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Abstract. Cognitive Radio (CR) systems allow optimizing the use of
the shared radio spectrum and enhancing the coexistence among dif-
ferent technologies by efficiently changing certain operating parameters
of the radios such as transmit-power, carrier frequency, and modulation
and coding scheme in real-time. Dynamic Spectrum Access (DSA), which
allows radios to dynamically access and use the unused spectrum, is one
of the tasks that are fundamental for a better use of the spectrum. In this
paper, we extend the previous work on Automatic Modulation Classifi-
cation (AMC) by using Deep Neural Network (DNNs) and evaluate the
performance of these architectures on signals that are not only modulated
but are also encoded. We call this the Automatic Modulation and Coding
Scheme Classification problem, or AMC?. In this problem, radio signals
are classified according to the Modulation and Coding Scheme (MCS)
used during their transmission. Evaluations on a data set of 802.11 radio
signals, transmitted with different MCS and Signal to Noise Ratio (SNR),
provide important results on the impact of some DNN hyperparameters,
e.g. number of layers, batch size, etc., in the classification accuracy.
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1 Introduction

Nowadays a large number of technologies are sharing the same radio spectrum
and it has become a scarce commodity [1]. However, most of the spectrum is
underutilized most of the time. In order to optimize the use of the radio spec-
trum, Cognitive Radio (CR) systems will play an important role due to their
capabilities to communicate efficiently by changing certain operating parame-
ters of the radio, such as transmit-power, carrier frequency, and modulation and
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coding scheme, in real-time [2]. One of the key features in CR is the Dynamic
Spectrum Access (DSA), which allows radios to dynamically access and use the
unused spectrum [1]. The decision-making process executed by DSA broadly falls
in the fields of cross-layer optimization and is solved by using algorithms from
mathematical optimization, e.g. evolutionary algorithms, and Artificial Intelli-
gence, e.g. Machine Learning (ML). In general, DSA involves several tasks that a
radio should execute with the aim of improving its performance. One of this task
is the Automatic Modulation Classification (AMC), which is used to automati-
cally determine the modulation type of the transmitted signal. One of the main
challenges in AMC is to classify a received signal into a modulation type with-
out (or limited) a prior information about the transmitted signal under dynamic
channel conditions [3].

This problem has been mainly faced via either acLB and expert Feature-
Based (FB) engineering combined with pattern recognition methods [23]. Note
that while Likelihood-Based (LB) methods find optimal solutions by minimiz-
ing the probability of false classification at the cost of a high computational
complexity, FB methods have lower complexity and their performance is (near-
Joptimal, when they are designed properly. However, these features are usually
chosen by an expert and are based upon a certain set of assumptions, which
most of the time, are not realistic [4]. In recent years, some of the limitations of
such techniques have been partially solved by applying Deep Neural Networks
(DNNs). DNNs are able to (1) automatically extract the important features on
raw time-series data, and (2) perform the classification task [26] on the extracted
features. A DNN consists of a set of interconnected computational nodes, which
are called artificial neurons, that are hierarchically organized in different layers,
namely input layer, hidden/intermediate layer(s) and an output layer. A set of
weighted links connecting the nodes between the layers are constantly adjusted
as the training continues, where neurons take the output of the linked neurons in
the previous layer and compute a new output based on the activation function of
each neuron. DNNs are Neural Networks (NNs) that surpass 3 layers (including
input and output layers). Note that the greater the depth of the NN, the greater
the ability of it to differentiate complex features on signals for tasks such as
regression, classification, and clustering.

In this paper, we will extend the previous work on AMC by using DNNs and
evaluating its performance on radio signals that are not only modulated but are
also coded. We call this the Automatic Modulation and Coding Classification
or AMC?. In our approach, 802.11ac radio signals are classified using a DNN
according to the Modulation and Coding Scheme (MCS) that was used during
their transmissions and under different Signal to Noise Ratios (SNRs) of the com-
munication channel. The main contributions of this paper are two-fold. Firstly, a
DNN architecture is defined for the radio signal classification task based on raw
In-phase and Quadrature (IQ) samples of the transmitted signal. Secondly, sev-
eral experiments were performed and analyzed in order to determine the impact
of some DNN hyperparameters (e.g. the number of layers, batch size, etc.) on the
classification accuracy. The remainder of this paper will be structured as follows:
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Sect. 2 introduces the related work on AMC using DNNs. In Sect. 3, the DNN
architecture used to solve the AMC? problem on 802.11 signals is presented.
Section 4 discusses the evaluations and the results of the proposed architecture.
Finally Sect.5 contains the conclusion and future extensions of the presented
work.

2 Related Works

The task of AMC is to recognize the unknown modulation scheme of a received
radio signal automatically. It plays an important role in intelligent communi-
cation systems like cognitive radios. In general, this task is hard due to the
absence of a prior knowledge of the incoming signal, the effects of multi-path
propagation, and the dynamics and uncertainty of the channel, among others.
Two traditional methods to solve this problem are the LB and FB [23]. LB
methods use a likelihood function of the received signal and try to maximize
the likelihood radio given a threshold. These methods find optimal solutions by
minimizing the probability of false classification but at the cost of a high compu-
tational complexity. FB methods [5] use several features of the received signals,
e.g. instantaneous amplitude, phase and frequency, in order to recognize them
based on their observed values. These features are usually chosen by an expert
and used in combination with classifiers. In comparison to LB methods, FB ones
have lower complexity and their performance is (near-)optimal when they are
designed properly. Among classifiers, several ML methods for Pattern Recog-
nition (PR) have been used for AMC such as NNs [6], clustering [7], Support
Vector Machines (SVM) [8], Decision Trees (DT) [9], etc.

Several works have evaluated and compared the performance of different clas-
sifiers under a given set of expert features. NN-based classifiers have shown to
overcome the performance of several ML methods for solving the AMC task
[11,13,14,22]. Moreover, DNNs [21], NNs with more than one layer between the
input and the output layers, have shown the best performance without explic-
itly requiring a FB method to extract radio signal features [10,12,15,17,18,26].
DNN architectures are capable of performing both the feature extraction and
the classification of the radio signals using a unique NN. Authors in [17] showed
that a DNN based on a Convolutional Neural Network (CNN), which are simply
neural networks that use convolution in the place of general matrix multiplica-
tion in at least one of their layers [21], was able to outperform several expert
FB methods using different classifiers. The CNN achieved a rough accuracy of
87%, across all the 11 types of modulated radio signals and SNRs on the test
dataset, and using only raw 1Q samples of the modulated radio signals as input.
Similarly, Shengliang et al. [12] proposed a CNN classifier but on images that
were generated after a data conversion from raw IQ samples to grey-colored
images. Again, improvements and better classification accuracy were achieved
over cumulant and ML-based modulation classification algorithms.

Instead of using CNN, authors in [10] proposed a deep learning architec-
ture based on Extensible Neural Networks (ENN) for modulation classification
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in multi-path fading channel. The proposed DNN is based on energy natural
logarithm model. The proposed ENN uses 3 smaller DNN, each one trained
to recognize the amplitude, phase, and frequency of the radio signal. Results
showed that the proposed ENN has higher Probability of Correct classification
than traditional algorithms for modulation classification within the same train-
ing sequence and SNR. In [15], a CNN and Long Short-Term Memory (LSTM)
are combined to create a Heterogeneous Deep Model Fusion (HDMF). A deep
learning-based AMC method that employs Spectral Correlation Function (SCF)
is introduced in [20]. In the proposed method, a Deep Belief Network (DBN)
is applied for pattern recognition and classification with high accuracy even in
the presence of environmental noise. Finally, the use of Sparse Autoencoders
(SAE) DNN to solve the AMC problem was evaluated in [19] using different
type of inputs. Three training inputs were 1Q samples, the centroids of con-
stellation points employing a fuzzy C-means algorithm to I1Q diagrams, and the
high-order cumulants of received samples. Each autoencoder layer was trained
using the unsupervised training followed by the softmax classifier. The results
showed that the accuracy of the proposed DNN architecture using an AWGN
channel model with varying SNR outperformed AMC methods using Maximum
likelihood classifier, cumulant based Genetic programming in combination with
KNN classifiers and feed-forward neural network using cumulants and instanta-
neous power spectral density (PSD) as the features.

Based on the previous works, it is clear that DNN architectures solve the
modulation of radio signals with high accuracy, even on pure raw data such as
1Q samples and therefore removing the need of FB methods for prepossessing
the received signal. However, and to the best of our knowledge, there is not a
previous work to solve the problem of automatically classifying modulated radio
signals that are also coded, which we have called the AMC? problem, using
DNN.

3 Deep Architecture for AMC?

Similar to the AMC task, AMC? can be defined as follows:

Definition 1. The automatic modulation and coding scheme classification
(AMC?) is the task of recognizing the modulation and coding scheme used to
transmit a received signal without the need of an a priori knowledge of such info.

Note that most wireless systems, e.g. IEEE 802.11 and LTE, avoid this prob-
lem by including the MCS information in each signal frame so that the receivers
are notified about the change in modulation scheme, and therefore, they would be
able to react accordingly. However, this strategy affects the spectrum efficiency
due to the extra modulation information in each signal frame. By automati-
cally identifying the modulation type of the received signal, the receiver does
not need to be notified about the MCS, the demodulation can still be success-
fully achieved and the spectrum efficiency is improved. For this reason, AMC?
becomes a fundamental part of CR systems to solve this problem.
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As it was shown in Sect.2, DNN have been proved to be a powerful tool
to solve the AMC problem in wireless communication systems even using only
raw IQ samples. Traditionally, DNNs are usually built in a modular manner
and, most of the cases, are inspired by architectures that have performed well
on other problems. In this paper we will use a CNN [16,21] architecture based
on the model described in [17]. Typically, a CNN comprises of convolutional
layers, each followed by optional sub-sampling/regularization (pooling) layers
and ending in fully-connected layers. These are hidden layers that are effectively
chained functions that collectively transform the input data to the output.

The intermediate outputs from the hidden layers are not shown and are
results of linear and non-linear processing of the input data. The linear processing
of the input data involves multiplication of weight matrix and addition of bias
vector, while the non-linear processing of the input data is triggered by the
activation function. In this paper, the DNN architectures used for the AMC? is
composed of 3 Convolutional layers, each of them followed by 3 Dense layers. A
brief description of the individual layers and their function in the architecture
are discussed below. The resulting architecture and size of each layer are shown
in Fig. 4. Information about the size of the input layer and the properties of the
input data is presented in Sect.4 (Fig.1).
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Fig. 1. 2-layered CNN accepting N x 2 x 128 inputs, where N is the batch size, and
resolving to 11-class softmax output layer

3.1 Reshape and Zero-Padding Layer

A Reshape layer shapes the input data into the desired shape for the subsequent
layers in the CNN. On the other hand, the Zero-Padding layer simply pads the
border of the input data, to control the dimensionality of the output volumes.
Together with input volume size, kernel size and stride zero-padding, this layer
will ensure that the input fits nicely to the neurons in the Convolution layer.



182 P. S. Cheong et al.

3.2 Convolution Layer

A convolutional layer receives a 3D input vector and creates a 3D output vector
that measures the filter responses at each input location, calculated as the sum
of the element-wise product between filter and kernel size. This convolutional
response encodes the input in terms of transformed intermediate outputs to
systemically reduce input dimensionality as a part of feature learning.

3.3 Flatten and Dropout Layer

A flatten layer converts output from the previous layer from 3D to 1D vectors.
This layer is necessary before Dense Layers, which accept only 1D vectors. The
Dropout layer acts as a regularizing method used to avoid overfitting, i.e. the NN
is able to classify objects that have not seen before. During training, neurons’
weights and biases are adapted to detect specific features from the input dataset.
The neuron weights would settle into their context within the network and could
be too specific to the training data. When neurons are randomly dropped out of
network during training, other neurons would be forced to handle representation
required to predict missing neurons. This results in a neural network that would
be capable to generalize new unseen data, in contrast to overfitting training data.

3.4 Dense Layer and Activation Function

A dense layer consists of neurons which have full connections to all activa-
tions in the previous layer. Their activations can be computed with a matrix
multiplication. The activation function used in the Convolution and Fully-
Connected/Dense Layers are Rectified Linear Unit (ReLu) and Softmax respec-
tively. ReLu provides non-linear transformation to outputs of previous layers to
learn the dataset. It is merely a two piecewise linear transformations that convert
all outputs to positive values. This allows easy gradient optimization with good
generalization capability. Softmax used in the last Dense Layer to represent a
probability distribution over a discrete variable with n possible values, where n
is the number of classes.

4 Experiments and Results

In this section, we will present the procedure and characteristics of the dataset
generated and the main results of the evaluated architectures.

4.1 Dataset Generation

The dataset was created using the Matlab WLAN toolbox [25] and the tech-
nology selected for the radio signals with modulation and coding scheme is the
IEEE 802.11ac. The radio signal was generated and represented in a 3-D vector
with a shape of [N, IQ, P], where N is the number of samples of a signal with
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a given MCS and SNR, IQ is the real (In-phase) and imaginary (Quadrature)
value representing the signal in a specific point in time, and the P is the number
of consecutive points of that signal that are used as a single sample for training.
For each MCS and SNR, 0 < SNR < 19, a complex-valued time-series waveform
is generated and a window with a width of 128 sample points is slid across the
whole waveform 1000 times. Each 1Q sample is normalized and stored separately
resulting in [N, 2, 128] shape, where N is a factor (calculated by multiplication
of the number of SNR types and number of MCS types) of 1000.

The simulation of the dataset begins with the creation of a Physical Ser-
vice Data Unit (PSDU), which is then encoded to create a 4-packets wave-
form. Figure 2 shows an example of the waveform generated after transmitting
4 packets. The encoding is defined by the MCS. Only MCS 0-7 are used in the
experiment. A 20-microsecond idle time is fixed between successive packets. The
waveform is then passed through an evolving 802.11ac multipath fading channel
(TGac). Additive White Gaussian Noise (AWGN) is added to the transmitted
waveform to create the desired average SNR per sub-carrier. The 802.11ac trans-
mitter is configured to use the very high throughput (VHT) format physical layer
(PHY) packet, with a channel bandwidth of 80 Mhz, and a 1 x 1 MIMO array for
one unique user. The Aggregate MAC Protocol Data Unit length is 1024. The
transmission channel impairment is modeled to add channel and receiver noise,
to produce a realistic modulated signal represented by r(t) = s(t)*c+n(t), where
s(t) is time-series signal of a series of discrete bits modulated onto a sinusoid, ¢
is path loss/gain constant on signal and n(t) is additive Gaussian white noise.

0 05 1 15 2 25 3 35 4
Time(in microseconds) «10° PSDU: Physical Layer Service Data Unit
TGaC: An 802.11ac multipath fading channel

(a) Generated Waveform from four packets (b) 802.11ac Signal Waveform Modeling
separated by 20-microsecond idle periods)

Fig. 2. Data set generation

After generating the data set, a preprocessing step is performed. The dataset
generated are matrices of consisting 1Q samples, SNR and label information for
the different MCS schemes. Dataset is split into training, validation and test
sets in ratio 60:20:20. The sample points for these sets are retrieved randomly
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from the dataset. After the splitting, it is further shuffled in place before being
used in the CNN. During training, every training set is shuffled. The validation
set that is used during training in order to measure the performance of the
trained neural network on previously unseen data. The test data is used during
prediction, where probabilities for each class is computed based on the test data’s
signal values. The maximum of the probabilities will be the ‘winner’.

4.2 Prediction Accuracy

The confusion matrix for the proposed model, which is resulting from using the
testing dataset for predictions, is presented in Fig. 3. It is possible to see that the
average accuracy fluctuates among different SNR. It was found that the lowest
obtained accuracy was 0.57, on average, and the highest prediction obtained for
a given SNR, e.g. SNR =19, was 0.8. It is clear that the higher the SNR, the
higher the accuracy for predicting the correct MCS of the radio signal.

For our highest SNR case classification we show a confusion matrix in Fig. 3.
At +19dB SNR, the diagonal in the confusion matrix is almost clear but some
remaining discrepancies are that 64QAM with coding scheme 3/4 is misclassified
as 64QAM with coding scheme 5/6. These can be explained due to the constel-
lation 64QAM with coding scheme 5/6 is less resilient to noise and requires a
higher SNR in order to be correctly identified.

4.3 Hyperparameters Results

Hyperparameters can be tuned and adjusted by the developer whereas parame-
ters are set/automatically computed by models. While parameters are influenced
by the number of filters, kernel size, and bias, the model hyperparameters are
defined by the developer. The effects of the hyperparameters on the prediction
accuracy of the CNN can be summarized as follow:

Additional Convolutional and Dense Layers. It is observed that the rule-
of-thumb of adding convolutional layers with padding and dropout does not
necessarily increase the accuracy of the classifications. In fact, the higher the
number of neurons, which results from additional layers, increases the training
time and the space requirements to store the data. The choice of the number of
filters and its size have to be modest in order not to exceed the memory limits.
From different model configurations, it can be concluded that 3-layered Convo-
lutional with Padding and Dropout is optimized for the radio signal dataset of
size [N, 2, 128] with N equal to 160000 (1000 x 8 MCS x 20 SNRs).

Dropout. The relationship of the dropout to the training/prediction accuracy
is non-linear and varies for different CNNs architectures. For Model 1 as an
example, it could learn and predict at only drop out rate of 0.0, 0.1 and 0.9, i.e.
values close to 0 and 1. For 2-layered CNN, drop out rate 0.3 is the most optimal
followed by 0.5 and 0.7.
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Accuracy plot

0.70 —— train
—— validation

T T T T T T
0 10 20 30 40 50
Epochs

Fig. 4. Accuracy plot of the proposed architecture over the full datasetSNRs

Batch Size and No. of Epochs. Batch size of 2° and 2'° are chosen with the
different models. Batch size defines how often gradient is computed and weights
are updated. The effect is immediately seen in the training time per epoch.
Smaller batch size will increase the training time per epoch, and it will also
take a longer time to reach convergence. From the results, the effects of batch
size largely depend on the number of layers of the model. For the 3-layered
convolutional model, smaller batch size increases prediction accuracy, whereas,
for the 2-layered convolutional model, the reverse is true. A higher number of
epochs allow improving accuracy as it was expected.

Adam Optimizer. The default value in [24] is used throughout the evaluation,
i.e. adam(Ir =0.001, beta; = 0.9, betas = 0.999, epsilon = le—8, decay =0) as it
yields the highest training/prediction accuracy. It was detected that too high or
too low learning rates could yield to homogeneous prediction and low accuracy.

5 Conclusion and Future Work

The ability of the CNN to detect different radio modulation types is the first step
towards more real-life applications such as dynamic radio spectrum utilization.
The paper presents some results that are intended to provide a heuristic guide
in CNN to design DNN architectures for cognitive radio classification task using
raw IQ data. Factors which influence training and prediction performance are
identified and their impact on the CNN results are discussed. This acquired
knowledge will be useful to create a new, optimized CNN specifically for radio
classification tasks. As future work, we propose to evaluate the proposed DNN
architectures on other waveforms, e.g. variations of the IEEE 802.11 standard or
other technologies that also apply MCS to the transmitted signal, and exploring
the possibility of using transfer learning on multiple radio technologies, each one
with different physical layer, in order to reduce the training time.
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