
Using Deep Learning and Radio
Virtualisation for Efficient Spectrum
Sharing Among Coexisting Networks

Wei Liu1(B), Joao F. Santos2, Xianjun Jiao1, Francisco Paisana2,
Luiz A. DaSilva2, and Ingrid Moerman1

1 IDLab University Ghent - IMEC, Technologiepark-Zwijnaarde 15, Ghent, Belgium
{wei.liu,xianjun.jiao,ingrid.moerman}@ugent.be

2 Trinity College Dublin - CONNECT Centre, Dunlop Oriel House, Dublin, Ireland
{facocalj,paisanaf,dasilval}@tcd.ie

Abstract. This work leverages recent advances in machine learning
for radio environment monitoring with context awareness, and uses the
obtained information for creating radio slices that can optimally coexist
with ongoing traffic in a given spectrum band. We instantiate radio slices
as virtualised radios built on a software-defined radio platform. Then, we
describe a proof-of-concept experiment that validates and demonstrates
our proposed solution.

Keywords: Machine learning · Radio access technology classification
Radio virtualisation · Software-defined radio

1 Introduction

Increasingly, multiple Radio Access Technologies (RATs) must coexist in shared
spectrum; this trend is only accelerating with the advent of 5G. In addition, the
usage of flexible Radio Access Networks (RANs) with high reconfiguration capa-
bilities presents new opportunities for interference coordination in shared spec-
trum scenarios. Radio Access Netowrks (RANs) may possess different degrees of
compatibility, due to their unique waveforms, Medium Access Control (MAC)
schemes, Radio Frequency (RF) parameters, or traffic requirements. In the con-
text of network coexistence, it will be increasingly important for RANs to rec-
ognize the channels that exhibit transmission conditions that are favourable to
their specific needs to optimize performance and, eventually, overall spectrum
utilisation efficiency.

The project leading to this publication has received funding from the European Union’s
Horizon 2020 research and innovation program under grant agreement No. 732174
(ORCA project).

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

I. Moerman et al. (Eds.): CROWNCOM 2018, LNICST 261, pp. 165–174, 2019.

https://doi.org/10.1007/978-3-030-05490-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05490-8_16&domain=pdf
https://doi.org/10.1007/978-3-030-05490-8_16


166 W. Liu et al.

Slicing is a concept used across Software-Defined Networks (SDNs), Network
Function Virtualisation (NFV), and the 5G standard [1]. It involves sharing the
underlying network infrastructure between multiple tenants, by assigning each
tenant to a virtual network created with a portion of the network’s resources,
known as a network slice. This approach leads to an overall increase of network
resource utilisation while offering greater flexibility, as each network slice can be
used and managed independently [2,3]. Strategies similar to network slicing may
be applied to optimize the utilisation of radio resources, which is referred to as
radio slicing. More specifically, a radio slice in this work refers to a portion of
the spectrum-time plane and the time share to utilize a radio interface assigned
to a wireless link.

In general, network slicing requires some level of abstraction and virtual-
isation of physical devices and resources. Thus, network slicing and network
virtualisation are closely tied [4]. The virtualisation of wired network compo-
nents, e.g., links, routers and network interfaces, is a well-studied subject and
is applied routinely, e.g., TCP/UDP ports and networking in virtual machines.
In the wireless domain, virtualisation is still an active research topic [5]. In this
paper, we combine deep learning, applied for spectrum awareness, and radio
virtualisation for efficient spectrum sharing among coexisting networks.

It has been historically challenging to achieve such level of context awareness
in scenarios where a wide variety of RATs coexist. However, with recent break-
throughs in the area of machine learning, it may be finally possible to bring these
capabilities to existing RANs in a sufficiently flexible and cost-efficient manner.
From the radio technology point of view, today’s developers generally choose
software-defined radio (SDR) solutions for their flexibility and fast development
cycle. The adoption of SDR with high reconfiguration capabilities, together with
breakthroughs in machine learning, brings the potential to use radio slicing as a
means to optimize the coexistence among wireless networks and the utilisation
of radio resources.

1.1 Spectrum Monitoring and Machine-Learning

The allocation of radio resources and configuration of RATs for supporting dif-
ferent types of services require the assessment and characterization of the under-
lying spectrum. Overall, spectrum monitoring can be used for enforcing spec-
trum policy, protecting incumbents in shared spectrum scenarios, supporting
the coexistence between different RATs, and performing efficient radio resource
management.

Contextual awareness is also key to radio and network slicing. The same RAT
and its network slices may possess distinct protection requirements in terms of
interference, and also employ different PHY parameters (e.g. subcarrier spacing),
MAC schemes, and control structures.

Machine learning approaches have started to show promising results for spec-
trum monitoring and awareness, outperforming traditional solutions such as
energy detection and expert feature detection [6]. These new approaches can
collect features that go beyond simple waveform classification, e.g., frequency,



Deep Learning and Radio Virtualisation for Spectrum Sharing 167

bandwidth, and frame duration. Furthermore, such machine learning-based solu-
tions achieve greater generality, as a single neural network can be trained to
recognize multiple types of RATs, and evolvability, as the given neural network
can be retrained to recognize new RATs.

1.2 Radio Virtualisation

Current commercial devices use dedicated chipsets that implement a specific
wireless standard. This approach works well if the device only needs to support
a single RAT. However, devices often must support multiple RATs. As a result,
more and more chipsets are installed in one device, which inevitably increases
the device’s form factor, power consumption, and complexity.

In addition to the need for supporting multiple standards, it is often required
to have multiple radio interfaces of the same technology on one device. For
example, some commercial Wi-Fi Access Points (APs) support simultaneous
operation on different channels, and according to multiple variants of the IEEE
802.11 standard. Behind the scenes, the AP is switching channels periodically.
Before it switches to the next channel, it broadcasts the “unavailable period”
to the associated stations in the current channel. In this way, the AP can act
as virtual APs on multiple channels. However, this approach is not entirely
transparent to the upper layers, as the AP services are interrupted during the
times of switching between different channels.

From the radio virtualisation aspect, in this paper we demonstrate that:
(i) a physical radio can be instantiated into multiple virtual radios, (ii) the
virtualisation process is application-transparent, meaning that the virtual radio
offers uninterrupted services from the upper layer perspective in a way that is
indistinguishable from multiple physical radios.

2 Proposed Solution

A block diagram of our proposed solution is shown in Fig. 1. On the left side, a
classifier uses a deep Convolutional Neural Network (CNN) trained for classifying
different RATs. The input of the classifier is time domain IQ samples, captured
from a finite number of channels (denoted by N) with equal bandwidth. The
use of time domain IQ samples instead of a spectogram provides amplitude
and phase information to the classifier: this additional information makes the
classifier more robust in the classification and feature extraction of signals [7].
Figure 2 shows screenshots of the graphical display of the classifier: it illustrates
the classification of different types of RATs, where we use the bounding boxes for
extracting features from the RATs and calculating signal statistics. The output
of the classifier indicates: the kind of signal present in a channel, measured by
the signal intensity and bandwidth; and the type of traffic the signal carries,
measured by the burst length, average channel duty cycle, and minimum Inter-
Frame Interval (IFI).



168 W. Liu et al.

Fig. 1. A block diagram of the proposed solution: N virtual radios are instantiated
according to service demands and context information provided by the machine learning
(ML) classifier.

Fig. 2. Example of the RAT detection on three different channels over time. The differ-
ent colours of the bounding boxes indicate different radio acccess technologies. (Color
figure online)

The radio hypervisor handles N services from the host PC using a single
SDR device. We identify data streams from different services by their TCP port.
Our hypervisor collects the data from the N services, and then streams each of
them to the SDR device with an appended “slice identifier”. The slice identifier
informs the SDR to send the data on a given channel and treat it with a given
priority. Then, our hypervisor uses the output of the classifier to decide which
channel will be used for a given service. This decision is based on the properties of
the background traffic, described by the output of the classifier, and the demand
of the traffic we want to serve.

For instance, a channel can appear highly occupied at first glance, but the
classifier may identify that the background traffic on the channel is in fact com-
posed of many short bursts. This kind of channel cannot sustain a service with
high throughput requirements, but it can be suitable for a service with low
throughput and low latency requirements, as there will be frequent transmis-
sion opportunities in between the bursts of background traffic. Moreover, the
classifier also recommends the optimal coexistence settings for a slice, e.g., the
transmission duration on a channel that can fit into the minimum IFI of the



Deep Learning and Radio Virtualisation for Spectrum Sharing 169

background traffic. In this way, the classifier’s output is used to facilitate the
resource mapping and optimization process on each virtual radio.

Zooming in towards the SDR side, the virtualisation comes down to using
a single radio front-end and transceiver chain on multiple channels. Behind the
scenes, the transceiver chain runs N times faster than the speed required for
a single channel operation. On the transmission side, the baseband IQ samples
for each channel are first up-sampled, and then shifted to the desired frequency
offset, and finally combined with the baseband samples from the other channels
and streamed to the Digital to Analog Converter (DAC), as detailed in [8]. The
reverse process occurs on the receiver side. The concept of radio virtualisation
does not depend on the exact architecture of the transceiver or other processing
modules: it could happen at CPU level [9] or at the hardware level on the FPGA
[10].

Our goal is to instantiate radio interfaces according to the required services,
finding the best combination between a set of channels and services while taking
into account the context information (such as existing background traffic) and
the demand. Though this work focuses on frequency slicing, similar strategies
can be applied to other types of resources, such as space or time.

3 Proof of Concept

3.1 Experiment Setup

We use an experiment to validate our solution, and its setup is shown in Fig. 3.
We consider two 20 MHz channels: on each channel, we use a USRP N210 for gen-
erating the background traffic, referred to as the traffic generator, and another
USRP N210 for capturing samples of the given channel, referred to as a channel
probe. We stream the samples from the channel probes to the ‘spectrum moni-
tor’, which is a laptop running a trained machine learning model on its Graphical
Processing Unit (GPU) for classifying the radio environment on both channels.
The Machine Learning (ML) model classifies the RAT of the background traffic
present on each channel and extracts their contextual information in real time.
This information will be used by a Base Station to select its optimal settings,
including channel of operation.

A simple downlink scenario consisting of one Base Station (BS) and two
User Equipments (UEs) is displayed in Fig. 3. The optimal setting from the ML
classifier is transferred to a host PC that controls the BS. Each BS/UE consists
of a host PC with an SDR device, which is further composed by a Xilinx Zynq
7000 ZC706 evaluation board [11] and an Analog Devices FMCOMMS2 front-end
[12], referred to as the Zynq SDR hereafter.

On channel 1, the background traffic comprises relatively short bursts (on
average 2 ms) interleaved by comparable IFI, while on channel 2, the individual
frame is relatively longer (10 ms), with on average 60 ms IFI. We used an Anritsu
MS2781B spectrum analyser for measuring the characteristics of the background
traffic, and the results are illustrated in Fig. 4.



170 W. Liu et al.

Fig. 3. The experimental setup: 2 N210 USRPs as background traffic generators, 2
USRP N210 as channel probes, 1 laptop as spectrum monitor, 1 BS which receives
context information and serves the two UEs. Each BS/UE consists of a host and a
Zynq SDR platform (Xilinx zc706+FMCOMMS2).

Fig. 4. The background traffic in the time domain: the traffic on channel 1, shown
on the left side, has on average a 2 ms period and a duty cycle of roughly 50%; the
channel 2 traffic, shown on the right side, has on average a 70 ms period and occupies
the channel for about 13% of the time.

At the base station, the first question is which channel should be used to
serve traffic for which UE. In this experiment, the traffic towards UE1 (referred
to as T1) generates 5 frames at 100 bytes per second, and each frame must be
delivered within 5 ms. This type of traffic is representative of traffic generated by
a watchdog application in a factory environment, which reports regular “heart-
beats” of a system, and can trigger critical safety procedures when needed. A
large file transfer produces the traffic towards UE2 (referred to as T2). T2 only
requires the link to sustain an average throughput in the order of Mbps. After
combining the requirements of T1 and T2, and the context information regard-
ing the background traffic, the BS makes its first decision: Channel 1 should be
used to serve T1 for its more frequent transmission opportunities, and Channel
2 should be used to serve T2 for its overall lower occupation level.



Deep Learning and Radio Virtualisation for Spectrum Sharing 171

We use a simple Listen Before Talk (LBT) module on the BS, which allows
the BS to inject traffic only when a channel is idle. This process is shown on the
left side of Fig. 5, where T2 shortly follows the background traffic on channel 2
with relatively lower signal strength.

The next question is how long the BS transmission can last on each channel,
which is required to maximize the throughput for T2. The classifier collects
different signal statistics, including the minimum IFI (1.35 ms), and provides
them to the BS to optimize its transmission burst length. The application of
this information results in a better usage efficiency for channel 2, as shown on
the right side of Fig. 5.

Fig. 5. The traffic injected by the BS on channel 2 under default (left hand side) and
optimal (right hand side) transmission burst length settings.

3.2 Measurements and Results

We measure the latency of T1 and the throughput of T2 to indicate the quality
of the desired services. Details of these measurements are given below.

Throughput of T2 is measured by capturing frames at the Ethernet interface
on the host of UE2. The Wireshark IO statistic graph is shown in Fig. 6. The
average throughput for default and optimal slice configurations are 912.7 kbps
and 1908.9 kbps, respectively. We observe that the throughput doubles by apply-
ing the optimal setting. The standard deviation of the throughput under both
conditions is around 150 kbps, which illustrates that the stability of the through-
put is unaffected.

Latency can be measured at different levels. The time delay between the
moment when a frame is being transmitted on the wireless medium and the
moment when the receiver decodes a complete frame is the latency at the phys-
ical layer. In general, it is subject to the frame size, the specific wireless technol-
ogy, and it is also PHY implementation dependent. However, these are not the



172 W. Liu et al.

Wireshark IO Graphs: hp_wireshark_trace_kul

0 150 300 450 600 750 900 1050
Time (s)

0

450000

900000

1.35·106

1.8·106

2.25·106

2.7·106

Bi
ts

/1
 s

ec

Fig. 6. Throughput of T2 shown by Wireshark IO statistics: an improvement is visible
after applying the optimal setting recommended by the classifier.

focus of this work: we focus on the end-to-end delay, which includes the afore-
mentioned physical layer delay, but additionally includes the time consumed by
queuing in upper layer buffers, and processing delays at both transmitter and
receiver sides in the SDR. For consistency, this measurement is conducted with
fixed payload size, modulation and coding scheme.

The end-to-end latency of T1 is measured as follows: (i) Whenever the BS
SDR receives a frame from the host, it triggers a TCP interrupt service routine
(ISR), which toggles a General Purpose Input or Output (GPIO) pin within
the same ISR. (ii) On the UE1 SDR side, whenever a frame pops out of the
RX queue1 before it is sent towards the host, the UE toggles a GPIO pin. (iii)
Both the GPIO pins at the BS and UE are connected to a Saleae logic analyser.
The logic analyser samples both pins at 6.25 Msps, ensuring the measurement
precision at sub-microsecond level. A screenshot of the logic analyser’s graphical
user interface (GUI) is given in Fig. 7. The “sender” line shows the GPIO activity
of the BS, while the “Receiver” line shows the GPIO activity of UE1. The latency
is indicated by the distance between the two markers (i.e., A1, A2). For this
particular case in the screenshot, it is 87.2µs. The GUI also allows exporting
the trace of the pin activity into a CSV file, which we later process using a
simple Matlab script for generating the probability distribution of the latency
measurements under various conditions.

Fig. 7. The interface of Saleae logical analyser.

1 The physical layer receiver at the UE SDR decodes frames and inserts them into a
queue, which is referred to as the RX queue.



Deep Learning and Radio Virtualisation for Spectrum Sharing 173

The measurements are conducted under three conditions: (i) serving only T1
with no background traffic; (ii) serving T1 and T2 with no background traffic;
(iii) serving T1 and T2 together with background traffic on both channels. The
histograms of latency measurements under all conditions are given in Fig. 8. We
observe that the latency for the first two conditions have similar distribution
range, and they both have a high peak around 87µs, which indicates that the
latency of T1 is not negatively affected by serving T2. The virtual radio can hence
operate in a way that is transparent to the user. The latency distribution for the
3rd case shows a high peak in the first interval, which corresponds to 87µs—
the best case scenario when the frame can be sent immediately without waiting
for the background traffic, just as in the first two conditions. We also observe
that probability is generally higher in [0, 2000]µs range than the remaining part.
This shows that the majority of the frames are sent after waiting for at most
one complete frame of the background traffic, which lasts on average 2 ms. The
worst case latency is around 3 ms: this can be explained by longer frames in the
background traffic or missed detection of the transmission opportunities by the
simple LBT module.

Fig. 8. The probability distribution of latency of T1 when: (a) serving only T1; (b)
serving T1 and T2; (c) serving T1 and T2 with background traffic on both channels.

4 Conclusions

This work combines radio virtualisation for Software-Defined Radio platforms
with deep learning technologies for optimizing spectrum utilisation, and the
coexistence of wireless networks. We use a proof-of-concept experiment to show-
case the combined application of: (i) radio virtualisation; and (ii) deep learning-
based radio environment monitoring. Regarding radio virtualisation, it is demon-
strated that a single radio device can be instantiated upon requests into multiple
logical instances, each serving a different traffic flow with diverging requirements.
Regarding radio environment monitoring, we showcase how decisions based on
context awareness could improve coexistence and the quality of service experi-
enced by each traffic flow.



174 W. Liu et al.

References

1. 3rd Generation Partnership Project: 3GPP TR 28.801: study on management and
orchestration of network slicing for next generation network. 3rd Generation Part-
nership Project, Technical report, May 2017

2. Rost, P., et al.: Network slicing to enable scalability and flexibility in 5G mobile
networks. IEEE Commun. Mag. 55(5), 72–79 (2017)

3. Khan, S.N., et al.: Virtualization of spectrum resources for 5G networks, In: 2017
European Conference on Networks and Communications (EuCNC), pp. 1–5 (2017)

4. van de Belt, J., et al.: Defining and surveying wireless link virtualization and
wireless network virtualization. IEEE Commun. Surv. Tutor. 19(3), 1603–1627
(2017)

5. Liang, C., et al.: Wireless network virtualization: a survey, some research issues
and challenges. IEEE Commun. Surv. Tutor. 17(1), 358–380 (2015)

6. Wunsch, F., et al.: DySPAN spectrum challenge: situational awareness and oppor-
tunistic spectrum access benchmarked. IEEE Trans. Cogn. Commun. Netw. 3(3),
550–562 (2017)

7. Selim, A., et al.: Spectrum monitoring for radar bands using deep convolutional
neural networks. IEEE Globecom (2017)

8. de Figueiredo, F.A.P., et al.: Radio hardware virtualization for software-defined
wireless networks. Wirel. Pers. Commun. 100(1), 113–126 (2018). https://doi.org/
10.1007/s11277-018-5619-3

9. Mendes, J., et al.: Cellular access multi-tenancy through small cell virtualization
and common RF front-end sharing. In: Workshop on Wireless Network Testbeds,
Experimental evaluation and Characterization. ACM, pp. 35–42 (2017)

10. Jiao, X., Moerman, I., Liu, W., de Figueiredo, F.A.P.: Radio hardware virtualiza-
tion for coping with dynamic heterogeneous wireless environments. In: Marques, P.,
Radwan, A., Mumtaz, S., Noguet, D., Rodriguez, J., Gundlach, M. (eds.) Crown-
Com 2017. LNICST, vol. 228, pp. 287–297. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-76207-4 24

11. Zynq-7000 All Programmable SoC ZC706 evaluation kit, Xilinx (2015). https://
www.xilinx.com/support/documentation/boards and kits/zc706/2015 4/ug961-
zc706-GSG.pdf

12. AD-FMCOMMS2-EBZ User Guide, Analog Device (2018). https://wiki.analog.
com/resources/eval/user-guides/ad-fmcomms2-ebz

https://doi.org/10.1007/s11277-018-5619-3
https://doi.org/10.1007/s11277-018-5619-3
https://doi.org/10.1007/978-3-319-76207-4_24
https://doi.org/10.1007/978-3-319-76207-4_24
https://www.xilinx.com/support/documentation/boards_and_kits/zc706/2015_4/ug961-zc706-GSG.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/zc706/2015_4/ug961-zc706-GSG.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/zc706/2015_4/ug961-zc706-GSG.pdf
https://wiki.analog.com/resources/eval/user-guides/ad-fmcomms2-ebz
https://wiki.analog.com/resources/eval/user-guides/ad-fmcomms2-ebz

	Using Deep Learning and Radio Virtualisation for Efficient Spectrum Sharing Among Coexisting Networks
	1 Introduction
	1.1 Spectrum Monitoring and Machine-Learning
	1.2 Radio Virtualisation

	2 Proposed Solution
	3 Proof of Concept
	3.1 Experiment Setup
	3.2 Measurements and Results

	4 Conclusions
	References




