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Abstract. The paper considers the problem of designing the maxmin
strategy for a dual-purpose communication and radar system that
employs multicarrier OFDM style waveforms, but faces an uncertain
level of background noise. As the payoff for the system, we consider the
weighted sum of the communication throughput and the radar’s SINR.
The problem is formulated as a zero-sum game between the system and
a rival, which may be thought of as the environment or nature. Since the
payoff for such a system combines different type of metrics (SINR and
throughput), this makes underlying problem associated with jamming
such a systems different from the typical jamming problem arising in
communication scenarios, where the payoff usually involves only one of
these metrics. In this paper, the existence and uniqueness of the equilib-
rium strategies are proven as well as water-filling equations to design the
equilibrium are derived. Finally, using Nash product the optimal value
of weights are found to optimize tradeoff of radar and communication
objectives.
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1 Introduction

Recently, there has been interest in enabling radar and communication system
to co-exist in the same frequency band to allow spectrum to be utilized more
efficiently [21]. This has given rise to a significant amount of research on methods
for spectrum sharing that minimize the interference between the two systems.
One approach to achieve this is to formulate waveform design using OFDM
signals and then optimally allocating subcarriers [11,25]. Radar waveform design
for controlled interference is considered in [1,2]. For these aforementioned works,
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the design is performed for each system in isolation, and recently there has been
work that explore the cooperative design of the two systems [3,16].

In this paper, we consider a dual purpose communication-radar system
that employs multicarrier OFDM style waveforms and explore a complemen-
tary aspect of its optimization that is motivated by the fact that these systems
may or may not face interference, and thus will often have uncertainty about
the background noise or interference in their operating scenarios.

To address this uncertainty, we look for a strategy that returns the maximal
payoff for the system under the worst background condition which might arise.
In order to explore this maxmin problem, we consider a weighted combination
of communication throughput and radar’s SINR as the utility, which reflects
the coexistence performance of both communication and radar objectives. We
show that the maxmin problem is equivalent to a zero-sum game between the
system and an abstract rival, which maybe considered as ‘the environment’ or
’nature’ and thus interpreted as a jammer. Since the payoff for such a system
combines different type of metrics (SINR and throughput), this makes the jam-
ming problem for such dual-purpose systems distinctly different from the jam-
ming problems arising in typical communication or radar scenarios where the
payoffs includes only one type of metric (only SINR or only throughput) (see,
for example, [4,5,7,9,12,13,17,18,22,23,26]).

The organization of this paper is as follows: in Sect. 2, we present the model
for the dual radar and communication system as zero sum game. In Sect. 3,
the equilibrium strategies are found. In Sect. 4, the optimal value of weights are
found to optimize tradeoff between the objectives. In Sect. 5, conclusions are
given, while, in Appendix, the proofs of the obtained results are supplied.

2 Model

We begin our formulation by considering an operational scenario involving an RF
transceiver that is attempting to support two different objectives: communica-
tion with a communication receiver that is distant and separate from the trans-
mitter, while also supporting the tracking of a radar target through the reflec-
tions witnessed at the RF transmitter. In order to support these two different
objectives, the transmitter uses a spectrum band that is modeled as consisting of
n adjacent sub-channels, which may be associated with n different subcarriers.
In this paper we employ a transmission scheme like OFDM, as considered in [8]
for designing a bargaining strategy for a dual radar and communication system
in the absence of hostile interference. With each of these n different subcarri-
ers, two different (fading) channel gains are associated. Specifically, we let hR

i

correspond to the i-th radar channel gain associated with the round-trip effect
of the transmitted signal, reflected off the radar target, and received at the RF
transceiver. Similarly, we denote by hC

i the i-th channel gain associated with the
i-th communication subcarrier between the transmitter and the communication
recipient. Since, although there are two different objectives, there is nonetheless
a single transmitter responsible for deciding how to allocate power across the
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different subcarriers to best meet radar and communication tradeoffs, we con-
sider a power vector P = (P1, . . . , Pn) as a strategy for such system, where Pi is
the power assigned for transmitting on subcarrier i, and

∑n
i=1 Pi = P with P is

the total power budget of the system. Let ΠS be the set of all feasible strategies
for the system.

To model uncertainty about background noise we assume that the system
knows the total noise resource J but does not know its allocation among the
subcarriers J = (J1, . . . , Jn). Thus, the system knows only that

∑n
i=1 Ji = J ,

but does not know each of Ji. We can say that this interference J is impelled
by nature, if the interference was not caused by any artificial reason (such as
by a jammer). We will use the common term rival to denote the source of this
interference. Thus, we call J as the strategy for the rival Let ΠR be the set of
all feasible strategies for the rival.

Let TC(P ,J) =
n∑

i=1

ln
(
1 + hC

i Pi/(σ2 + gC
i Ji)

)
, be the communication

throughput, reflecting the communication objective, where σ2
C is known back-

ground noise, gC
i is the ith (fading) sub-carrier gain associated with interference

coming from a possible jamming source.
We note that radar detection and tracking are related to the associated SINR

[20], and therefore the SINR at the radar, i.e., SNRR(P ,J) =
n∑

i=1

hR
i Pi/(σ2 +

gR
i Ji), can be considered as the radar’s objective, where gR

i is the interference
fading sub-carrier gains affecting the radar objective.

Then, we consider weighted sum of communication throughput and radar’s
SINR v(P ,J) = wCTC(P ,J) + wRSNRR(P ,J) as the utility, reflecting the
joint performance of both objectives.

We are looking for maxmin strategy, i.e., maxP minJ v(P ,J). Since v is con-
cave in P and convex in J , maxP minJ v(P ,J) = minJ maxP v(P ,J). Moreover
(P ∗,J∗) is a maxmin strategy if and only if the following inequalities hold [13]:
v(P ,J∗) ≤ v(P ∗,J∗) ≤ v(P ∗,J) for all (P ,J). This allows one to interpret the
problem of designing the maxmin strategy as a problem of finding equilibrium
strategies in a zero-sum game between the system and the rival, where v is the
payoff for the system while for the rival it is its cost function. Of course, since v
is concave in P and convex in J there is at least one equilibrium [13].

3 Equilibrium

In this section we prove that rival’s strategy is always unique, while multiple
strategies might arise for the system only when wC = 0. Additionally, we derive
water-filling equations that allows one to find the equilibrium.

Theorem 1. (I) Let wC > 0. Then the equilibrium is unique and given as
(P ,J) = (P (ω, ν),J(ω, ν)) with

(I-a) if i ∈ I00(ω, ν) :=
{
i : wChC

i /σ2 + wRhR
i /σ2 ≤ ω

}
then Pi(ω, ν) = 0

and Ji(ω, ν) = 0,



Maxmin Strategy for a Dual Radar and Communication System 157

(I-b) if i ∈ I10(ω, ν) :=
{
i : ω+,i(ν) ≤ ω < wChC

i /σ2 + wRhR
i /σ2

}
then

Pi(ω, ν) =
wC

ω − wRhR
i /σ2

− σ2

hC
i

and Ji(ω, ν) = 0, (1)

where

ω+,i(ν) =
hC

i

2gC
i

(wCgC
i

σ2
− ν − wRgR

i hR
i

hC
i σ2

+

√(
wCgC

i

σ2
− ν − wRgR

i hR
i

hC
i σ2

)2

+ 4
wCwRhR

i gR
i gC

i

hC
s σ4

)
+

wRhR
i

σ2
,

(2)

(I-c) if i ∈ I11(ω, ν) := {i : ω < ω+,i(ν)} then Ji(ω, ν) is the unique root of
the equation

wCgC
i

σ2 + gC
i Ji(ω, ν)

+
wRhR

i

σ2 + gR
i Ji(ω, ν)

gC
i

hC
i

+
wRhR

i gR
i

(σ2 + gR
i Ji(ω, ν))2

(
wC

ω − wRhR
i /(σ2 + gR

i Ji(ω, ν))
− σ2 + gC

i Ji

hC
i

)
= ν + ω

gC
i

hC
i

,

(3)

Pi(ω, ν) =
wC

ω − wRhR
i /(σ2 + gR

i Ji(ω, ν))
− σ2 + gC

i Ji(ω, ν)
hC

i

. (4)

Here ω > ω := wR maxi hR
i /σ2 and ν > 0 are given as the unique solution of the

equations:

HS(ω, ν) :=
n∑

i=1

Pi(ω, ν) = P and HJ (ω, ν) :=
n∑

i=1

Ji(ω, ν) = J. (5)

(II) Let wC = 0. Then, the equilibrium rival strategy is unique and given as
J = J(ν) with

Ji(ν) =
⌊
(hR

i /ν − σ2)/gR
i

⌋
+

, i = 1, . . . , n, (6)

where ν is the unique positive root of the equation H(ν) :=
n∑

i=1

Ji(ν) = J ,

(II-a) if there is no i such that ν = hR
i σ2 then the system’s strategy is unique

and given as follows:

Pi = Pi(ν) :=
P

D

{
(σ2 + gC

i Ji(ν))2/(hC
i gC

i ), i ∈ S(ν),
0, i �∈ S(ν)

(7)

with S(ν) = {i : Ji(ν) > 0} and D =
∑

j∈S(ν)

(σ2 + gC
j Jj(ν))2/(hC

j gC
j ).
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(II-b) if there is an i such that ν = hR
i σ2, then the set I(ν) := {i : nu =

hR
i σ2} is not empty, and thus the system has a continuum of equilibrium strate-

gies given by:

Pi = Pi(ν) :=
P

D{εj}

⎧
⎪⎨

⎪⎩

(σ2 + gC
i Ji(ν))2/(hC

i gC
i ), i ∈ S(ν)\I(ν),

εi(σ2 + gC
i Ji(ν))2/(hC

i gC
i ), i ∈ I(ν),

0, i �∈ S(ν),
(8)

where εi ∈ [0, 1] for i ∈ I(ν) and

D{εj} = 1/

⎛
⎝ ∑

j∈S(ν)\I(ν)

(σ2 + gC
j Jj(ν))2/(hC

j gC
j ) +

∑
j∈I(ν)

εj(σ
2 + gC

j Jj(ν))2/(hC
j gC

j )

⎞
⎠ .

In case (II), since H is decreasing, to find ν, and the equilibrium, we have to
solve the single waterfilling equation H(ν) = J by applying bisection method. In
case (I), HJ(ω, ν) is decreasing on ω > ω and ν > 0 while HS(ω, ν) is decreasing
on ω and increasing on ν. Thus, to find ω and ν a superposition of two bisection
methods to solve these water-filling equations has to be applied. Namely, first,
for each fixed ν we find ω = Ω(ν) such that HJ(Ω(ν), ν) = J . This Ω(ν) is
continuous and decreasing on ν, and thus HS(Ω(ν), ν) is also increasing on ν.
Second, we can find ν as the unique root of the equation HS(Ω(ν), ν) = P .

4 Optimal Value of Weights

First, we note that the functions v and v/(wR + wC) achieve their optimum
at the same point. Thus, by introducing new notation: wR := wR/(wR + wC)
and wC := wC/(wR + wC), without loss of generality, we can assume that
these weights are normalized, i.e., wR + wC = 1. Further, note that if J = 0,
i.e., there is no artificial noise introduced then the problem turns into a non-
linear programming (NLP) problem for the system and it has a unique solution
P = P (ω) where Pi(ω) =

⌊
wC/(ω − wRhR

i /σ2) − σ2/hC
i

⌋
+

, i = 1, ..., n, where
ω is the unique root in (ω,∞) of the equation

∑n
i=1 Pi(ω) = P .

We now illustrate the results that we have obtained by providing an example.
Let waveform consist of n = 5 subcarriers and fading channel gains are hC =
(1, 2, 3, 4, 4.5), hR = (1, 0.95, 0.22, 0.15, 0.1). Thus, subcarrier 1 is the best one
for the radar objective, while for the communication objective the subcarriers
are arranged in decreasing order by their quality. Figures 1 and 2 illustrate the
optimal strategy for the system in the absence (J = 0) and in the presence
(J = 1) of the rival. Also presented are the corresponding rival strategies as
functions of wC while wR = 1 − wC with P = 1 and P = 10. In the absence
of the rival, for small wC the system is focused on the radar objective, and its
strategy coincides with the strategy that maximizes the radar’s SINR, i.e., it
applies the full power budget on the subcarrier 1. Since, for the communication
objective, the subcarriers are arranged in increasing order, i.e., sub-carrier 5 is
the best one while sub-carrier 1 is the worst one for communication, an increase
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in wC makes the system utilize the power across the sub-carriers beginning with
sub-carrier 5, then sub-carrier 4 and so on, while simultaneously reducing the
amount of power devoted to subcarrier 1 (which was best for the radar objective).
If power budget is not large enough (as it is for P = 1) the system strategy can
even not use subcarrier 1 if the weighting applied to the importance of the radar
objective is small, while a large power budget (as it is for P = 10) allows the
strategy to keep all of the sub-carriers involved in equilibrium strategy. Also,
for large P and wC to be close to 1, the system strategy becomes close to a
uniform power allocation, since it takes place in the high SNR regime in OFDM
transmission. The presence of the rival makes the system choose to use more sub-
carriers. In the case considered, for small wC the system uses two sub-carriers
(namely, sub-carrier 1 and sub-carrier 2). Of course, the rival jams only the sub-
carriers employed by the system, and he does not jam the ones that are not used
by the system. An increase in wC changes the system’s preference about which
sub-carriers to use, while the rival, in his strategy, follows the system’s strategy
in determining how to allocate its effort.

We now introduce a curve Γ parameterized by wC that of the pair of objective
payoffs in the plane (TC ,SNRR): ΓP,J = {(TC

P,J,wC ,SNRR
P,J,wC ), wC ∈ [0, 1]},

where TC
P,J,wC

= TC(P P,J,wC
,JP,J,wC ),

SNRR
P,J,wC = SNRR(P P,J,wC ,JP,J,wC ), and P P,J,wC and JP,J,wC are equi-

librium strategies for powers budgets P and J and wR = 1 − wC .

Fig. 1. (a) Optimal strategy of the system in the absence of the rival, (b) equilibrium
strategy of the system in the presence of the rival, and (c) equilibrium strategy of the
rival as functions of wC with wR = 1 − wC and P = J = 1.

Figure 3 first illustrates a pair of such curves in the absence (J = 0) and
presence (J = 1) of the rival. This figure shows that an increase in wC yields
an increase in the communication payoff and also a decrease in the radar payoff.
That is, while one objective gains the other objective decreases. Thus, a basic
question arises as to how to find a trade-off value for wC . One useful approach to
defining such a trade-off is to use the Nash product (NP) function. As examples of
designing Nash bargaining tradeoff, see, [6,10,15,19,24]. To define NP, we must
introduce a disagreement point (DP) as follows: DP= (TC

P,J,0
,SNRR

P,J,1
). Then,

the NP is given as follows: NPwC = (TC
P,J,wC −TC

P,J,0
)(SNRR

P,J,wC −SNRR
P,J,1

).
The trade-off value for wC ∈ [0, 1] is given as the one that maximizes NPwC . For
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Fig. 2. (a) Optimal strategy of the system in the absence of the rival, (b) equilibrium
strategy of the system in the presence of the rival, and (c) equilibrium strategy of the
rival as functions of wC with wR = 1 − wC and P = 10, J = 1.

our model, since NPwC is a function of one real variable, the tradeoff value can
be found, for example, by the Nelder-Mead simplex algorithm [14].

Figure 3 also illustrates disagreement points and trade-off values for the
objectives. In the absence of the rival, the trade-off value for wC is 0.28 with pay-
offs SNRR = 0.664 and TC = 1.98, while in its presence the value wC is reduced
to 0.23 and the payoffs become SNRR = 0.488 and TC = 1.59. This figure also
illustrates that the occurrence of jamming leads to a decrease in the trade-off
payoffs for both objectives, as well as a decrease in the trade-off value for wC . An
increase in the system power budget yields an increase in the trade-off payoffs for
both objectives as well as a decrease in the trade-off value of wC . Such behavior
for wC can be explained by the fact that the radar payoff is a linear function of
P , while the communication’s payoff is logarithmic, and the logarithm growth is
slower any linear function. Thus, the radar payoff prevails over communication
payoff when the system power budget becomes larger. Hence, to maintain the
tradeoff between the two objectives wC becomes larger to compensate for the
growth of the radar objective’s share in the joint system utility.

Fig. 3. (a) Curve for payoffs ΓP,J when P = 1 and J ∈ {0, 1}, (b) equilibrium strate-

gies corresponding to the trade-off value for wC , (c) tradeoff payoffs in the plane
(TC , SNRR), and (d) the trade-off weight wC parameterized by P = 0.5(0.5)10.
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5 Conclusions

The problem of designing the maxmin strategy for a dual-purpose communica-
tion and radar system facing an uncertain level of background noise is formu-
lated and solved as a zero-sum game between the system and a noise with payoff
combining SINR metric for the radar objective and throughput metric for the
communication objective. Also, using Nash product the optimal value of weights
are found to optimize tradeoff of radar and communication objectives.

Appendix: Proof of Theorem1

Proof. (I) By definition, P and J are equilibrium strategies if and only if each
of them is the best response to the other, i.e., they are solutions of the equa-
tions: P = BRS(J) := argmax{v(P ,J) : P ∈ ΠS} and J = BRR(P ) :=
argmin{v(P ,J) : J ∈ ΠR}. By the Karush-Kuhn-Tucker (KKT) theorem, since
v is concave on P , P ∈ ΠS is the best response strategy to J if and only if there
is an ω (Lagrange multiplier) such that

wC hC
i

σ2 + hC
i Pi + gC

i Ji
+ wR hR

i

σ2 + gR
i Ji

{
= ω, Pi > 0,

≤ ω, Pi = 0.
(9)

Similarly, since v is convex on J , J ∈ ΠR is the best response strategy to P if
and only if there is a ν (Lagrange multiplier) such that

wC hC
i gC

i Pi

(σ2 + hC
i Pi + gC

i Ji)(σ2 + gC
i Ji)

+ wR hR
i gR

i Pi

(σ2 + gR
i Ji)2

{
= ν, Ji > 0,

≤ ν, Ji = 0.
(10)

Then, (9) and (10) imply that ω and ν are positive. By (10) if Pi = 0 then Ji = 0.
Thus, to find P and J we have to consider only three cases: (a) Pi = 0, Ji = 0,
(b) Pi = 0, Ji > 0, and (c) Pi > 0, Ji > 0.

(a) Let Pi = 0, Ji = 0. Then, by (9) and (10), wChC
i /σ2 + wRhR

i /σ2 ≤ ω.
Thus, i ∈ I00(ω, ν), and (I-a) follows.

(b) Let Pi > 0, Ji = 0. Then, by (9) and (10), we have that

wChC
i /(σ2 + hC

i Pi) + wRhR
i /σ2 = ω, (11)

wChC
i gC

i Pi/((σ2 + hC
i Pi)σ2) + wRhR

i gR
i Pi/(σ2)2 ≤ ν. (12)

By (11), Pi = Pi(ω, ν) is given by (1). Note that, Pi is decreasing with respect
to ω. By (1), Pi > 0 (this holds by assumption of (b)) if and only if:

wRhR
i /σ2 < ω < wChC

i /σ2 + wRhR
i /σ2. (13)

Substituting (1) into (12) yields that

wCgC
i

σ2
+

wCwRhR
i gR

i

σ4
(
ω − wRhR

i /σ2
) ≤ ν +

wRhR
i gR

i

σ2hC
i

+
gC

i

hC
i

(

ω − wRhR
i

σ2

)

. (14)
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The left side of (14) is decreasing with respect to ω from infinity for ω =
wRhR

i /σ2 to AL := wCgC
i /σ2 +wRhR

i gR
i /(σ2hC

i ) for ω = wChC
i /σ2 +wRhR

i /σ2.
The right side of (14) is increasing with respect to ω from ν+wRhR

i gR
i /hC

i for
ω = wRhR

i /σ2 to AR := ν + wRhR
i gR

i /(σ2hC
i ) + wChgC

i /σ2 = ν + AL > AL for
ω = wChC

i /σ2+wRhR
i /σ2. Thus, for any positive ν there is a unique ω = ω+,i(ν)

such that (13) holds, while (14) holds as equality. It is clear that ω+,i(ν) is
decreasing on ν. Since this is a quadratic equation on ω, ω+,i(ν) can be found
in closed form, by (2), and (II-b) follows.

(c) Let Pi > 0, Ji > 0. Then, by (9) and (10) we have that

wChC
i /(σ2 + hC

i Pi + gC
i Ji) + wRhR

i /(σ2 + gR
i Ji) = ω, (15)

wChC
i gC

i Pi/((σ2 + hC
i Pi + gC

i Ji)(σ2 + gC
i Ji)) + wRhR

i gR
i Pi/(σ2 + gR

i Ji)2 = ν.
(16)

By (15), we have that

Pi = wC/(ω − wRhR
i /(σ2 + gR

i Ji)) − (σ2 + gC
i Ji)/hC

i . (17)

By (17), Pi is decreasing with respect to Ji. Substituting (17) into (16) implies
(3). The left side of (3) is decreasing with respect to Ji and tends to zero while
Ji tends to infinity. Thus, for each ω and ν, (3) has a root (which is unique) if
and only if:

wCgC
i

σ2
+

wCwRhR
i gR

i

σ4
(
ω − wRhR

i /σ2
) > ν +

wRhR
i gR

i

σ2hC
i

+
gC

i

hC
i

(

ω − wRhR
i

σ2

)

. (18)

By (14), the condition (18) is equivalent to ω < ω+,i(ν). Denote this root by
Ji(ω, ν). Then, substituting this Ji(ω, ν) into (17) we can uniquely define Pi

denoted by Pi(ω, ν), and (I-c) follows.
Note that, by (3), Ji(ω, ν) is decreasing on ω and ν. The left side of (16)

is increasing with respect to Pi and decreasing with respect to Ji. Thus, the
fact that Ji(ω, ν) is decreasing with respect to ω implies that Pi(ω, ν) is also
decreasing with respect to ω. Also, the left side of (15) is decreasing on Pi

and on Ji. Thus, the fact that Ji(ω, ν) is decreasing on ν implies that Pi(ω, ν)
is increasing on ν. Thus, HJ(ω, ν) is continuous and decreasing on ω and ν,
while HS(ω, ν) is continuous and decreasing on ω and increasing on ν. These
monotonous properties yields that solution of (5) is the unique, and (I) follows.

(II) If wC = 0 then (9) implies (6). Thus, Ji(ν) is defined uniquely. Sub-
stituting this Ji(ν) into (9) and taking into account that P ∈ ΠS implies the
result.
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