRAM 163 17400 0.94 18.97

Flip-Flop 1243 106400 1.17 22.00

BRAM 6 140 4.29 39.91

Table 2. BRAM usage

Items Independent non-optimized Cross-component optimized

18 Kb RAM 36 Kb RAM 18 Kb RAM 36 Kb RAM

CRC encoder 1 0 1 0

FCC encoder 5 0 5 0

Rate matching 0 6 0 3

Total usage 6 6 6 3
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5 Conclusions and Future Work

We have shown that optimizing the data channel processing chain as a whole and
high level resource reuse saves scarce resources in FPGA implementations such
as BRAMs. In addition, we presented a novel architecture for a rate matching
system with low latency. If multiple LTE downlink encoders are implemented
for parallel processing in a MIMO system, the saved resources are considerable.
The designs presented in this paper run at frequencies of 130 MHz on Zedboard.
In the future, we plan to implement multi-channel resource reuse as a tool to
facilitate research and realization of SDR designs. We also plan to investigate
tools that optimize designs across blocks, and not just within individual blocks.
If these tools can work with vendor tools such as Vivado HLS, it will simplify the
design of SDR system and result in improved resource efficiency. Furthermore,
we plan to investigate targeting the RFSoC chip from Xilinx for similar designs.
The RFSoC included cores for FEC that can be used for turbo encoding.
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