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Abstract. Associations between drive images can be important in many
forensic investigations, particularly those involving organizations, conspiracies,
or contraband. This work investigated metrics for comparing drives based on the
distributions of 18 types of clues. The clues were email addresses, phone
numbers, personal names, street addresses, possible bank-card numbers, GPS
data, files in zip archives, files in rar archives, IP addresses, keyword searches,
hash values on files, words in file names, words in file names of Web sites, file
extensions, immediate directories of files, file sizes, weeks of file creation times,
and minutes within weeks of file creation. Using a large corpus of drives, we
computed distributions of document association using the cosine similarity
TF/IDF formula and Kullback-Leibler divergence formula. We provide signif-
icance criteria for similarity based on our tests that are well above those obtained
from random distributions. We also compared similarity and divergence values,
investigated the benefits of filtering and sampling the data before measuring
association, examined the similarities of the same drive at different times, and
developed useful visualization techniques for the associations.

Keywords: Drives � Forensics � Link analysis � Similarity � Divergence
Artifacts � Metadata

1 Introduction

Most investigations acquire a set of drives. It is often important to establish associations
between the drives as they may indicate personal relationships and downloading pat-
terns that can provide leads. Such link analysis has become an important tool in
understanding social networks. Methods of digital forensics now allow us to do link
analysis from drive features and artifacts. Knowing that two drives share many email
addresses, files, or Web-page visits establishes a connection between them even before
we know exactly what it is. Such associations are important in investigating criminal
conspiracies and terrorists, intellectual-property theft, propagation of malware or con-
traband, social-science research on communities, and in finding good forensic test sets.

However, there are big challenges to forensic link analysis from drive data. One is
the large amount of irrelevant data for most investigations, especially in files that
support software [10]. A second problem is determining how best to establish asso-
ciations between drives. Some clues are more helpful for further investigation (such as
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email addresses), some are harder to extract (such as all words in file names, or worse,
all words within files), and some are harder to compare (such as personal-file names).

This work attempted to answer these challenges by investigating 18 kinds of rel-
atively easily calculable clues that could relate drives. They include both forensic
artifacts obtained by scanning tools, such as email addresses and phone numbers, and
metadata obtained from file directories, such as file sizes and words in file names. Most
are routinely collected by tools such as SleuthKit. Processing can be made faster by
filtering out data unlikely to be of forensic interest or by sampling.

This work tested association methods on a large corpus of drives using cosine
similarity and divergence, and tried to establish significance thresholds. Similarity or
divergence do not prove causation or communication since two associated drives may
have obtained data from a common source. However, associations suggest structure in
a corpus and that can be interesting in its own right.

This work is empirical research. Empirical methods may be rare in digital forensics,
but are common and accepted in other areas of science and engineering. Empirical
research can justify methods and algorithms by tying them to careful observations in
the real world.

This paper will first review previous work. It then introduces the corpori studied,
the clues used to compare drives, and formulae used for comparison. It then presents
several kinds of results and makes some recommendations for associating drives.

2 Previous Work

Comparing drive data was first explored in [8] under the term “cross-drive analysis”.
That work compared email addresses, bank-card numbers, and U.S. social-security
numbers to relate drives. This work has not been much followed up although it has
been integrated into a broader investigative context in [11], combined with timeline
analysis in [14], and applied to malware detection in [6]. Hashes on regular partitions of
drive images [22] can relate all the data on drives including unallocated storage, but
they are sensitive to variations in placement of data and their computation is time-
consuming. Scanning drives for particular keywords [7] is also time-consuming. It
would thus seem useful to evaluate the original idea of cross-drive analysis with a
systematic approach to possible features and methods for comparison.

Previous work has measured similarities between documents for aiding online
searches. That work focused heavily on word and word-sequence [7] distributions of
documents, with some attention to weighting of word values and measuring the “style”
of a document [13]. Much of this work uses the cosine similarity and the Kullback-
Leibler divergence to be discussed; some uses the Jaccard distance and its variants [12];
some uses latent semantic indexing; and some uses the Dirichlet mixture model [20].
Although we used the Jaccard formula previously, it is crude because it treats all words
as equally important. Latent semantic indexing only works for words with a rich
semantics. The Dirichlet mixture model assumes the data is a superposition of distinct
processes, something not often true for digital-forensic data. Document-comparison
methods have been generalized to other kinds of data as in measuring similarity of files
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to known malware [21]. Generalization is important for digital forensics because many
distinctive features of drive images such as IP addresses and file sizes are not words.

Similarity can also be based on semantic connections, but that is mainly useful for
natural-language processing and we do not address it here. Note that similarity of drives
is different from the similarity between artifacts on the same drive suggested by colo-
cation and format similarity, a lower-granularity problem addressed elsewhere [18].

Usually the goal of analysis of forensic links is to build models of social networks
[5, 25, 26]. Degree of association can be thresholded to create a graph, or the inverse of
similarity can be used as an approximate distance and the points fitted to a metric space
as we will discuss. Associated data can also be aggregated in a forensic integration
architecture [15] to enable easier systematic comparison.

3 Data Used in Experiments

This work used five corpori. The main one was images of 3203 non-mobile drives of
the Real Data Corpus (RDC) [9], a collection obtained from used equipment purchased
in 32 non-US countries around world over 20 years, of which 95% ran the Windows
operating system. A second corpus was the 411 mobile devices from the RDC, research
sponsors, and our school. A third corpus was 236 randomly selected classroom and
laboratory computers at our school (metadata and hash values only). In total we had
3850 images of which 977 had no identifiable operating system though possibly arti-
facts. Artifact data was obtained for the RDC with the Bulk Extractor open-source tool
[4] for email, phone, bank-card, GPS, IP-address, URL, keyword-search, zip-file, and
rar-file information.

The Mexican subcorpus of the RDC, 177 drives in eight batches purchased in
Mexico, was analyzed to provide the more easily visualized results shown later in this
paper. Also studied was the separate M57 patent corpus [24], a collection of 83 image
“snapshots” over time for a set of machines with scripted usage. Its snapshots on
different days provide a good test of high-similarity situations. All five corpori are
publicly available under some access restrictions.

4 Measuring Drive Associations

4.1 Clues to Associations

The experiments described below focused on clues from artifacts and metadata that are
often routinely calculated in forensic investigations and do not require additional
processing. Artifact clues (the first 11 below) were obtained with Bulk Extractor tool,
and metadata clues (the remaining 7) were obtained with the Fiwalk open-source tool
now included with SleuthKit (www.sleuthkit.org). Experiments were done both with
the raw set of clues and with the subset after filtering to eliminate the likely uninter-
esting ones. Filtering methods are described below. In general, filtering of artifacts tried
to eliminate vendor and organization contact data, fictional data, artificial data, and
ambiguous data (such as “mark field” as a personal name). Filtering of metadata tried to
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eliminate software-associated files not containing personal information. These filtering
criteria are appropriate for criminal and intelligence (but not malware) investigations.
The clues were:

• Em: Email addresses, found by Bulk Extractor’s “email” plugin. Filtering was done
using a stoplist (exclusion list) of 500,000 addresses found by NIST in their National
Software Reference Library, plus filtering of clues whose rating was under a
threshold by our Bayesian rating scheme [18] using factors such as the appearance of
known personal names, type of domain, and number of drives on which the name was
found. Bayesian parameters were calculated from a manually labeled training set.

• Ph: Phone numbers, found by Bulk Extractor’s “phone” plugin. Bayesian filtering
[17] excluded candidates based on factors such as informational area codes, arti-
ficiality of the numbers, and number of drives having that number.

• Pn: Personal names, found by our methods using dictionary lookup of known
personal names and regular expressions applied to Bulk Extractor’s “context”
output [17]. Bayesian filtering eliminated candidates based on factors such as
delimiters, use of dictionary words, and adjacency to email addresses.

• Sa: Street addresses, found using regular expressions on Bulk Extractor’s “context”
argument. Bayesian filtering used factors of the number of words, position in the
argument, suitability of the numbers for addresses, capitalization of the words,
length of the longest word, number of digits in the numbers, use of known personal
names, use of words frequently associated with streets like “Main”, “street”, and
“rd”, use of “#”, and membership in a stoplist of 2974 adverbs, conjunctions,
prepositions, and common computer terms.

• Bn: Numeric strings that could be bank-account numbers, found using Bulk
Extractor’s “ccn” plugin. Error rates were high. Filtering excluded numbers not well
delimited.

• Gp: Formatted GPS data found by Bulk Extractor’s “gps” plugin. There were only a
few instances in our corpori.

• Zi: Zip-compressed files found by Bulk Extractor. They are a weak clue to drive
similarity since there are many frequently-seen zip archives. Filtering excluded
those on 10 or more drives.

• Ra: Rar-compressed files found by Bulk Extractor, handled similarly to zip-
compressed files.

• Uw: Words in the file names of Web links found by Bulk Extractor’s “url” plugin.
We did not consider numbers and words of directory names because they usually
indicate infrastructure. Filtering excluded words in the Sa-clue stoplist.

• Ks: Keywords in searches found by Bulk Extractor’s “url_searches” plugin (26% of
which were from the browser cache). Filtering excluded those occurring on 10 or
more drives.

• Ip: Internet IP addresses [2]. Filtering excluded addresses on ten or more drives.
However, they have more to do with software and local configurations than URLs
do, and thus do not help as much to identify the similar user activity which matters
more in most forensic investigations.

• Ha: MD5 hash values computed on files. Filtering excluded files based on ten
factors described below.
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• Fn: Words in the file names on drives. Filtering used the ten factors.
• Ex: File extensions on the drive including the null extension. Filtering used the ten

factors.
• Di: Immediate (lowest-level) directory names on the drive (with the null value at top

level). Filtering used the ten factors.
• Fs: Logarithm of the file size rounded to the nearest hundredth. Comparing these

suggests possible similar usage. Filtering used the ten factors.
• We: Week of the creation time on the drive. Its distribution describes the long-term

usage pattern of the drive; [1] and [14] argue for the importance of timestamps in
relating forensic data. Filtering used the ten factors.

• Ti: Minute within the week of the creation time. This shows weekly activity pat-
terns. Filtering used the ten factors.

U.S. social-security numbers and other personal identification numbers were not
included because our corpus was primarily non-US and the formats varied. Sector or
block hashes [22] were not included because obtaining them is very time-consuming
and results in large distributions. As it was, comparing of hash values on full files took
considerably more time than analysis of any other clues.

Filtering of the metadata clues used ten negative criteria developed and tested in
[16]: hash occurrence in the National Software Reference Library (NSRL), occurrence
on five or more drives, occurrence of the file path on 20 or more drives, occurrence of
the file name and immediate directory on 20 or more drives, creation of the file during
minutes having many creations for the drive, creation of the file during weeks with
many creations for the corpus, occurrence of an unusually common file size, occurrence
in a directory whose other files are mostly identified as uninteresting by other methods,
occurrence in a known uninteresting directory, and occurrence of a known uninter-
esting file extension. Filtering also used six overriding positive criteria indicating
interestingness of a file: a hash value that occurs only once for a frequent file path, a file
name that occurs only once for a frequent hash value, creation in an atypical week for
its drive, an extension inconsistent with header analysis, hashes with inconsistent size
metadata, and file paths including words explicitly tagged as interesting such as those
related to secure file erasure. Files were filtered out if either they matched NSRL hashes
or matched at least two negative criteria and none of the positive criteria. Applying the
criteria provided a 77.4% reduction in number of files from the RDC (with only 23.8%
due to using NSRL) with only a 0.18% error rate in failure to identify potentially
interesting files, as estimated by manual investigation of a random sample [16].

Table 1 gives counts of the clues found in our main corpus of the RDC, mobile, and
school drives. The first column gives the raw count of the clue, the second column the
count after the filtering described, and the third column the number of drives with at
least 10 different values of the clue (our threshold for sufficient data for comparison).
The fourth column counts the sum of the number of distinct clue values per drive,
meaning that it counts twice a clue on two drives but once a clue twice on a single
drive.
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4.2 Measuring Similarities and Divergences

Document comparison methods use a variety of association formulae. This work tested
two of the best-known, the term-frequency inverse-document-frequency (TF-IDF)
cosine similarity and the Kullback-Leibler divergence. We interpret a “document” as
the set of clues on a drive of a particular type, e.g. the set of email addresses on a drive,

Table 1. Counts of clues found on drives in our main corpus of 3850 drives.

Clue type Count in our
full corpus

Filtered
count in our
corpus

Number of drives
having � 10
values

Sum of distinct values over
all drives in our filtered
corpus

Email addresses
(Em)

23,928,083 8,861,907 2,063 7,646,278

Phone numbers
(Ph)

2,686,169 1,641,406 1,310 1,393,584

Personal names
(Pn)

11,821,200 5,270,736 2,008 2,972,767

Street addresses
(Sa)

206,506 135,586 782 88,109

Bank-card
numbers (Bn)

6,169,026 5,716,530 671 332,390

GPS data (Gp) 159 159 4 121
Zip-compressed
files (Zi)

11,993,769 4,218,231 1,302 3,886,774

Rar-compressed
files (Ra)

574,907 506,722 654 382,367

Words in file
names of Web
links (Uw)

1,248,356 204,485 981 7,631

Keyword
searches (Ks)

849,894 769,520 830 661,130

IP addresses (Ip) 51,349 50,197 168 45,682
File hashes (Ha) 154,817,659 8,182,659 2,477 2,091,954
Words in file
names (Fn)

19,095,838 6,178,511 2,567 759,859

File extensions
(Ex)

1,003,609 422,638 2,288 27,810

Immediate
directories (Di)

3,332,261 653,212 2,094 107,808

File size ranges
(Fs)

2,275,412 1,671,392 2,731 2,003

File creation
week (We)

577,035 254,158 1,906 1,749

File creation
minute within
week (Ti)

252,786 195,585 2,080 169
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so to compare drives we compare clue distributions (histograms) per drive. If sij means
the similarity of drives i and j, k is a clue-value number out of M possible clue values,
cki is the count of clue value k on drive i, nk is the number of drives on which clue value

k appears, and wk ¼ ln D
nk

� �
is the classic inverse document-frequency weight for D

drives total ([8] used a rarely-used logarithm-free formula), the cosine-similarity for-
mula is:

sij ¼
XM
k¼1

ckickjw
2
k

� �" #
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XM
k¼1

c2kiw
2
k

� �
vuut

2
4

3
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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k

� �
vuut

2
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This ranges between 0 and 1 for nonnegative data such as counts. Drives have
considerably diversity on most of the clues investigated, so cosine similarities close to
0 are common for random pairs of drives. An average similarity between two drives
can be computed over all their similarities on clues. However, similarities on different
clues do mean different things and it can important to distinguish them.

Hash values on files are the most time-consuming of the clues on which to compute
similarity since there are so many. Computation time can be reduced by removing the
hash values that occur on only one drive, about 61.2% of our main corpus, after
counting them. This count should be included in the denominator of the formula, but
does not affect the numerator.

[23] notes that cosine similarity despite its popularity does not satisfy intuitive
notions of similarity in many cases since it is symmetric. Asymmetric similarity would
make sense for a drive having many downloads from a larger drive so a larger fraction
of the smaller drive is shared. So this work calculated an asymmetric measure of
entropy-based Kullback-Leibler divergence on the clue distributions per drive, defined
where Ni is is the total count of the first distribution and Nj is the total count of the
second distribution as:

dij ¼
XM
k¼1

ðcki=NiÞlog2
cki
Ni

� �

ckj
Nj

� �

Divergence is smaller for larger similarities in a rough inverse relationship. The
formula is only meaningful when comparing clue values that the two distributions
share, as we are computing for each value on drive j the similarity of its count to the
count on drive i. Thus Ni should be defined as the total count on drive i of items also on
drive j.

Since divergence is directional, the minimum of the divergences in the two
directions provides a single consensus value of association since the smaller divergence
indicates the stronger association. Also note that similarity and divergence are only
meaningful with sufficient data, so at least 10 distinct clue values on each drive were
required to compare two drives in our experiments.
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5 Results

5.1 Comparing Similarity and Divergence

A large cosine similarity generally means a low divergence, and vice versa, so a
question is to what degree they measure different things. However, attempts to fit a
formula from one to the other were unsuccessful with our data for the weighted average
similarity and the weighted average divergence of the clues. We tried the simplest
possible formulae that could apply to an inverse relationship: s ¼ �c1dþ c2,

s ¼ c1= dþ c2ð Þ, s ¼ c1= dþ c2ð Þ2 þ c3
� �

, s ¼ c1ffiffiffiffiffiffiffiffiffi
dþ c2

p þ c3ð Þ, and s ¼ c1
log dþ c2ð Þþ c3ð Þ; in

each case a better least-square fit was obtained from s ¼ c1. We interepret this as
meaning that similarity and divergence in general measure different things for our data,
and it is useful to compute both. However, the fit did vary with clue. On the filtered
data, the Pearson correlation coefficient between similarities and divergences was 0.744
for phone numbers, 0.679 for street addresses, and 0.659 for email addresses, but 0.451
for personal names and 0.332 for hash values. The last makes sense because divergence
rates highly the strong subsetting relationships between drive files whereas similarity
does not.

5.2 Clue Counts Per Drive

Histograms can be computed on the number of clue values per drive. Many of these
histograms approximated normal curves when the logarithm of clue count was plotted
against the logarithm of the number of drives, but with an additional peak on the left
side representing drives mostly lacking the clue. Exceptions were for street addresses
(uniform decrease with no peak) and time within the week (two peaks at ends of the
range), the latter probably reflecting the difference between servers and other machines.

5.3 Significance Tests of Clue Similarity

An important question is the significance of values of cosine similarity. Figure 1 shows
average similarities for the 10 artifact clues and Fig. 2 shows average similarities for
the 8 metadata clues, broken down by corpus. The filtering was described in Sect. 4.1;
GPS data was insufficient and was excluded. Two controls were obtained by taking
5000 random samples from the distribution of each of the clue values over all drives
with sample sizes approximating the distribution of clue counts over all drives. Thus
the controls represent similarity values of completely uncorrelated random drives of the
same total sizes as our corpus. Results were similar for divergences but inverted.

The corpori show significantly more correlation than the controls, especially the
school computers since they are centrally managed. The average observed similarities
in our corpori are so far above the controls that they are definitely significant even
lacking ground truth about drive associations. Note also that unfiltered data shows more
similarities than the filtered data, most noticeably for file size (Fs) and file name (Fn),
likely due to its larger number of spurious correlations. Note also that filtering does not
affect all clues equally.
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Fig. 1. Average similarities for artifact clues.

Fig. 2. Average similarities for metadata clues.
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The variances of the average similarities were significantly larger than the means,
due to the large number of random pairs that had zero similarity. Thus the similarity
distributions are not Poisson. Nonetheless, we can provide significance thresholds for
similarity for each of the 18 clues by taking three standard deviations above the mean
(Table 2), a standard statistical significance threshold. This table is based on the RDC
data, which should be a good model for many broad corpori because of its diversity.
The first two rows give thresholds for unfiltered distributions, and the last two for
filtered distributions.

Table 3 shows average similarity by country code over all clues, a useful inverse
measure of the diversity of our acquired drives by country. Ratios of average simi-
larities of metadata clues for undeleted versus deleted files were 1.304 for Fn, 1.471 for
Ex, 1.202 for Di, 1.121 for Fs, 0.454 for We, and 0.860 for Ti. So file deletion status
mattered too for metadata clues; artifact clues were rarely within files.

5.4 The Effects of Sampling on Similarities

When the primary goal is to find drive pairs with high similarities, processing time can
be reduced by comparing random samples of the clues on the drives. Table 4 shows the
average effects over five random samples, each with sampling rates of 0.3, 0.1, and
0.03, on the similarities of our filtered RDC corpus for three artifact clues and three
metadata clues. Sampling generally decreased the similarities of drives and effects
showed little variation between samples. The artifact clues and file name words were
more sensitive to sampling rates due to the smaller counts in their distributions. Judging
by this table, a 0.3 sampling rate will obtain 80% of the original similarity for many
clues and should be adequate; file extensions, however, could be accurately sampled at
a much lower rate.

Table 2. Recommended thresholds of significance for similarity between drives, for abbrevi-
ations defined in Sect. 4; “UF” means unfiltered data and “F” means filtered data.

EmUF
.213

PhUF
.331

PnUF
.161

SaUF
.163

BnUF
.322

GpUF
1

ZiUF
.259

RaUF
.423

UwUF
.639

KsUF
.062

IpUF
.033

HaUF
.173

FnUF
.300

ExUF
.756

DiUF
.522

FsUF
.763

WeUF
.301

TiUF
.429

EmF
.106

PhF
.081

PnF
.148

SaF
.194

BnF
.121

GpF 1 ZiF
.121

RaF
.226

UwF
.332

KsF
.043

IpF
.031

HaF
.166

FnF
.170

ExF
.539

DiF
.614

FsF
.521

WeF
.189

TiF
.416

Table 3. Average similarities as a function of the most common country codes.

AE AT BD BS CN IL IN MX MY PK PS SG TH UK

Count 124 48 77 34 807 336 716 176 78 93 139 206 188 33
Av. sim. .213 .042 .009 .051 .006 .025 .066 .031 .088 .024 .115 .007 .043 .065
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5.5 Correlations Between Clue Similarities

Pearson correlations were measured between the similarities of different clues as a
measure of clue redundancy. Table 5 shows the results for main corpus without fil-
tering, excluding GPS, bank-card, and rar files which did not occur frequently enough
to be reliable in this comparison, and excluding drives for which there was no data for
the clue. The metadata clues (the last seven) were more strongly inter-associated than
the artifact clues, though there was a cluster for email addresses (Em), phone number
(Ph), personal names (Pn), and (interestingly) zip files (Zi). The redundancy between
the metadata clues suggests if we had to choose one, we should compare file extensions
since they are easiest to extract and require little space to store. Similarly, the weaker
redundancy between the artifact clues suggests we compare email distributions because
they are frequent artifacts, are easy to collect with few errors, and require little space to
store. Of course, each investigation can assign its own importance to clues, as for
instance an investigation of a crime in a business might assign higher importance to
phone numbers. Note that IP addresses were uncorrelated with the other clues, sug-
gesting that using them for link analysis [2] rarely reveals anything for unsystemati-
cally collected corpori like the RDC, and this is likely true for the closely associated
MAC addresses as well. As for processing times for clues, the times in minutes on a
Gnu Linux 3.10.0 64-bit X86 mainframe for the total of extraction and comparison
using Python programs were Em 726, Ph 1010, Pn 556, Sa 8, Zi 1, Uw 15, Ks 54, Ip 1,
Ha 1150, Fn 108, Ex 112, Di 1501, Fs 355, We 41, and Ti 54.

Table 4. Average effects of random sampling on similarities of particular clues.

Clue Sampling
rate

Mean original
similarity

Mean similarity of
samples

Standard deviation of
samples

Email address
(Em)

0.3 0.00063 0.00047 0.00002
0.1 0.00034 0.00002
0.03 0.00024 0.00001

Phone number
(Ph)

0.3 0.00070 0.00053 0.00001
0.1 0.00040 0.00002
0.03 0.00033 0.00003

Personal name
(Pn)

0.3 0.00444 0.00380 0.00005
0.1 0.00321 0.00007
0.03 0.00256 0.00005

File extension
(Ex)

0.3 0.13435 0.14290 0.00051
0.1 0.14812 0.00069
0.03 0.14856 0.00083

File name (Fn) 0.3 0.02394 0.02127 0.00007
0.1 0.01684 0.00009
0.03 0.01191 0.00008

File size (Fs) 0.3 0.19609 0.19098 0.00068
0.1 0.16597 0.00049
0.03 0.13258 0.00091
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5.6 Comparing Drive Snapshots Over Time

The M57 corpus [24] was studied to see how clues change over time. M57 data is from
a managed experiment simulating four employees in a scenario in a patent office over a
month, one image per day except for weekends and holidays. Figures 3 and 4 show the
average similarity of unfiltered clues over all drive-image pairs as a function of number
of days between them (forward or backward) on the same drive. Using unfiltered data
was important because these images had many initial similarities and frequent occur-
rence of a clue is a reason for filtering it out. Street-address, GPS, Zip, and Rar data are
omitted because of low occurrence rates. Clue similarities decreased over time (espe-
cially artifact clue similarities), though they still remained larger than those for the
random drives shown in Sect. 5.3. By contrast, data from different drives in the M57
corpus on successive days showed no trends over time, despite the efforts of the
scenario to make them relate. We infer that artifact self-similarity decays significantly
over days because of frequent overwriting of caches which are the source of many
artifacts. However, note these drives had little user data beyond experimental data, and
likely show a stronger decay rate than the RDC drives obtained over a 20-year period
yet having much stronger similarities than random control comparisons.

5.7 Visualizing Drive Similarities and Divergences

Investigators find it helpful to visualize associations of drives. To do this, we optimized
locations in a two-dimensional space to fit distances computed from the similarities and
divergences, ignoring similarities under a threshold and divergences over a threshold.
This is an instance of the “embedding problem” in applied mathematics [19] which

Table 5. Pearson correlations for similarities of pairs of major clues over the unfiltered RDC
and school data. Abbreviations are defined in Sect. 4.1.

Em Ph Pn Sa Zi Uw Ks Ip Ha Fn Ex Di Fs We Ti

Em 1 .29 .63 .06 .18 .03 −.01 .00 .07 .06 .02 .05 −.01 −.08 −.22
Ph 1 .35 .09 .35 .13 −.02 −.01 .10 .10 .10 .12 .06 .09 .03
Pn 1 .11 .24 .05 −.01 .00 .09 .07 .04 .07 .02 .09 .03
Sa 1 .03 −.01 −.01 −.02 .05 .05 .03 .04 .02 .02 .03
Zi 1 .18 −.02 −.01 .05 .06 .07 .09 .04 .06 .01
Uw 1 −.03 −.01 .03 .04 .04 .07 .02 .02 −.03
Ks 1 .00 −.01 −.01 −.03 −.02 −.03 −.01 −.03
Ip 1 .00 .00 −.01 −.01 −.01 −.01 −.01
Ha 1 .67 .35 .49 .31 .53 .31
Fn 1 .50 .64 .45 .36 .23
Ex 1 .71 .67 .26 .24
Di 1 .54 .36 .25
Fs 1 .18 .19
We 1 .44
Ti 1
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tries to map a highly dimensional space to fewer dimensions. The formula with lowest
error of fit from similarity to distance from systematic testing on the filtered data in our

main corpus was D ¼ � ln sð Þð Þ0:2þ 10�Tð Þ where D is distance, s is similarity, T is the
threshold, and (by experiment) T = 0.4. Similarly, the best formula found for relating
divergences to distances was D ¼ d0:5T where d is the divergence for T < 3. Distance
errors averaged around 0.4 for both similarities and divergences. Optimization assigned
random locations to start, used an attraction-repulsion algorithm to move locations
repeatedly to improve ratios of calculated distances to target distances, then plotted the
final locations. Specifically, the algorithm sought xi; yið Þ pairs to minimize this formula
over N drives where Dij is the desired distance between locations i and j:

XN
i¼1

XN

j where
Dij\Dmin

log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xj
� �2 þ yi � yj

� �2q

Dij

2
4

3
5

������

������

Location optimization used a version of the familiar delta rule for machine learning
where changes to the coordinates were proportional to a learning factor (0.1 worked
well in these experiments), the distance between the points, and the log ratios shown
above. 20 rounds of optimization were done, followed by rerandomization of the drive
locations whose error exceeded a threshold (averaging about 11% of the locations),
followed by another 20 rounds of optimization. Rerandomization gave a second chance
to drives that were assigned poor initial locations. A minimum-similarity or maximum-
divergence threshold can improve optimization speed by excluding weakly associated

Fig. 3. Average similarity of artifact clues in the M57 corpus on the same drive a specified
number of days apart in either direction.
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drive pairs from this optimization. For instance, setting a threshold of greater than 0.1
for the average clue similarity for a drive reduced the number of drive pairs considered
from 177*176/2 = 15,576 to 818 on our Mexican subcorpus.

Figure 5 shows an example visualization of the similarities of the unfiltered hash-
value distributions of the 177 Mexican drives, and Fig. 6 shows their divergences.
Colors and shapes represent the eight batches in which drives were acquired, which are
only weakly correlated with distances though there are several closely related pairs.
A stronger cluster emerges with the divergences. Since random starting locations are
chosen, the display may appear rotated or inverted between two runs on the same input.

Figure 7 visualizes the similarities of the distributions of the hash values for the
unfiltered M57 files. Colors and shapes indicate the users here, and their drives are well
separated, with some spread involving the early snapshots and two kinds of usage by
the user indicated with the green diamonds.

Our estimated distances can be used for clustering directly [3]. Graphs can also be
built from this data by drawing edges between nodes closer than a threshold distance.
Then a variety of algorithms can analyze the graphs. For instance, if we set a threshold
of 0.5 on the hash-value similarity for the filtered Mexican drives, our software
identifies a clique of 24 drives. Checking the data manually did confirm this was a
likely clique and found many similarities between its drives. Our software also checks
for commonalities in each clique; for that example, it noted that the drives in that 24-
drive clique are all Windows NT with a hash-value count after filtering from 603 to
1205.

Fig. 4. Average similarity of metadata clues in the M57 corpus on the same drive a specified
number of days apart.
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Fig. 5. Visualization of the unfiltered Mexican drives based on similarities of the hash-value
distributions after optimization; color and shape code the batch out of 8.

Fig. 6. Visualization of the unfiltered Mexican drives based on divergences of the hash-value
distributions after optimization; color and shape code the batch out of 8.
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6 Conclusions

This work has shown how computing a few characteristics of drives can be used to
infer associations, even if the clues are quite subtle and the drive owners are not aware
of it. Both the cosine similarity and the Kullback-Leibler divergence showed useful
results with some differences between them. Thresholds of significance for similarity
were provided on 18 clues for a large corpus. The clues differ in computational
requirements, accuracy, redundancy, and investigative value, however, so we have
provided some data to enable an intelligent choice of clues for investigators. If a quick
comparison of drives is desired, comparing email artifacts (sampled at a 0.3 rate) as an
indicator of contacts and file extensions (sampled at a 0.03 rate) as an indicator of usage
type were adequate. Hash-value comparisons were time-consuming with few benefits
over faster clues, and are thus not recommended.

We also showed the effects of filtering of data before computing similarity, which
tended to decrease spurious similarities. We also discussed the effects of the passage of
time on the similarity of images from the same drive, and provided a visualization
technique in two dimensions for overall similarities and divergences. As drive data is
increasingly erased or encrypted before forensic analysis, this kind of broad survey will
become increasingly difficult to accomplish, so it is valuable to do now. Our results
reflect general principles of what software and people store on drives, and will continue
to be valid for a number of years.

Acknowledgements. This work was supported by the Naval Research Program at the Naval
Postgraduate School under JON W7B27. The views expressed are those of the author and do not
represent the U.S. Government. Edith Gonzalez-Reynoso and Sandra Falgout helped.

Fig. 7. Visualization of the M57 drives based on similarities of the hash-value distributions after
optimization; color and shape code the simulated users out of 4.
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