
AndroParse - An Android Feature
Extraction Framework and Dataset

Robert Schmicker, Frank Breitinger(B), and Ibrahim Baggili

Cyber Forensics Research and Education Group (UNHcFREG),
Tagliatela College of Engineering, University of New Haven,

West Haven, CT 06516, USA
rschm2@unh.newhaven.edu, {FBreitinger,IBaggili}@newhaven.edu

Abstract. Android malware has become a major challenge. As a conse-
quence, practitioners and researchers spend a significant time analyzing
Android applications (APK). A common procedure (especially for data
scientists) is to extract features such as permissions, APIs or strings
which can then be analyzed. Current state of the art tools have three
major issues: (1) a single tool cannot extract all the significant features
used by scientists and practitioners (2) Current tools are not designed
to be extensible and (3) Existing parsers can be timely as they are not
runtime efficient or scalable. Therefore, this work presents AndroParse
which is an open-source Android parser written in Golang that currently
extracts the four most common features: Permissions, APIs, Strings and
Intents. AndroParse outputs JSON files as they can easily be used by
most major programming languages. Constructing the parser allowed us
to create an extensive feature dataset which can be accessed by our inde-
pendent REST API. Our dataset currently has 67,703 benign and 46,683
malicious APK samples.

Keywords: AndroParse · Android · Malware · Dataset · Features
Framework

1 Introduction

Without a doubt, smartphone malware is on the rise. As a consequence,
researchers and industry spend significant resources to improve malware detec-
tion techniques, e.g., by manually analyzing applications during forensic inves-
tigations or applying machine learning techniques.

Regardless of how a practitioner analyzes applications, there are usually two
essential steps. First, one acquires a single malware sample/a sample dataset;
when it comes to machine learning datasets are essential. Second, one will have
to parse information to gain insight into the application(s). An overarching step
by step workflow for machine learning approaches is depicted in Fig. 1 which
coincides with the process observed in other works [9].

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019
Published by Springer Nature Switzerland AG 2019. All Rights Reserved
F. Breitinger and I. Baggili (Eds.): ICDF2C 2018, LNICST 259, pp. 66–88, 2019.
https://doi.org/10.1007/978-3-030-05487-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05487-8_4&domain=pdf
https://doi.org/10.1007/978-3-030-05487-8_4

AndroParse - An Android Feature Extraction Framework and Dataset 67

Request access to
malicious APK

samples

Download benign
samples

Use several tools to
extract features

Query open dataset
via REST API

Convert features to
vectors

Process vectors
using machine

learning

Fig. 1. Current work flow for machine learning approaches.

Malicious APK acquisition is often kept private due to ethical restrictions of
freely sharing malware on the Internet; Table 2 shows some available datasets.
For those that are private, users can often request access through a review
process.

Benign APK acquisition involves downloading samples through public websites
[4,5] such as Google Play (Google’s application store).

Feature extraction defines the step of extracting relevant information from the
APKs. This may include a separate library for each sought after feature.
Since these libraries are often written in varying languages (e.g., C++, Java,
or Python) this requires the user to be well versed in many languages, adding
another layer of complexity.

Features to vector conversion transforms the raw feature data into vectors for a
machine learning algorithm. One will typically write a script to massage the
data into the format required for their algorithm.

Processing vectors is the final stage and allows a data scientist to test the detec-
tion rate of their algorithm.

From a forensic practitioner’s perspective, the bulk of the work is related
to reverse engineering the applications where one usually starts by extracting
features to understand the application’s code (e.g., looking for strings in the
APK like IPs, hashes or URLs).

While these procedures are well established, there are some drawbacks.
Downloading benign applications/requesting access to malicious applications can
be time consuming, e.g., one may be tasked with writing a crawler or contacting
website administrators for access to a bulk download. Sharing malware directly
has downsides as well [11] and even though a review process exists, there is no
guarantee that samples will only be used for research.

In this paper we present AndroParse1, as well as, a freely accessible Android
feature dataset which can be easily used by practitioners; it allows to download
features of over 100,000 applications (benign and malicious)2. Specifically, this
paper has two major contributions:

1. AndroParse is the first open source and extensible Android APK parser that
allows users to quickly access features/artifacts of interest. As it is expand-
able, AndroParse provides a framework for plugins that can accommodate for
new features/artifacts in various programing languages.

1 https://github.com/rschmicker/AndroParse (last accessed 13-April-2018).
2 https://64.251.61.74/ (last accessed 13-April-2018).

https://github.com/rschmicker/AndroParse
https://64.251.61.74/

68 R. Schmicker et al.

2. We provide a centralized, online dataset of Android APK features for exam-
iners and data scientists3 that can be accessed and downloaded through our
web interface. Currently AndroParse’s open dataset holds a total of 114,386
unique APKs - 67,703 benign and 46,683 malicious. This count is tentative as
the dataset grows in size every day through the use of automated webcrawlers.

In our initial version, AndroParse supports four major features; we chose
these features after analyzing state-of-the-art research: as they were the most
common ones in scientific literature. To extract the features, we constructed a
multi-threaded Golang plugin framework that utilizes existing applications (e.g.,
Android Asset Packaging Tool). This modular design allows anyone to add new
feature extraction plugins if needed. Data scientists and forensic practitioners
can access our platform to download the extracted features by querying a REST
API and receive them in a JSON format. Note, feature extraction is performed
on our server thus it consumes minimal computational resources from the user.

The rest of the paper is structured as follows: Sect. 2 summarizes existing
tools for extracting information from an APK file, as well as, Android datasets
and services. The extraction process is explained in granular detail in Sect. 3
which includes the implementation, tools used, features used, extending to new
features, and extraction process. Statistics and an overview of the open dataset
provided is presented in Sect. 4, in addition to, querying the parsed APKs con-
tained in the open dataset in Sect. 4.3. This leads to an evaluation of AndroParse
in Sect. 5. Lastly, we provide limitations, as well as, future work.

2 Background and Related Work

Given our two major contributions, we separated this section into Feature extrac-
tion and decompilation tools (Sect. 2.1) where we summarize existing frameworks
and tools and Malware samples and services (Sect. 2.2) which summarizes the
existing datasets we found. For a more comprehensive list of Android security
resources, one may visit Ashish Bhatia’s Github [12].

2.1 Feature Extraction and Decompilation Tools

The following tools have been developed to ease the process of extracting desired
features from Android applications.

Android Asset Packaging Tool (AAPT, [14]) is part of Google’s Android SDK
and has been utilized by several researchers. This command-line tool decodes and
parses the AndroidManifest.xml and allows users to query certain information
about an APK. AAPT has been used “[...]to extract and decrypt the data from
the AndroidManifest.xml file[...]” to access the APKs’ permissions [31]. Written

3 A prominent example that these services are valuable for the community is the UCI
Machine Learning Repository [25] which includes a multitude of data and repositories
and is frequently referenced in literature.

AndroParse - An Android Feature Extraction Framework and Dataset 69

in C++, it is a fast tool as it provides the AndroidManifest.xml without having
to decode the entire APK file.

apk_parse [36] is a Python library written to parse information from the
AndroidManifest.xml. Unfortunately, it limits itself to the manifest and meta
data of an APK for feature extraction. A more comprehensive tool is Andro-
guard [13] which is an open source Python tool for extracting features from an
APK’s AndroidManifest.xml and DEX files. For instance, it has been used to
test Android APK code obfuscation techniques [15]. Although Androguard is
extensive and capable, it is time consuming to process an APK. In addition, it
does not parse intents from an APK used by several works (see Table 4). Rapid
Android Parser for Investigating DEX files is an open source Java based library
for parsing DEX files [42]. It minimizes the time it takes to parse an APK by
having an in-memory representation of the data that allows queries. The problem
is that it is limited to strings and APIs and scientists still need to understand the
structure/APIs in order to query it. Besides the actual malware dataset (men-
tioned in the previous section), Drebin provides “all features extracted from each
of the 123,453 benign applications and 5,560 malicious applications” [7,38]. How-
ever, the Drebin feature extraction tool seems to be closed source. This hinders
open performance reviews and comparison to open source tools.

While the previous tools focused on feature extraction, APKTool [40] dis-
assembles the APK file into smali form as well as decompresses the Android-
Manifest.xml. Smali files are text files (one per java class) which are simpler to
understand than DEX files. However, these files then need to be parsed again in
order to be used by data scientists [29].

2.2 Malware Samples and Services

While searching for malware samples, we identified that there were two kinds of
sets which we will refer to as services and sample sets.

Malware services are online applications that possess or allow the uploading of
samples but only share secondary information. For instance, these services exam-
ine an APK file and detect if it is malicious or provide other information such as
extracted strings or permissions. VirusTotal.com is one popular example [37].
Although convenient, VirusTotal has a major limitation of being signature based
and therefore it cannot be fully aware of the intents of an application. Payload
Security [27] does offer an online searchable dataset of malware. Although highly
informative, it is limited to metadata, permissions, and extracted strings for a
given malware sample but does not include APIs and other strings. Other sources
such as AndroTotal [21] and NVISO APK Scan [23] exist but the user must first
have the APK samples to analyze. To sum it up, these third party services are
convenient for small applications in small quantities and are not suitable for
large-scale detailed APK file analysis. Secondly, AndroTotal and NVISO APK
Scan offer some features to be viewed online but they do not offer a download
option of the features. Payload Security offers an API except the user must sign
up for access and is given a quota per API key.

70 R. Schmicker et al.

Malware sample sets are repositories which are available for download; an
overview is shown in Table 2. Most datasets are kept password protected and
only through a review process can a researcher gain access.

One frequently utilized dataset is Drebin [7]. This dataset consists of 5,560
samples from 179 different malware families collected from 08/2010 to 10/2012
and is available for researchers in academia as well as industry after ‘registra-
tion’ (sending an email). Another example dataset was the Malware Genome
Project4 [43]. However, according to the website this dataset is no longer being
maintained. Contagio Mobile [26] contains a smaller amount of APKs, but are
referenced extensively in research articles. Works have used the repository to
analyze the effectiveness of permissions as the sole feature for malware detection
[32]. Das Malwerk [35] and theZoo [24] are examples of datasets that are open to
the public. They not only contain Android malware, but Windows and OS X exe-
cutables as well. The malware samples vary from cryptolockers to ransomeware,
and trojans.

3 AndroParse

AndroParse is a feature extraction framework that is developed for digital foren-
sic practitioners and data scientists. It allows users to parse features out of
Android applications which can then be manually analyzed (e.g., using elastic-
search) or used as input for machine learning approaches. A complete overview
is depicted in Fig. 2.

Although popular tools for Android APK reverse engineering have been pre-
viously written in Python [13] and Java [1], AndroParse is written in Golang.
We chose Golang as it provides authentic multi-threading, unlike Python5, and
a runtime plugin interface, unlike Java. Both of these programming language
features are heavily relied upon in the framework. A detailed comparison is pro-
vided in Table 1.

Fig. 2. Extraction & querying workflow

3.1 Installation and Usage

AndroParse is a command-line driven tool that parses four different features
from APK files and outputs results in a commonly accepted JSON format. Before
running it, it requires some preparation:
4 http://www.malgenomeproject.org (last accessed 13-April-2018).
5 https://wiki.python.org/moin/GlobalInterpreterLock (last accessed 13-April-2018).

http://www.malgenomeproject.org
https://wiki.python.org/moin/GlobalInterpreterLock

AndroParse - An Android Feature Extraction Framework and Dataset 71

Table 1. Reverse engineering tool comparison.

Tool AndroParse php_apk_parser [34] Androguard [13] Apktool [1]

Open Source
License GPL-3.0 None Apache-2.0 Apache-2.0
Expansion
Language Golang PHP Python Java
Manifest
Dex
Export Format JSON XML Python XML/Smali

Dependencies. While some dependencies are included in the repository, others
must be downloaded and installed manually. Particularly, our implementation
requires the RAPID JAR [42] (included), Glide package manager, and Google’s
AAPT [14].

The Glide package manager provides an easy to use interface for installing
Golang dependencies. Installation instructions for Glide can be found on their
GitHub repository6. Once Glide has been installed, users can download the
AndroParse source code and put it in any directory. Next, the user must run
the command make update && make configure to download, install, and pre-
pare all Golang related dependencies AndroParse requires to compile. The sec-
ond manual dependency, AAPT, can be installed as a system wide package
in Debian, CentOS, and Mac OSX based distributions of UNIX/BSD. Once
dependencies are installed, AndroParse can be compiled and executed using
make && androparse.

Command-Line Options. Before running the application, the user is required
to create a YAML configuration file:

apkDir: "/home/myuser/apks"
codeDir: "/home/myuser/src/github.com/AndroParse/androparse"
outputDir: "/home/myuser/output"
vtapikey: "My VirusTotal API Key"

The field apkDir contains the directory of the user’s APK dataset. codeDir
provides the source code directory to access the RAPID JAR file, as well as,
feature extraction plugins at runtime. outputDir specifies the directory the user
would like to store the resulting JSON for parsed APKs. Lastly, vtapikey is
optional, however, is required under the condition that the user requests each
sample to be validated with VirusTotal using the vt flag. Then our implemen-
tation can be executed by

6 https://github.com/Masterminds/glide (last accessed 13-April-2018).

https://github.com/Masterminds/glide

72 R. Schmicker et al.

androparse -config ~/myconfig.yaml -vt -clean -append -parser Permissions

The config flag is the only required command line option as it provides a
relative or absolute path to a user’s configuration file. vt specifies that the user
wants to validate the APK samples with VirusTotal (this requires an API key
in the configuration file). In the absence of this flag and should the user execute
the IsMalicious plugin, the user must separate their APKs into benign/ and
malicious/ directories. The flag, clean, renames all files stored in the targeted
APK directory to their SHA256 values. This removes any duplicates from the
dataset and reduces disk usage (note, the original file name is not captured as
often APKs were renamed beforehand, e.g., most of the malicious datasets).
append allows users to add a new feature into existing JSON output files from
a previous extraction run, or skip over already parsed APKs. Lastly, parser
permits the user to specify which feature extraction plugin(s) to run explicitly.
In the absence of this flag, all feature extraction plugins are ran.

3.2 Extracting and Adding New Features

The following paragraphs highlight how AndroParse extracts the features from
every APK file:

Deduplication (a.k.a. clean). As a first step, AndroParse will rename every
APK to its corresponding SHA256 hash value. This mitigates any duplicate
APKs in the dataset and decreases the necessary runtime of the extraction
process.

Feature Extraction. To extract various features, we utilize existing tools:

MD5, SHA1, SHA256, Date, File Size are generated using Golang’s standard
libraries. The file size of an APK is stored in bytes. Furthermore, we capture the
timestamp (format "yyyy-mm-dd HH:MM:SS") when the APK is processed which
allows to have standardized sets, e.g., the detection rates can be compared by
the standardized corpus before ‘date’.

Permissions, Intents, Package Name and Version are extracted using Google’s
Android Asset Packaging Tool (AAPT, [14]). AAPT can extract an APK’s
AndroidManifest.xml without having to decompress an entire APK’s content.
The feature extraction plugins Permissions, Intents, PackageName, and Pack-
ageVersion each call AAPT to decompress the AndroidManifest.xml file to parse
a given feature.

APIs, Strings are analyzed by the RAPID library [42]. Therefore, we invoke
RAPID’s Java jar library through an operating system exec call7.
7 This portion of code must be performed sequentially as there is a low-level JVM

memory error when multiple threads access the library at once.

AndroParse - An Android Feature Extraction Framework and Dataset 73

Adding New Features/Extending AndroParse. One of the key strengths
of AndroParse is extensibility (adding new feature extraction methods) which
is implemented using Golang’s runtime plugin interface8. The interface provides
three main benefits to a developer creating new plugins for feature extraction.
(1) The developer does not need to have a working knowledge of the framework
and can purely focus on extracting desired features, (2) It does not require
recompilation of the entire framework, and (3) It allows plugins to be written in
other programing languages such as C and C++9. More details can be found in
the documentation10. The remainder of this section details the development of
a plugin.

The sample structure for plugins is highlighted in Listing 1. Each plugin is
considered as its own package and therefore must label itself as main (line 1).
Furthermore, the plugin must import AndroParse utils (line 4) package as it
contains a necessary configuration data structure so that the plugin can access
information from the included YAML file on execution. The actual functionality
is implemented in three functions:

1. NeedLock() returns true or false depending on if the parser needs to be
locked from other threads accessing the same parser at the same time. For
instance, the RADIP JAR library currently cannot run in multiple threads
and therefore this function should return true (See Sect. 6 for more details).

2. GetKey() only returns a key (string) that indexes the given plugin’s value in
the resulting JSON output for a given APK. A user may choose this to be
the plugin’s name for example.

3. GetValue(string, utils.ConfigData) accepts a path to an APK (the
framework iterates over each APK) and a struct containing configuration
data from the user created YAML file (See Sect. 3.1). Note, the first return
type is interface{}11 which means the plugin can return any type and the
AndroParse framework will correctly handle its type to be displayed in the
resulting JSON file. In addition, the plugin must also return an error value
should an error occur or nil when all has processed correctly.

Once completed, the parser needs to be stored in the folder
./androparse/plugins/MyPluginName/. Following this, the plugin’s .go file
needs to be added in the Makefile (./androparse/plugins/Makefile):
PLUGINS := Apis/Apis.go Intents/Intents.go [...] MyPluginName/MyPluginName.go

Subsequently, the developer can compile their plugin using the make com-
mand, and finally, invoke their plugin by executing the command below where
myPluginName is the file name:
androparse -config ~/myconfig.yaml -parser MyPluginName

8 https://golang.org/pkg/plugin/ (last accessed 13-April-2018).
9 One can use any language as long as the code can be compiled into a shared object

file.
10 https://github.com/rschmicker/AndroParse/wiki/Develop-Plugins (last accessed

13-April-2018).
11 https://golang.org/doc/effective_go.html#interfaces (last accessed 13-April-2018).

https://golang.org/pkg/plugin/
https://github.com/rschmicker/AndroParse/wiki/Develop-Plugins
https://golang.org/doc/effective_go.html#interfaces

74 R. Schmicker et al.

1 package main
2

3 import (
4 "AndroParse/ androparse / u t i l s "
5 " os "
6)
7

8 func NeedLock () bool { re turn f a l s e }
9

10 func GetKey () s t r i n g { re turn " F i l e S i z e " }
11

12 func GetValue (path s t r i ng , c on f i g u t i l s . ConfigData)
13 (i n t e r f a c e {} , e r r o r) {
14 f i l e , e r r := os . Open(path)
15 i f e r r != n i l {
16 re turn n i l , e r r
17 }
18 f i , e r r := f i l e . Stat ()
19 i f e r r != n i l {
20 re turn n i l , e r r
21 }
22 re turn f i . S i z e () , n i l
23 }

Listing 1. Example AndroParse Plugin.

3.3 Storage Schematic/Accessing Features

The features of each APK are stored in a JSON file. An example of this output is
shown in Appendix A Listing 3. We decided for JSON due to the widespread sup-
port across most programming languages and its compatibility with may tools,
e.g., Elasticsearch (details below). An example use case of using AndroParse’s
JSON output can be seen in our repository under analysis/train_oa.py. The
script showcases several machine learning algorithms compared against each
other using the permissions of an APK as a feature vector.

Elasticsearch is a textual indexing engine used for searching for the features by
our backend which can be used for JSON files. Elasticsearch requires a mapping
to be used which “defines how a [JSON] document, and the fields it contains,
are stored and indexed”12. The mapping used by AndroParse can be seen in
Appendix A Listing 5. As shown, this JSON structure identifies which data type
should be used for each field (it can be updated to accommodate a new feature).
Once the mapping of the dataset is updated, a new feature can be appended onto
existing documents. Using Elasticsearch in our backend provides AndroParse a
scalable solution not only as the number of APKs grows, but also as the number
of new features increases.
12 https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html

(last accessed 13-April-2018).

https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html

AndroParse - An Android Feature Extraction Framework and Dataset 75

Verification of Elasticsearch (See Sect. 5.1) verifies the process of extracting
the features from an APK, however, we still found it necessary to verify that
the JSON documents Elasticsearch indexes are not modified in any way when
queried. To verify Elasticsearch’s output, a query is performed on a given APK
downloading all of its key value pairs. Then for every value contained in the
given APK’s JSON file produced by AndroParse, it is searched and matched to
Elasticsearch’s output. After 100 successful trials, it was concluded that the data
is valid.

4 Dataset and Parsed Features

We will summarize the dataset we collected, as well as, motivate the features
that are currently available.

4.1 Dataset Contents

In order to provide a comprehensive feature dataset for researchers, we collected
available malware datasets and downloaded benign samples as listed in Table 2
(note, a few malware datasets contained duplicates). While collecting the sam-
ples, we found that the average size per application differs; malicious applications
seem to be smaller than benign (See Table 3).

Table 2. Malicious APKs in AndroParse’s dataset.

Source # of APKs Private Reference

AMD 24,553 [39]
PRAGuard 10,479 [22]
Third Party Stores 9,587
Drebin 5,560 [7]
Contagio Mobile 818 [26]
theZoo 100 [24]
GitHub 73 [12]
Das Malwerk 55 [35]
Total Before Dedup 51,270
Total After Dedup 46,683

Table 3. AndroParse dataset statistics.

APK count APK total size APK avg. size

Benign 67,703 583.67GB 8.28 MB
Malicious 46,683 70.26GB 1.54 MB
Total 114,386 653.93GB 5.85 MB

76 R. Schmicker et al.

The count of benign APKs is rapidly changing due to routine web-
scrappers that continuously crawl third party websites such as apk-
downloaders.com, apkapps.com, apkfiles.com, apkleecher.com, apkmirror.com,
fdroid.org, slideme.org and the Google Play App store. These web-scrappers
are public and open to the community to use in our source code repository
under ./webscrappers/. Note, third party sites constantly change their HTML
structure and one may have to adjust them. Furthermore, we would like to ask
the community to consider contributing their samples our repository.

4.2 Identifying Relevant Features

To gain insight into commonly used features for Android malware detection,
we analyzed state-of-the-art literature by searching databases for key terms like
‘Android, Malware, and/or Machine Learning’. We then selected the 15 arti-
cles listed in Appendix A Table 7 because they were the most recent (2012 or
newer) and are frequently cited. A summary of the utilized features is provided
in Table 4.

Table 4. Number of features used across papers.

Feature # of occurrences

Permissions 13
APIs 11
Strings 7
Intents 6
Components 3
Graphs 1
Signatures 1
Meta Data 1
Opcodes 1

Note, the total number of features exceeds the total number of analyzed
articles as most references use several features. For example, a single article could
use hardware/application components, permissions, intents, APIs, and network
addresses (strings) [7]. Each of these are counted individually leading to a sum
of features larger than the amount of papers.

Our findings are similar to [16] who analyzed 100 papers in the Android
malware domain and permissions were also the most referenced static feature
followed by APIs as the second most used feature (e.g., APIs are used to dis-
cover any use of network connectivity, encryption, or obfuscation [41]). Our third
feature is strings which can include label names, text shown in the application
but also contain URLs, phone numbers, and IP addresses. Lastly, intents pro-
vide an effective method for understanding how an APK may operate. They

AndroParse - An Android Feature Extraction Framework and Dataset 77

are often times combined with permissions for accurate malware detection [10].
Each feature is expressed broadly. For example, APIs includes the use of APIs
in general as well as special API’s, network API’s, encryption API’s, etc. Since
all APIs in a given APK are extracted, any of these sub-features can be utilized.
The same applies to Strings, i.e., network addresses, native system commands,
phone numbers, etc.

Based on these findings, AndroParse currently supports parsing the top four
features: (1) Permissions, (2) APIs, (3) Strings, and (4) Intents. As discussed
earlier, the framework can easily be extended (discussed in Sect. 3.2).

4.3 Front End for Accessing AndroParse Sample Feature Dataset

To access the dataset, we developed a REST API which can be queried using
three GET parameters and allows users to download needed features:

fields= returns only the features specified. If left empty or missing, all features
of each APK are returned.

to= returns APKs up until the provided timestamp in the form:
yyyy-mm-ddTHH:MM:SS.

from= return APKs starting from the provided timestamp onward in the form:
yyyy-mm-ddTHH:MM:SS.

/all returns the entire dataset AndroParse has to offer at the time of querying.

Once queried, a ZIP file is created and stored into a directory shared by an
anonymous read-only FTP server. Due to the potential for a large query, using
an FTP server is more flexible (e.g., the end user can resume a download in
case of connectivity problems; no additional query is needed). To free space,
the server will delete queries after a certain time. Once the desired information
is downloaded and extracted (JSON file), a user can manipulate the format to
be used in a wide range of applications and languages such as WEKA [19] or
Python.
Remark: Since the dataset is constantly growing, it is important to use the
to and from GET parameters. Thus, future researchers can compare the their
malware detection technique with previous approaches. For example, data scien-
tist A uses the dataset prior to (to=)2018-03-03. This allows data scientist B to
download the same set later even though the entire dataset may haven grown.

4.4 Accessing the Server

Our server has the IP 64.251.61.74 and is using a self-signed certificate with
the SHA1 hash-value 7FE9AE1503BBA19F248E203F74A38D80DC849588. You can
access the server’s REST API on port 443, e.g., https://64.251.61.74/api?
fields=Permissions. To access the JSON file, connect Anonymous to the same
IP on port 21.

https://64.251.61.74/api?fields=Permissions
https://64.251.61.74/api?fields=Permissions

78 R. Schmicker et al.

5 Evaluation

In this section, we evaluate the forensic soundness, performance of the
AndroParse framework, and the front end.

5.1 Verification of the Feature Extraction Process

As mentioned in Sect. 3.2 we rely on existing tools/implementations to extract
features. These tools are well documented, have been previously tested by other
works and are found to be accurate in their extraction process. AndroParse does
however place some overhead on the tools used to structure the data properly
for JSON.

To verify the integrity of the feature extraction process, Golang’s built in
command go test was used to perform unit tests on each of the feature extrac-
tion plugins. Using the APK Facebook Lite version 70.0.0.9.116 as a test APK
file, each of the related plugin’s expected values were manually extracted using
the same underlying tool AndroParse uses. For example, aapt was executed to
extract permissions which then were placed in a Golang unit test. This process
was repeated for each of the other provided feature extraction plugins. Finally,
each unit test was constructed to test for its given feature. go test successfully
showed that each of the plugins created extracted its given feature and matched
the expected value. For further description of how we constructed and executed
our unit tests, please review our documentation on our wiki13.

5.2 Application (APK) Validation

When receiving APKs from other researchers/sources, an APK is only labeled
as malicious or benign by word of mouth. To further verify a given APK as
malicious or benign we compared the hash of each APK to the VirusTotal [37]
API. Using the VirusTotal service, we were able to more accurately identify
APKs that are malicious or benign.

Interestingly we discovered that 761 previously labeled malicious samples
were found to be benign. On the other hand, 9,587 benign samples were found
to be malicious. This finding of mislabeled benign APKs parallels a previous
study [44] where the authors discovered that third party Android APK stores
often host malware.

In addition, we handled reducing potential false positives by only relabel-
ing an application from benign to malicious if more than 4 anti-virus scanners
(provided by VirusTotal) found an application to be malicious. Moreover, we
relabeled a malicious application to benign if none of the VirusTotal anti-virus
scanners reported a virus. Ultimately, the results VirusTotal provides are taken
with a grain of salt, however, we feel this labeling technique to be more accurate
than labeling by word of mouth.

13 https://github.com/rschmicker/AndroParse/wiki/Develop-Plugins (last accessed
13-April-2018).

https://github.com/rschmicker/AndroParse/wiki/Develop-Plugins

AndroParse - An Android Feature Extraction Framework and Dataset 79

5.3 Runtime Efficiency of Tool Kit and API

For completeness sake, as well as, a comparative benchmark to other commonly
used feature extraction tools, we provide the runtime efficiencies of extract-
ing permissions from APKs. To measure and compare the runtime efficiency of
AndroParse, we used an Ubuntu Server 16.04 VM using 8x Intel Xeon CPUs
E5-2640 v3 @ 2.6GHz with 64GB of memory. To time the extraction, UNIX’s
built in time command was used.

For testing, we randomly selected 1000 APKs and compared the runtime
against multiple other tools which were chosen due to their popularity in the
community (e.g., highly cited or featured on GitHub). The results are shown in
Table 5. It is important to mention that we only extracted permissions as none
of the tools can parse the same features as AndroParse’s framework. The exact
methodology was as follows:

1. Randomly select 500 benign APK files
2. Randomly select 500 malicious APK files
3. Execute each tool extracting permissions from each APK

– Note in the case of Apktool, only the AndroidManifest.xml is parsed as
this tool does not provide permissions directly.

4. Log the time taken for the process to execute

Table 5. Extraction runtime efficiency of permissions.

Tool Time (s)

AndroParse 6.291
php_apk_parser 13.173
Androguard 88.738
Apktool 733.928

5.4 Usability Based on Previous Works

In the following we highlight how existing work could have benefited from
AndroParse. Therefore, we will briefly summarize what researchers did to extract
the features, and then we will show how the identical feature vector can be cre-
ated using our framework.

Permission Based Approach by [30]. In their work, the authors cross compare
the standard permissions found in the AndroidManifest.xml (i.e., any permis-
sion starting with android.permission) with all standard permissions offered in
Android14. If the APK requests a standard permission, it generates a 1 in the
vector and 0 otherwise. To do so, the users extracted permissions of an APK
14 https://developer.android.com/reference/android/Manifest.permission.html (last

accessed 13-April-2018).

https://developer.android.com/reference/android/Manifest.permission.html

80 R. Schmicker et al.

using Androguard which is a timely process when scaled to thousands of APKs
(Compare Table 5). On the other hand, AndroParse can provide this information
(used permissions of an APK) by running the following query

https://hostname/api/?fields=Malicious,Permissions

which returns the (list of all) permissions and a true/false malicious indicator
for each APK formatted in a list of key value pairs as described in Appendix A
Listing 4. Next, the output of AndroParse’s REST API conversion into fea-
ture vectors can be done with a short Python script and does not require
sophisticated programming skills (See Listing 2 or in our repository under
./analysis/perms.py). Lines 3–7 load in the downloaded JSON file into a dic-
tionary and line 9 creates a list of all standard Android permissions to compare
against. Continuing along, lines 11–16 create a permission’s binary vector. Lastly,
lines 22–25 loop through the Android APKs and generate a permission’s binary
vector for each, as well as, determine if the given APK is benign or malicious.

1 import j son
2

3 de f get_apk_json (f i l e p a t h) :
4 d = {}
5 with open (f i l e p a t h) as json_data :
6 d = json . load (json_data)
7 re turn d
8

9 PERMISSIONS = [<standard Android permiss ions >]
10

11 de f get_permiss ions (apk) :
12 perms = []
13 f o r permis s ion in PERMISSIONS:
14 s t a tu s = 1 i f permis s ion in apk [' Permiss ions '] e l s e 0
15 perms . append (s t a tu s)
16 re turn perms
17

18 f ea ture_vector = []
19 target_vector = []
20 apks = get_apk_json ("perms . j son ")
21 apks = apks [' data ']
22 f o r apk in apks :
23 f ea ture_vector . append (get_permiss ions (apk))
24 target_type = 1 i f apk [' Mal i c i ous '] == ' t rue ' e l s e 0
25 target_vector . append (target_type)

Listing 2. Excerpt from perms.py.

Permission Based Approach by [20]. Another work extracted the permission list
from an APK and from that list, a count of the total permissions. This work
could use the identical query to the one in our prior example. Once downloaded,
they would need to iterate through and determine a count of permissions for each

AndroParse - An Android Feature Extraction Framework and Dataset 81

APK. A script demonstrating this parsing of output and counting of permissions
can be found at ./analysis/permscount.py.

Permissions, APIs, and Strings Approach by [41]. In particular, this approach
was only concerned with strings that contained a system command (e.g., chown
or mount) [41] as well as Permissions and APIs. To collect the necessary data for
this approach, the authors could have queried:
https://hostname/api/?fields=Malicious,Permissions,APIs,Strings

A script is provided under ./analysis/permstringsapis.py which parses
the downloaded JSON data, as well as, build the feature vectors for permissions,
APIs, and system commands.

In summary, AndroParse directly provides the needed information and does
not require a sophisticated APK parser. It is important to note that since the
code for each of these three works were not made publicly available, the scripts
were constructed to match as close as possible to the description in each of the
respective papers. The scripts are located in our public source code repository
and can be taken advantage of in future work.

5.5 Runtime Efficiency Assessment

In this section we briefly discuss the runtime efficiency for AndroParse as a stand
alone tool as well as querying our web front end.

AndroParse. To test the feature extraction performance, we selected several
sample sizes (from 250 to 2000 APKs) that were randomly chosen from our
dataset. The results are summarized in Table 6; focus on Extract columns. As
can be seen, the time for extracting features can be time consuming (over 1 h
for 2000; not including validation against VirusTotal). The limiting factor here
is the thread lock when extracting strings and APIs using RAPID JAR.

Web Front End. For testing the front end, we downloaded all data using an all
query (https://hostname/all) which pulls all fields from each APK. Again, the
results are listed in Table 6 (focus on query columns). Of course, downloading
the required data is much more space and time efficient.

Table 6. Query vs. extraction performance.

APKs Size (MB) Time Performance (MB/s)
Query Extract Query Extract Query Extract

2000 1561 11,888 53.5 s 64m16.2 s 29.17 3.08
1000 765 6,522 28.4 s 36m28.2 s 27.98 2.98
750 592 5,017 21.9 s 28m9.9 s 27.04 2.97
500 407 3,481 16.5 s 19m18.1 s 24.68 3.01
250 199 1,945 7.7 s 9m54.8 s 25.90 3.27

82 R. Schmicker et al.

6 Limitations

In its current form, AndroParse has two main limitations. First, as discussed
in Sect. 1, the extraction process is only concerned with static analysis of APK
files. This was an initial design choice to focus on the usability of such a plat-
form. Dynamic analysis can expand on features such as but not limited to:
file operations, commands, network traffic, system properties, etc. [38]. Second,
AndroParse has been multi-threaded as much as possible to reduce the time
taken to extract features. In its current form, the RAPID JAR file must be ran
with only one instance at a time using the resource. This is due to a low level
unsafe memory access exception thrown from the JVM. Until this bug can be
resolved, the strings and APIs must be ran sequentially, significantly slowing
down the extraction process.

7 Conclusion

In this paper we presented AndroParse, a feature extraction tool for data scien-
tists and forensic examiners, as well as, a feature dataset that can be accessed
through a REST API.

AndroParse is a general framework that allows users to extract features/forensic
artifacts in a rapid and scalable manner. It is written in Golang and can easily
be extended. In its current version, the tool can extract package name, pack-
age version, MD5, SHA1, SHA256, date extracted, file size, permissions, APIs,
strings and intents. Due to the usage of the JSON format for the output files, the
features can be further processed using any language (e.g., for machine learning
purposes). For instance, a user can utilize Elasticsearch.

Feature dataset was created using AndroParse and is an online dataset that
currently contains the features of approximately 114,386 Android applications
– 67,703 benign and 46,683 malicious. Compared to previous approaches, we
do not share the malware samples directly but only the features which comes
with two benefits. First, the malware samples are not shared and thus cannot
be misused. Second, researchers do not have to extract the features on their side
which saves time and processing power.

Acknowledgements. We like to thank the University of New Haven’s Summer
Undergraduate Research Fellowship (SURF) program who supported this research.

AndroParse - An Android Feature Extraction Framework and Dataset 83

A Identifying Relevant Features Used

1 "Md5" : "66bd8 . . . 3 5 5 7 ea2" ,
2 "Sha1" : "h5k7 . . . f h l 6 5 t " ,
3 "Sha256" : "b277 . . . 2 f443 " ,
4 " Mal i c i ous " : true ,
5 "Apis" : [
6 " void android . app . Act i v i ty .< i n i t > () " ,
7 . . .] ,
8 "PackageName" : " bubei . pureman" ,
9 "Vers ion " : " 1 . 0 . 1 " ,

10 " In t en t s " : [
11 " android . i n t en t . a c t i on .MAIN" ,
12 " android . i n t en t . category .LAUNCHER" ,
13 . . .] ,
14 " Permiss ions " : [
15 " android . permis s ion .WRITE_SMS" ,
16 . . .] ,
17 "Date" : "2017−12−07 16 : 41 : 51 " ,
18 " F i l e S i z e " :1699930 ,
19 " S t r i ng s " : [
20 "" ,
21 "" ,
22 "\u00d0" ,
23 " " ,
24 " " ,
25 " Build /" ,
26 . . .]

Listing 3. JSON output of AndroParse of a single malicious application.

1 {
2 [
3 " Mal i c i ous " : true ,
4 " Permiss ions " : [
5 " android . permis s ion .WRITE_SMS" ,
6 . . .]
7] ,
8 }

Listing 4. JSON output of AndroParse’s REST API querying for permissions and
malicious status.

84 R. Schmicker et al.

1 {
2 "apks" : {
3 "mappings" : {
4 "apk" : {
5 " p r op e r t i e s " : {
6 "Apis" : {
7 " type" : " t ext "
8 } ,
9 "Date" : {

10 " type" : " date " ,
11 " format " : "YYYY−MM−dd 'T 'HH:mm: s s "
12 } ,
13 " F i l e S i z e " : {
14 " type" : " i n t e g e r "
15 } ,
16 " In t en t s " : {
17 " type" : " t ext "
18 } ,
19 "Mal i c ious " : {
20 " type" : " t ext "
21 } ,
22 "Md5" : {
23 " type" : " t ext "
24 } ,
25 "PackageName" : {
26 " type" : " t ext "
27 } ,
28 "PackageVersion" : {
29 " type" : " t ext "
30 } ,
31 "Sha1" : {
32 " type" : " t ext "
33 } ,
34 "Sha256" : {
35 " type" : " t ext "
36 } ,
37 " S t r i ng s " : {
38 " type" : " t ext "
39 } ,
40 "Permiss ions " : {
41 " type" : " t ext " ,
42 " f i e l d s " : {
43 "keyword" : {
44 " type" : "keyword" ,
45 " ignore_above" : 256
46 }
47 }
48 }
49 }
50 }
51 }
52 }
53 }

Listing 5. JSON mapping used by Elasticsearch.

AndroParse - An Android Feature Extraction Framework and Dataset 85

Table 7. Overview of articles including their features utilized for our work.

Ref. Features Citation

[30] Permissions, Control Flow Graphs “In this article, we present a machine learning based
system for the detection of malware on Android
devices.”

[11] Permissions, APIs, Strings, Meta
Data, Opcodes, Intents

“This study summarizes the evolution of malware
detection techniques based on machine learning
algorithms focused on the Android OS.”

[38] Signatures, Permissions,
Application Components, APIs

“[...]we propose a novel hybrid detection system based
on a new open-source framework CuckooDroid[...]”

[41] APIs, Permissions, System
Commands

“This paper proposes and investigates a parallel machine
learning based classification approach for early detection
of Android malware.”

[16] Permissions, Smali Code, Intents,
Strings, Components

“In this paper, we studied 100 research works published
between 2010 and 2014 with the perspective of feature
selection in mobile malware detection.”

[33] Permissions, Intents, Services and
Receivers, SDK version APIs,
Strings

“In this paper, we present Mobile-Sandbox, a system
designed to automatically analyze Android applications
in novel ways[...]”

[10] Permissions, APIs, URI Calls “This paper presents an approach which extracts various
features from Android Application Package file (APK)
using static analysis and subsequently classifies using
machine learning techniques.”

[7] Components, Permissions, Intents
APIs, Strings

“In this paper, we propose DREBIN, a lightweight
method for detection of Android malware that enables
identifying malicious applications directlyon the
smartphone.”

[17] Intents, Permissions, System
Commands, APIs

“In this chapter, we propose a machine learning based
malware detection and classification methodology,with
the use of static analysis as feature extraction method.”

[6] File Properties, APIs, System
Calls, JavaScript, Strings

“To discover such new malware, the SherlockDroid
framework filters masses of applications and only keeps
the most likely to be malicious for future inspection by
anti-virus teams.”

[2] APIs, Permissions “In this paper, we aim to mitigate Android malware
installation through providing robust and lightweight
classifiers.”

[18] Permissions, APIs “In this paper, we present a feasibility analysis for
enhancing the detection accuracy on Android malware
for approaches relying on machine learning classifiers
and Android applications’ static features.”

[28] Permissions “In the present study, we analyze two major aspects of
permission-based malware detection in Android
applications: Feature selection methods and
classification algorithms.”

[8] Permissions, URI Calls, Intents “In this paper, we perform an analysis of the permission
system of the Android smartphone OS[...]”

[3] APIs, Smali Code Used the decompiled smali code to “[...] link APIs to
their components.”

86 R. Schmicker et al.

References

1. apktool (2010). http://ibotpeaches.github.io/Apktool/
2. Aafer, Y., Du, W., Yin, H.: DroidAPIMiner: mining API-level features for robust

malware detection in android. In: Zia, T., Zomaya, A., Varadharajan, V., Mao, M.
(eds.) SecureComm 2013. LNICST, vol. 127, pp. 86–103. Springer, Cham (2013).
https://doi.org/10.1007/978-3-319-04283-1_6

3. Anonymous. CAPIL: Component-API linkage for android malware detection (2016,
unpublished)

4. APK-DL. Apk downloader (2016). http://apk-dl.com. Accessed 13 Apr 2018
5. APKPure. Download APK free online (2016). https://apkpure.com. Accessed 13

Apr 2018
6. Apvrille, L., Apvrille, A.: Identifying unknown android malware with fea-

ture extractions and classification techniques. In: 2015 IEEE Trustcom/Big-
DataSE/ISPA, vol. 1, pp. 182–189. IEEE (2015)

7. Arp, D., Spreitzenbarth, M., Hübner, M., Gascon, H., Rieck, K., CERT Siemens:
DREBIN: effective and explainable detection of android malware in your pocket.
In: Proceedings of the Annual Symposium on Network and Distributed System
Security (NDSS) (2014). https://www.sec.cs.tu-bs.de/~danarp/drebin/. Accessed
13 Apr 2018

8. Au, K.W.Y., Zhou, Y.F., Huang, Z., Lie, D.: PScout: analyzing the android per-
mission specification. In: Proceedings of the 2012 ACM Conference on Computer
and Communications Security, pp. 217–228. ACM (2012)

9. Aung, Z., Zaw, W.: Permission-based android malware detection. Int. J. Sci. Tech-
nol. Res. 2(3), 228–234 (2013)

10. Babu Rajesh, V., Reddy, P., Himanshu, P., Patil, M.U.: Droidswan: detecting mali-
cious android applications based on static feature analysis. Comput. Sci. Inf. Tech-
nol., 163 (2015)

11. Baskaran, B., Ralescu, A.: A study of android malware detection techniques and
machine learning. University of Cincinnati (2016)

12. Bhatia, A.: Android-security-awesome, February 2017. https://github.com/
ashishb/android-security-awesome. Accessed 13 Apr 2018

13. Desnos, A.: Androguard-reverse engineering, malware and goodware analysis of
android applications. URL code. google.com/p/androguard (2013)

14. eLinux. Android AAPT, June 2010. http://www.elinux.org/android_aapt.
Accessed 13 Apr 2018

15. Faruki, P., Bharmal, A., Laxmi, V., Gaur, M.S., Conti, M., Rajarajan, M.: Eval-
uation of android anti-malware techniques against Dalvik bytecode obfuscation.
In: 2014 IEEE 13th International Conference on Trust, Security and Privacy in
Computing and Communications, pp. 414–421. IEEE (2014)

16. Feizollah, A., Anuar, N.B., Salleh, R., Wahab, A.W.A.: A review on feature selec-
tion in mobile malware detection. Digit. Invest. 13, 22–37 (2015)

17. Fereidooni, H., Moonsamy, V., Conti, M., Batina, L.: Efficient classification of
android malware in the wild using robust static features (2016)

18. Geneiatakis, D., Satta, R., Fovino, I.N., Neisse, R.: On the efficacy of static fea-
tures to detect malicious applications in android. In: Fischer-Hübner, S., Lambri-
noudakis, C., Lopez, J. (eds.) TrustBus 2015. LNCS, vol. 9264, pp. 87–98. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-22906-5_7

19. Holmes, G., Donkin, A., Witten, I.H.: WEKA: a machine learning workbench.
In: Proceedings of the 1994 Second Australian and New Zealand Conference on
Intelligent Information Systems, pp. 357–361. IEEE (1994)

http://ibotpeaches.github.io/Apktool/
https://doi.org/10.1007/978-3-319-04283-1_6
http://apk-dl.com
https://apkpure.com
https://www.sec.cs.tu-bs.de/~danarp/drebin/
https://github.com/ashishb/android-security-awesome
https://github.com/ashishb/android-security-awesome
http://www.elinux.org/android_aapt
https://doi.org/10.1007/978-3-319-22906-5_7

AndroParse - An Android Feature Extraction Framework and Dataset 87

20. Kaushik, P., Jain, A.: Malware detection techniques in android. Int. J. Comput.
Appl. 122(17), 22–26 (2015)

21. Maggi, F., Valdi, A., Zanero, S.: Andrototal: a flexible, scalable toolbox and service
for testing mobile malware detectors. In: Proceedings of the Third ACM Workshop
on Security and Privacy in Smartphones and Mobile Devices, pp. 49–54. ACM
(2013)

22. Maiorca, D., Ariu, D., Corona, I., Aresu, M., Giacinto, G.: Stealth attacks: an
extended insight into the obfuscation effects on android malware. Comput. Secur.
51, 16–31 (2015)

23. Malik, S., Khatter, K.: AndroData: a tool for static & dynamic feature extraction
of android apps. Int. J. Appl. Eng. Res. 10(94), 98–102 (2015)

24. Nativ, Y.T., Shalev, S.: Thezoo (2015). http://thezoo.morirt.com. Accessed 13 Apr
2018

25. Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI repository of
machine learning databases (1998). http://mlearn.ics.uci.edu/MLRepository.html.
Accessed 13 Apr 2018

26. Parkour, M.: Contagio mobile. Mobile malware mini dump (2013). https://
contagiominidump.blogspot.ca/. Accessed 13 Apr 2018

27. Payload Security. Learn more about the standalone version or purchase a private
web service (2016). https://www.hybrid-analysis.com/. Accessed 13 Apr 2018

28. Pehlivan, U., Baltaci, N., Acartürk, C., Baykal, N.: The analysis of feature selection
methods and classification algorithms in permission based android malware detec-
tion. In: 2014 IEEE Symposium on Computational Intelligence in Cyber Security
(CICS), pp. 1–8. IEEE (2014)

29. Rami, K., Desai, V.: Performance base static analysis of malware on android (2013)
30. Sahs, J., Khan, L.: A machine learning approach to android malware detection.

In: 2012 European Intelligence and Security Informatics Conference (EISIC), pp.
141–147. IEEE (2012)

31. Sanz, B., Santos, I., Laorden, C., Ugarte-Pedrero, X., Bringas, P.G., Álvarez, G.:
PUMA: permission usage to detect malware in android. In: Herrero, Á., et al.
(eds.) International Joint Conference CISIS’12-ICEUTE’ 12-SOCO’ 12. AISC, vol.
189, pp. 289–298. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
33018-6_30

32. Seth, R., Kaushal, R.: Permission based malware analysis & detection in android
(2014)

33. Spreitzenbarth, M., Schreck, T., Echtler, F., Arp, D., Hoffmann, J.: Mobile-
sandbox: combining static and dynamic analysis with machine-learning techniques.
Int. J. Inf. Secur. 14(2), 141–153 (2015)

34. SunFeith. php_apk_parser (2013). https://github.com/iwinmin/php_apk_
parser. Accessed 13 Apr 2018

35. Svensson, R.: Das malwerk (2016). http://dasmalwerk.eu. Accessed 13 Apr 2018
36. Tdoly. tdoly/apk_parse. GitHub (2015). https://github.com/tdoly/apk_parse.

Accessed 13 Apr 2018
37. VirusTotalTeam. Virustotal-free online virus, malware and url scanner (2013).

https://www.virustotal.com/. Accessed 13 Apr 2018
38. Wang, X., Yang, Y., Zeng, Y.: Accurate mobile malware detection and classification

in the cloud. SpringerPlus 4(1), 1 (2015)
39. Wei, F., Li, Y., Roy, S., Ou, X., Zhou, W.: Deep ground truth analysis of current

android malware. In: Polychronakis, M., Meier, M. (eds.) DIMVA 2017. LNCS,
vol. 10327, pp. 252–276. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-60876-1_12

http://thezoo.morirt.com
http://mlearn.ics.uci.edu/MLRepository.html
https://contagiominidump.blogspot.ca/
https://contagiominidump.blogspot.ca/
https://www.hybrid-analysis.com/
https://doi.org/10.1007/978-3-642-33018-6_30
https://doi.org/10.1007/978-3-642-33018-6_30
https://github.com/iwinmin/php_apk_parser
https://github.com/iwinmin/php_apk_parser
http://dasmalwerk.eu
https://github.com/tdoly/apk_parse
https://www.virustotal.com/
https://doi.org/10.1007/978-3-319-60876-1_12
https://doi.org/10.1007/978-3-319-60876-1_12

88 R. Schmicker et al.

40. Winsniewski, R.: Android–apktool: a tool for reverse engineering android APK files
(2012)

41. Yerima, S.Y., Sezer, S., Muttik, I.: Android malware detection using parallel
machine learning classifiers. In: 2014 Eighth International Conference on Next
Generation Mobile Apps, Services and Technologies, pp. 37–42. IEEE (2014)

42. Zhang, X., Breitinger, F., Baggili, I.: Rapid android parser for investigating dex
files (RAPID). Digit. Invest. 17, 28–39 (2016)

43. Zhou, Y., Jiang, X.: Android malware genome project. Disponibile a (2012). http://
www.malgenomeproject.org

44. Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, you, get off of my market: detecting
malicious apps in official and alternative android markets. In: NDSS, vol. 25, pp.
50–52 (2012)

http://www.malgenomeproject.org
http://www.malgenomeproject.org

	AndroParse - An Android Feature Extraction Framework and Dataset
	1 Introduction
	2 Background and Related Work
	2.1 Feature Extraction and Decompilation Tools
	2.2 Malware Samples and Services

	3 AndroParse
	3.1 Installation and Usage
	3.2 Extracting and Adding New Features
	3.3 Storage Schematic/Accessing Features

	4 Dataset and Parsed Features
	4.1 Dataset Contents
	4.2 Identifying Relevant Features
	4.3 Front End for Accessing AndroParse Sample Feature Dataset
	4.4 Accessing the Server

	5 Evaluation
	5.1 Verification of the Feature Extraction Process
	5.2 Application (APK) Validation
	5.3 Runtime Efficiency of Tool Kit and API
	5.4 Usability Based on Previous Works
	5.5 Runtime Efficiency Assessment

	6 Limitations
	7 Conclusion
	A Identifying Relevant Features Used
	References

