
If I Had a Million Cryptos: Cryptowallet
Application Analysis and a Trojan

Proof-of-Concept

Trevor Haigh, Frank Breitinger(B), and Ibrahim Baggili

Cyber Forensics Research and Education Group (UNHcFREG),
Tagliatela College of Engineering University of New Haven,

West Haven, CT 06516, USA
thaig1@unh.newhaven.edu, {FBreitinger,IBaggili}@newhaven.edu

Abstract. Cryptocurrencies have gained wide adoption by enthusi-
asts and investors. In this work, we examine seven different Android
cryptowallet applications for forensic artifacts, but we also assess their
security against tampering and reverse engineering. Some of the biggest
benefits of cryptocurrency is its security and relative anonymity. For
this reason it is vital that wallet applications share the same proper-
ties. Our work, however, indicates that this is not the case. Five of the
seven applications we tested do not implement basic security measures
against reverse engineering. Three of the applications stored sensitive
information, like wallet private keys, insecurely and one was able to be
decrypted with some effort. One of the applications did not require root
access to retrieve the data. We were also able to implement a proof-
of-concept trojan which exemplifies how a malicious actor may exploit
the lack of security in these applications and exfiltrate user data and
cryptocurrency.

Keywords: Cryptowallet · Cryptocurrency · Bitcoin · Coinbase
Android

1 Introduction

The popularity of cryptocurrencies like Bitcoin and Ethereum exploded in 2017;
more and more people are buying into digital currencies. Managing digital cur-
rencies requires software to buy, sell and transfer digital coins. This software is
commonly known as a cryptowallet and is available for all major mobile plat-
forms or online. Similar to a bank account, it is essential that these wallets are
secure which is not always the case. For instance, in December 2017 “thieves
stole potentially millions of dollars in bitcoin in a hacking attack on a cryp-
tocurrency company [named NiceHash]. The hack affected NiceHash’s payment
system, and the entire contents of the company’s bitcoin wallet was stolen” [14].
While this is certainly one of the more significant incidents that has happened

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

F. Breitinger and I. Baggili (Eds.): ICDF2C 2018, LNICST 259, pp. 45–65, 2019.

https://doi.org/10.1007/978-3-030-05487-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05487-8_3&domain=pdf
https://doi.org/10.1007/978-3-030-05487-8_3

46 T. Haigh et al.

with approximately $60 million dollars stolen, there are other examples, e.g.,“an
unidentified thief has reportedly stolen more than $400,000 in Stellar Lumens
after hacking the digital wallet provider BlackWallet” [10]. Another 5 hacks are
highlighted by [7].

Besides online cryptowallets, there are also offline applications that one can
install on personal devices. For instance, ikream.com1 lists 5 crypowallets for Mac
OS X: Electrum, Exodus, Jaxx, Coinbase and Trezor. Most of these applications
also have a Windows version and are available for Android as well as iOS.

In this paper we examine seven cryptowallet applications for Android – Coin-
base, Bitcoin Wallet, Xapo, Mycelium, Bitpay, and Coinpayments. The goal of
this research is to discover forensic artifacts created by applications through
the analysis of persistent data stored on the device as well as through applica-
tion analysis (source code analysis) of each application. Our work provides the
following contributions:

– The robustness assessments showed that several application use outdated
security practices and thus are not protected against reverse engineering and
tampering.

– The artifact analysis showed that several applications store sensitive infor-
mation (e.g., private keys) as well as unencrypted data (e.g., passwords) on
the device.

– We describe a proof-of-concept Trojan attack that exploits weaknesses found
in one of the applications.

The structure of this paper is as follows: The upcoming Sect. 2 discusses
previous and related work. The methodology is presented in Sect. 3. The heart
of this paper is Sect. 4 which presents our findings followed by Sect. 5 which
presents the proof-of-concept trojan. The last sections highlight future work and
conclude the paper.

2 Related Work

In the related work section we first briefly present the technologies behind Cryp-
tocurrency followed by the state of the art of Android artifact acquisition in
Sect. 2.2. In Sect. 2.3 we summarize the literature for reverse engineering Android
applications. The last section briefly discusses cryptowallet analysis.

2.1 Blockchain Technology

The blockchain is a decentralized, public ledger of all transactions that have
been executed [17]. Because of its distributed and public nature, users do not
have to put trust in a third-party (e.g. a bank). Anyone can download the entire

1 https://www.ikream.com/2018/01/5-best-bitcoin-wallet-mac-os-x-26068
(last accessed 2018-05-08).

http://www.ikream.com
https://www.ikream.com/2018/01/5-best-bitcoin-wallet-mac-os-x-26068

If I Had a Million Cryptos: Cryptowallet Application Analysis 47

blockchain and sites like https://blockchain.info/ allow people to search the Bit-
coin blockchain for specific transactions.

Blockchain relies on encryption in order to function where transactions are
performed using public/private key pairs to verify if they are authorized by
the owner of the wallet [13]. The biggest security challenge of a wallet appli-
cation is how the keys are managed. If private keys are stored insecurely, then
attackers can obtain them and thus steal all of the currency associated with that
wallet. Because of this, wallet applications are almost always the focus of attacks
rather than the blockchain itself. In fact, it is practically impossible to attack
the blockchain directly because in order to steal one Bitcoin, its entire history
would have to be rewritten on the publicly viewable blockchain [18].

The way wallets are managed differs depending on the wallet itself. Some
applications (e.g., Bitcoin Wallet2) store the information only on the physical
device. If the device is lost or damaged, there is no way to recover any cur-
rency associated with these wallets (in this case it is highly recommended to
have backups). Other applications transfer the information to online servers,
like Coinbase3. In this case, users access their wallets via a username and pass-
word created for the application. Another approach is seen in applications like
Electrum4 which stores the wallet on the device but then allows for the recovery
of the wallet via a series of random words that was used to generate the keys.

2.2 Android Artifact Acquisition

Much research has been conducted on Android artifact analysis and therefore we
selected some from different application categories to provide an overview. For
instance, [20] focused on the analysis for social media applications like oovoo and
was able to show that many do not use encryption. They were able to recover
images as well as messages. [9] and [12] focused on GPS geodata from various
applications on an Android device and demonstrated that applications like Waze
provide a lot of helpful information for investigators. Other work focused on
extracting media files from encrypted vault applications [21] where the Authors
found significant vulnerabilities in 16 Vault applications.

While applications are very different, the approach for obtaining data the
researchers took was similar. In referenced work, the researchers created logical
copies of the data using the Android Debug Bridge5 (ADB). ADB is a command
line tool for Android that allows for the transfer of files to and from a connected
Android device to a forensic workstation via a USB connection or Wi-Fi (work-
station and Android device need to be on the same Wi-Fi). The data that can be
pulled with ADB is limited by the permission level. For instance, for an unrooted
phone, one can only access files viewable by the user, such as Documents, Down-
loads, or files in external storage. To access application specific data, ADB must
2 https://wallet.bitcoin.com/ (last accessed 2018-05-08).
3 https://www.coinbase.com/?locale=en-US (last accessed 2018-05-08).
4 https://electrum.org/ (last accessed 2018-05-08).
5 https://developer.android.com/studio/command-line/adb.html (last accessed 2018-

05-08).

https://blockchain.info/
https://wallet.bitcoin.com/
https://www.coinbase.com/?locale=en-US
https://electrum.org/
https://developer.android.com/studio/command-line/adb.html

48 T. Haigh et al.

have root access (the phone needs to be rooted). Thus, having root access is
generally required to access all (most useful) data, such as application folders or
stored preference files. While there are many methods to obtain root access on a
device, such as those described by [8], they vary wildly depending on the device,
Android version, and carrier. Generally, newer devices are becoming more and
more difficult to obtain root access on.

Another method to obtain application data without root permission is to
backup the application data using ADB. The backup can then be decompressed
and analyzed on the forensic workstation [4]. This method still requires physical
access to the device, though, in order to obtain the backup and application
developers can prevent their application data from being backed up via a flag in
the application’s manifest file.

While most methods, like ADB, utilize software to recover artifacts, there are
also hardware solutions. For instance, one solution is to use specialized equipment
to detach the flash memory chip from the device’s PCB [6]. Naturally, this is a
much more invasive process and the device is very unlikely to be restored to its
original condition.

2.3 Reverse Engineering Android Applications

Reverse engineering of Android Applications can be done both statically and
dynamically. Most work is done by statically analyzing application code. This
is an easier process to automate as it does not require an environment in which
the application has to execute in. [1] proposed an automated static analyzer that
inspects seemingly harmless applications for malicious functions.

Static analysis is usually performed using tools such as Apktool6 and
Dex2Jar7 to decompile the code into Smali or Java, respectively. Smali is an
‘assembly-like’ language for Dalvik, Android’s Java VM implementation. In most
cases the translation from dex to Java is not always perfect so an understanding
of Smali is necessary to get full knowledge of the code.

The smali code and other files (such as the manifest or shared preferences)
can be modified to change the operation of the application. Many third party
application markets contain legitimate applications that were modified to add
malware or advertisements [22]. Static analysis can be used to detect these mod-
ified applications. [16] presented a machine learning algorithm that uses static
analysis to classify Android applications and detect malware.

Dynamic analysis is performed by running the application on the device
and hooking into the process with a debugging tool, such as Android Studio8

with the smalidea plugin9. Dynamic analysis has the advantage of being able
to set breakpoints within the code as well as view/manipulate variable values.
The downside is that not all code paths may execute. Some applications may

6 https://ibotpeaches.github.io/Apktool/ (last accessed 2018-05-08).
7 https://sourceforge.net/projects/dex2jar/ (last accessed 2018-05-08).
8 https://developer.android.com/studio/index.html (last accessed 2018-05-08).
9 https://github.com/JesusFreke/smali/wiki/smalidea (last accessed 2018-05-08).

https://ibotpeaches.github.io/Apktool/
https://sourceforge.net/projects/dex2jar/
https://developer.android.com/studio/index.html
https://github.com/JesusFreke/smali/wiki/smalidea

If I Had a Million Cryptos: Cryptowallet Application Analysis 49

also employ methods to hinder dynamic analysis attempts [15] and change their
behavior accordingly. Unlike static analysis, dynamic analysis is more difficult to
automate; some sample tools that support the automation of dynamic analysis
are TaintDroid [5] or Crowdroid [2]. However, in many cases dynamic analysis
still has to largely be conducted manually for each application.

2.4 Cryptowallet Application Analysis

Most research into the analysis of cryptowallet applications has been performed
on the desktop (Windows) environment. [3] analyzed a machine running two
wallet applications as well as a Bitcoin mining application and was able to recover
evidentiary artifacts linking Bitcoind transactions to that machine. Similarly, [19]
analyzed the process memory of two other wallet applications and were able to,
in certain cases, recover private keys and seeds allowing seizure of funds from
the wallets.

Limited research has been conducted regarding cryptowallet applications in
the mobile space. [11] checked for forensic artifacts in four different applications
for Android and iPhone, Android being the most relevant as far as this paper
is concerned. The applications were tested on both an emulator and a physi-
cal device. They discovered some forensic artifacts leftover from cryptocurrency
transactions made with those wallet applications. Cryptocurrency has exploded
since this research was completed, so there are many new applications that have
become popular and were not examined in the previous work. Furthermore, the
researcher was also solely focused on finding forensic evidence of the wallets
rather than also evaluating the security of the applications.

3 Methodology

This section discusses how each application was chosen as well as which methods
were used to analyze the applications and their data. For testing, we utilized a
Samsung Galaxy S3 Active running Android version 4.4 (KitKat) and a lap-
top running Linux to retrieve and analyze the data. There was no particular
reason for the device except that we possessed jail-broken devices. Initially, the
device was running Android version 5.0, however it had to be downgraded to
4.4 in order to obtain root level access on that particular model. As of writ-
ing, Android version 4.4 still has over a 10% market share10. Furthermore, our
research focused on the applications rather than the operating system, thus we
deemed it acceptable.

3.1 Application Setup

For this work, we focused on the Android operating system. Next, we chose
applications based on the number of downloads. As a result, we analyzed the
seven applications listed in Table 1.
10 https://developer.android.com/about/dashboards/ (last accessed 2018-05-08).

https://developer.android.com/about/dashboards/

50 T. Haigh et al.

Table 1: Chosen Android cryptocurrency applications ordered by number of
downloads.

Application Package Name Downloads Version

1 Coinbase com.coinbase.android 5m+ 5.0.5
2 Binance com.binance.dev 1m+ 1.4.5.0
3 Bitcoin Wallet de.schildbach.wallet 1m+ 6.23
4 Xapo com.xapo 1m+ 4.4.1
5 Mycelium com.mycelium.wallet 500k+ 2.9.12.2
6 Bitpay com.bitpay.wallet 100k+ 3.15.2
7 Coinpayments net.coinpayments.coinpaymentsapp 50k+ 1.0.0.6

After downloading, each application was executed and set up. Note, all appli-
cations were installed in parallel. While most applications did not require to
create a user account and manage the wallet locally, Coinbase and Xapo forced
us to register an account as information is stored online.

3.2 Data Acquisition

Before acquiring the data from the phone, we started each application and per-
formed basic setup operations such as creating an account for applications that
required it or setting up passcodes to access the wallet. Next, we utilized ADB
to download the data (the APK file and the Application data folder) for each
application.

APK File is the application itself and can be found in /data/app/<package
name> (where <package name> is the package name of the application as listed
in Table 1). The application is important because it contains the compiled
source code and other resources. We needed the APK file in order to perform
code decompilation and analysis.

Data Folders can be found in /data/data/<package name>. This folder is cre-
ated for each application and is usually only accessible by the application
itself. Inside the folder one can find items such as settings files and databases.
Any existing artifacts would most likely be found in these folders.

Note, to gain access to these folders and to pull the data, the phone has to
be rooted. In order to automate the process we created a Python script that
utilized monkeyrunner11 and ADB to pull the data folders for each application.
Monkeyrunner is an API that allows a program to control an Android device
or emulator. By using monkeyrunner, we were able to automate performing

11 https://developer.android.com/studio/test/monkeyrunner/index.html
(last accessed 2018-05-08).

https://developer.android.com/studio/test/monkeyrunner/index.html

If I Had a Million Cryptos: Cryptowallet Application Analysis 51

shell commands on the Android device. The process of pulling the data was
accomplished in two steps.

Step 1: The data is copied from /data/data to /sdcard/data using the
command su -c cp -R /data/data/<package name> /sdcard/data/
<package name>. This is done because ‘sdcard’ can be accessed without root
access, unlike ‘data’.

Step 2: The data is pulled from the device using the Python script in List-
ing 5 in Appendix A. As shown, the command adb pull /sdcard/data/
<package name> is run using the subprocess package. The command copies
the data folders from the device to the forensic workstation. After completion,
the script cleans up by deleting /sdcard/data/<package name>.

3.3 Creating Transactions

In order to populate the applications with artifacts, transactions were performed
for/from each application. Specifically, we purchased 0.01255964 BTC ($100
worth at the time of purchase) and passed it from one application to another.
This ensured that each application has at least one incoming and one outgoing
transaction logged.

3.4 Analysis

After extracting the data from the device, we analyzed both the artifacts and
the application source code where the primary focus was on the artifacts. Code
analysis was done to assess the general security of the applications.

Artifact Analysis was performed manually on the files extracted from the device.
Notable files were XML preference files and database files where we especially
focused on XML files (viewed using a text editor) and the SQLite database files
(viewed using a SQLite database browser12). When analyzing the extracted data,
we focused on finding the following items:

Wallet Private Keys are probably the most sensitive and critical artifacts man-
aged by these applications as the entire purpose of the application is to man-
age and store the private key(s) securely. Finding the private key is essen-
tially the ‘golden ticket’ as it can be used to siphon all funds from the wallet.
Therefore, being able to obtain the private keys is a sure sign of an insecure
application.

Wallet Seed is similar to the private keys in that they both lead to direct control
of the wallet. Many wallet managers use a list of words, or seed, to generate
the key pair. This exists as a recovery mechanism and the idea is that a user
would write down the list of words in a secure place and use them to recover
the wallet by generating the key pair again. Because of this, if we are able to
obtain the wallet seed, we could recover the wallet ourselves and control the
funds.

12 http://sqlitebrowser.org (last accessed 2018-05-08).

http://sqlitebrowser.org

52 T. Haigh et al.

Transaction History can be important from a forensic investigation point of view.
While the blockchain is public, it may be difficult to find exactly where the
transactions related to the suspect are located. Being able to pull transaction
history directly from the wallet application, without needing the login cre-
dentials could be a great boon in an investigation. For this reason, we focused
on trying to pull as much transaction information as possible.

Application-specific data including passwords, PINs, etc. should be managed
securely in any application, especially in ones that manage money. An appli-
cation could store and manage the keys securely but if they store the user’s
login credentials in plaintext, for example, then we can simply use that to log
into an account, barring any two-factor authentication.

Code Analysis was performed to assess the general security/resilience of the
applications by looking for common reverse engineering countermeasures. Specif-
ically, we looked for the following three properties:

Code obfuscation is the act of purposely making your code difficult to read and
understand. For Android applications this means renaming class and variable
names by 1–3 letter names (e.g., ‘aaa’, ‘aab’, etc.) which is always done using
software. For instance, Google’s Android Studio has built-in options to obfus-
cate code using Proguard13,14. There are also commercial obfuscation tools
that such as Dexguard15 that come with more capabilities.
Code obfuscation is important as it slows down reverse engineering attempts.
Heavily obfuscated code is difficult and time-consuming to navigate (and can
even break some code analysis tools). It should be noted that obfuscation does
not inherently prevent reverse engineering, and security through obscurity is
generally not a tactic that should be relied on. Code obfuscation was tested
by decompiling each application using JEB16 and viewing the code.

Signature verification is a method of ensuring an application has not been
tampered by a third party. Before Android applications are installed on a
device, they must be cryptographically signed by a developer. Any modifi-
cations made to the application would also change the signature (assuming
the attacker does not have access to the developer’s private key). A common
security practice is to verify that the installed application’s signature matches
the signature of the release version and disallow any operations if it does not.
Without this step, applications are vulnerable to modifications with malicious
code. An example of this is provided in Sect. 5 where we created a modified
version of Coinbase that steals users’ credentials.
Signature verification was tested by decompiling each application with Apk-
tool, recompiling it, and signing it with our own key. The recompiled appli-
cation was then installed on the device using ADB and executed to ensure it

13 https://www.guardsquare.com/en/proguard (last accessed 2018-05-08).
14 Note, Proguard is mostly used to minimize and optimize code and offers minimal

protection against reverse engineering.
15 https://www.guardsquare.com/en/dexguard (last accessed 2018-05-08).
16 https://www.pnfsoftware.com (last accessed 2018-05-08).

https://www.guardsquare.com/en/proguard
https://www.guardsquare.com/en/dexguard
https://www.pnfsoftware.com

If I Had a Million Cryptos: Cryptowallet Application Analysis 53

functions normally. Since we do not have access to the developers’ keys, our
signed APKs will have a different signature than the official versions.

Installer verification ensures that the application was installed from a legitimate
source. When installed, each application records the package name of the
application that installed it (e.g., com.android.vending is the package name
for the Google Play Store). Because a malicious version of the application
could not be installed from the Google Play Store, it must be installed from
another source. Assuming the legitimate version is only distributed on the
Play Store, the application can be made to only function if the Google Play
Store is its installer. This security method is generally uncommon as it pre-
vents the ‘sideloading’ of applications which may be a legitimate method of
obtaining the application.
The installer verification was tested the same way as ‘signature verification’,
by redeploying the application to the phone and executing it. Any installer
verification should fail as the applications’ installer was ADB and not the
Play Store.

3.5 Manipulation of an Application

The smali code of an application can be edited to perform a wide array of actions
such as removing a pay wall or enabling additional features. A more nefarious
option is to include malware in the application that sends user information to
a remote server. Without any of the security methods mentioned above, an
altered application would function normally and the user would be unaware of
the malware on their device. To illustrate how an attack like this works, we
constructed a proof-of-concept trojan version of Coinbase.

Note, the biggest challenge of these types of attacks is actually distributing
the malware. Without the developer’s private key, an attacker cannot upload
a malicious version of the application to the Play Store (all applications need
to be signed). If this signature is not valid, then Google will reject the upload.
Thus, the only way to get malware installed is by social engineering users into
‘side-loading’17 the application which was not part of this research paper.

4 Findings

In this section, we discuss findings for each application as well as assessing
whether they implement any of the security features mentioned previously.

4.1 Coinbase

Coinbase the most popular application we analyzed with over 5 million down-
loads which uses the cloud; keeps most of the wallet data, including the private
17 Side-loading is installing an application directly rather than through a market. This

usually requires an additional option to be enabled on the device before the OS will
allow the installation.

54 T. Haigh et al.

keys, on their servers. This means that the security of the wallet is primarily
dependent on their server security, rather than the physical device storage.

Focusing on the application revealed that Coinbase is not obfuscated. This
made modifying the code quite trivial as we show later in our trojan proof of
concept (see Sect. 5). The application also does not implement any signature or
installer verification which allowed us to resign the APK, install it with ADB,
and run it without any issues. Additional findings:

Plaintext Password was found in the shared prefs XML file which contains
various options and preferences for the application. The account password
only seems to exist in the preferences if the account is created on the device.
If the application is uninstalled and reinstalled, or one signs in to an existing
account rather than creating a new one, then the password is no longer shown.

PIN Enabled is a boolean variable that also exists in the shared preferences.
This is critical as changing the value from ‘true’ to ‘false’ disables the PIN.
However, it requires a text editor with root access installed on the device, so
it may not be a practical attack vector.

Transaction and Account Databases were found containing data items such as
transaction amounts, account ids, and account balances. After performing
some transactions, the database was populated with plaintext data so even if
you cannot get into the account, you can still view the full transaction history.
Note, this information is also stored in the blockchain but would require an
investigator to know the public key of the wallet (or the transaction ID).

4.2 Binance

Like Coinbase, Binance does not store sensitive information on the device but
on their servers, e.g., Binance users can access their wallets from any device
through their website or mobile application. Unlike Coinbase, though, Binance
does not store any transaction information on the physical device. This was
confirmed by testing the application without Internet access. It fails to retrieve
any transaction history or wallet information indicating that the information is
pulled from the server on the fly rather than stored on the local device.

Code wise, Binance is obfuscated using Proguard. The application verifies its
signature and crashes when trying to open an incorrectly signed version. There
is no installer verification.

4.3 Bitcoin Wallet

Bitcoin Wallet is built on Bitcoinj18, an open source, Java Bitcoin implemen-
tation that aids the creation and management of Bitcoin wallets. Bitcoinj uses
Google’s protocol buffer to serialize the wallet data. Thus, it is trivial to read the
wallet data using custom or pre-existing software, e.g., wallet-tool. Furthermore,
Bitcoinj includes tools to dump wallet data which we utilized to view the data.

18 https://bitcoinj.github.io/ (last accessed 2018-05-08).

https://bitcoinj.github.io/

If I Had a Million Cryptos: Cryptowallet Application Analysis 55

By using Bitcoinj’s wallet-tool, we were able to find the private keys and
seed associated with Bitcoin wallet as well as the complete transaction history.
Note, Bitcoinj does have the option of encrypting the wallet with a password,
but Bitcoin Wallet does not implement this feature.

4.4 Mycelium

Mycelium stores its transaction data in a SQLite database. Unfortunately tra-
ditional SQLBrowsers were fruitless as most of the data is stored in binary.
However, the structure of the table looks like it is storing key-value pairs, i.e.,
a table with two columns where one is the key (tkey in the following) and two
is the value. To pull out the data from the database, we implemented a Python
script and converted the data into different encodings (e.g., string, hex) until
we realized that most of the data in the value column is encrypted. To identify
what was stored in the database, we analyzed the code that stores/reads from
the database and following it backwards until the tkey for the desired value was
found. Our analysis revealed that besides encrypted data, it also contains unen-
crypted data. For instance, the transaction ID was found in cleartext which can
be used to look up the transaction on a Bitcoin blockchain explorer. Additionally,
we found that AES encryption was used.

An overview of the encryption process is depicted in Fig. 1. Mycelium uses
a randomly generated encryption key named ekey to encrypted sensitive strings
(e.g., wallet master seed, private keys). The encrypted information is stored in
the database. The ekey is then encrypted using kkey and stored in the database.
While normally kkey should be generated from a user password, the developers
use a hardcoded string to generate this key.

Using this method, we determined that the tkey for the ekey was a single byte
(‘00’). It was also the first entry in the table. We continued using this method
to find that the table contained other sensitive information, e.g., private keys or
wallet master seed.

In order to decipher the data, we modified the open-source code to decrypt
the data. In detail: we created a Java project using Mycelium’s encryption classes
as well as the class for handling master seed creation. Our own class was then
created which reads from the SQLite database and called the necessary Mycelium
functions to generate the default encryption key and decrypt the data. The
MasterSeed class has a function to generate a seed from the bytes decrypted
from the database. The resulting object contained the seed words which could
be used to recreate the wallet on another device.

It is noteworthy that the application has a method of preventing this attack,
by generating the key encryption key with a user-provided password rather
than one generated from a hardcoded string. This password feature exists in
the code, but is not used in the current official version of the application. Once
this changes, it will be impossible to decrypt the content (if the user has a strong
password that hinder bruteforce attacks).

56 T. Haigh et al.

Encryption Key
(ekey)

Key Encryption Key
(kkey)

 AESWallet Master Seed,
Private Key, etc.

 AES

SQLite
Database

Ciphertext

Key

Input

Key

Ciphertext

Input

1

2

3

Cleartext

Plaintext Data
(tkeys, transaction IDs, etc.)

Fig. 1: Current work flow for storing information in mycelium.

4.5 Xapo

Like Coinbase and Binance, Xapo also stores the wallet private keys in the cloud
and not on the physical device. It does, however, store a plaintext database
containing transaction information, much like Coinbase.

As far as the code goes, Xapo was obfuscated to the point where Apktool
could not decompile it without errors. JEB was able to view the code, but was
not able to write the files without error. Because of this, we could not recompile
and resign the application to check for signature verification.

4.6 Bitpay

Bitpay differs from the other applications mentioned so far in that it was devel-
oped using Cordova. Cordova is a platform that allows for the development of
mobile applications using JavaScript and HTML. The weakness of this platform
is that the source code is included in the APK file so it can be viewed by simply
unzipping the APK file; no particular software needed. The source code is not
obfuscated and also does not implement any signature or installer verifications.
Furthermore, we found the following artifacts in Bitpay’s data folders:

Wallet Keys were found in a file com.bitpay.wallet/files/profile. This file
also contained many key pairs including API keys, request keys, and AES
encryption keys. In reality, only the wallet private key is needed to steal
funds, but all of the other keys exemplify the lack of security implemented
by this application.

Transaction History was found in the file com.bitpay.wallet/files/
txsHistory -<wallet-id>. This file contained transaction information
including the transaction id, amount, address of the sender, and time of the
transaction.

If I Had a Million Cryptos: Cryptowallet Application Analysis 57

4.7 Coinpayments

Besides Bitpay, Coinpayments was also developed using Cordova and suffers
from the same weakness. Furthermore, Coinpayments allows the user to backup
the application data which can be used by someone with physical access to the
device to access the application data by backing it up and decompressing it on
a forensic workstation19. Note, this procedure does not require root access. The
following artifacts were found in Coinpayments’ data folders:

API Public/Private key pair found in a database in net.coinpayments.
coinpaymentsapp/app webview/databases/file 0. With access to these
keys, it may be possible to send requests as the user and transfer funds from
their wallet.

Passcode in plaintext is found in the same database as the public/private key
pair. This passcode is used to access the application and with it, an attack-
er/investigator could enter the application and control the funds in the wallet.

4.8 Summary

To summarize, Bitcoin Wallet, Coinpayments, and Bitpay show a complete lack
of basic security practices such as encrypting sensitive wallet or application data.
It is also noteworthy that 6 of the 7 applications store transaction history on
the device, even if they store other wallet data on their servers. Based on our
findings, we rank the applications from most to least secure20:

1. Binance does not store any information on the physical device. Application
code is obfuscated and signature verification is performed.

2. Xapo does not store wallet private keys, but does store transaction history.
The code is heavily obfuscated and even crashes Apktool when trying to
disassemble it.

3. Mycelium stores all the data on the device, but it is encrypted. It is currently
possible to decrypt the data, however a potential solution for this exists in
the code; it is just not implemented.

4. Coinbase does not store wallet private keys on the device but it does store
the transaction history. There is also a specific scenario where a plaintext
password can be obtained.

5. Bitcoin Wallet also to obtain all wallet information, including private keys,
by using an open source tool to dump the wallet data. It is possible to make
this more secure by requiring a password to dump private keys but that is
not implemented.

6. Bitpay provides next to no security as wallet keys are stored in plaintext.
Transaction history for the wallet can also be found.

19 https://nelenkov.blogspot.ca/2012/06/unpacking-android-backups.html
(last accessed 2018-05-08).

20 When ranking these applications, server-side security is not considered. This research
was only concerned with what data, if any, is present on the physical device.

https://nelenkov.blogspot.ca/2012/06/unpacking-android-backups.html

58 T. Haigh et al.

p r i va t e void l o g i n () {
i f (! U t i l s . isConnectedOrConnecting (((Context) t h i s))) {

Ut i l s . showMessage (((Context) t h i s) , 0x7F0801B0 , 1) ;
}
e l s e {

t h i s . showProgress (t rue) ;
t h i s . mReferrerId = PreferenceManager .

g e tDe fau l tSharedPre f e r ence s (((Context) t h i s)) . g e tS t r i ng (”
r e f e r r a l ” , nu l l) ;

t h i s . getAuthTypeForLogin (t h i s . mEmailView . getText () .
t oS t r i ng () , t h i s . mPasswordView . getText () . t oS t r i ng () , t h i s .
m2faToken , t h i s . mReferrerId , new AuthCallback () {

. . .

Listing 1: Application code that handles the user’s email and password.

7. Coinpayments stores wallet keys in plaintext. Additionally, even if the user
locks the application with a passcode, that passcode is stored in a plaintext
database and easily retrieved.

5 Trojan Proof-of-Concept

To illustrate how an insecure reverse engineered wallet may be exploited, we
constructed a proof-of-concept trojan for Coinbase that steals user login creden-
tials. This type of attack does not only apply to Coinbase and in many cases the
same code used in this attack may be used for other applications. This section
details how the trojan was created.

Locating the Data to Steal. The purpose of this trojan is to steal the users’ data
and upload it to a remote server. In the case of Coinbase, the ideal data to
steal would be the user’s e-mail and password associated with the application.
Coinbase does not store the wallet private keys on the local device but rather
on the Coinbase servers. Because of this, the most useful data to an attacker is
the user’s login information. With this, an attacker gains full access to the user’s
account and thus can steal the cryptocurrency in the wallet. It should be noted
that Coinbase offers two-factor authentication which may prevent an attacker
from logging into the account. This additional security is opted-into, so not all
users will have it enabled. Even if two-factor authentication is enabled, other
user data may be exfiltrated such as the user’s credit card details.

To locate where the e-mail and password is used in the code, we decompiled
the application to the base smali code. We used JEB for this, however, it can
be conducted with free tools mentioned earlier in this paper such as Apktool
and Dex2Jar. With no code obfuscation, locating the relevant code was straight

If I Had a Million Cryptos: Cryptowallet Application Analysis 59

forward. The class titled ‘LoginActivity’ handles the login process. In this class
we found a login() method which pulls the e-mail and password from the GUI
and submits it to the authentication method. We chose this location to insert
our code to steal the user’s credentials. The advantage of this location is that
the application already does the job of acquiring data from the GUI so all we
have to do is copy the values and send them to our remote server.

Listing 1 shows the code in the application that steals the user’s e-mail and
password from the GUI. This snippet shows how tools like JEB and Dex2Jar

. c l a s s pub l i c Lcom/ co inbase / android / s i g n i n / uploader ;

. super Ljava/ lang /Object ;

. implements Ljava/ lang /Runnable ;

. f i e l d pub l i c u r l s t r i n g : Ljava/ lang / St r ing ;

. method pub l i c con s t ruc to r < i n i t >(Ljava/ lang / St r ing ;)V
. l o c a l s 3
invoke−d i r e c t {p0 } , Ljava/ lang /Object;−>< i n i t >()V

iput−ob j e c t p1 , p0 , Lcom/ co inbase / android / s i g n i n / uploader
;−>u r l s t r i n g : Ljava/ lang / St r ing ;

return−void
. end method

. method pub l i c run ()V
. l o c a l s 10

i ge t −ob j e c t v2 , p0 , Lcom/ co inbase / android / s i g n i n / uploader
;−>u r l s t r i n g : Ljava/ lang / St r ing ;
new−i n s t ance v8 , Ljava/net /URL;
invoke−d i r e c t {v8 , v2 } , Ljava/net /URL;−>< i n i t >(Ljava/ lang /
St r ing ;)V
invoke−v i r t u a l {v8 } , Ljava/net /URL;−>openConnection () Ljava
/net /URLConnection ;
move−r e su l t −ob j e c t v9

invoke−v i r t u a l {v9 } , Ljava/net /URLConnection;−>
getInputStream () Ljava/ i o / InputStream ;

return−void

. end method

Listing 2: uploader.smali – A thread class that opens the given URL.

60 T. Haigh et al.

can automatically translate the smali code into Java. While not perfect, the Java
code is much easier and faster to read and understand.

Editing the Smali Code. After locating the critical section of the code, we imple-
mented the malicious part. The attack consists of uploading the users’ e-mail
and password via a GET request to a remote server. To do this, we first cre-
ated a thread class in smali that handles the opening of the URL. This is done
because HTTP requests cannot be performed on the main thread of an Android
application. The code for this thread is contained in the ‘uploader.smali’ file and
is shown in Listing 2. Note, this snippet could theoretically be reused for any
application to open a URL. The only required change is the path to the class
(/coinbase/android/signin).

After the thread class is created and added to the application, we then needed
to call it while the user attempts to login. The snippet in Listing 3 was inserted
into the smali file. It is important to ensure that any of the registers used in
the new code will not impact the following code as we want the application to
function normally with our changes. Our proof of concept constructs a string with
the URL and invokes the thread class we created previously to open the URL.
The server then reads the e-mail and password from the GET request and logs
it to a file. Without analyzing network traffic, the user would have no idea that
anything was stolen. Since the request is done asynchronously in another thread,

#Create URL s t r i n g (v1 = email , v2 = password)
const−s t r i n g v0 , ” http :// x . x . x . x :8000/ upload ?u=”
invoke−v i r t u a l {v0 , v1 } , Ljava/ lang / St r ing ;−>concat (Ljava/ lang

/ St r ing ;) Ljava/ lang / St r ing ;
move−r e su l t −ob j e c t v0
const−s t r i n g v7 , ”&p=”
invoke−v i r t u a l {v0 , v7 } , Ljava/ lang / St r ing ;−>concat (Ljava/ lang

/ St r ing ;) Ljava/ lang / St r ing ;
move−r e su l t −ob j e c t v0
invoke−v i r t u a l {v0 , v2 } , Ljava/ lang / St r ing ;−>concat (Ljava/ lang

/ St r ing ;) Ljava/ lang / St r ing ;
move−r e su l t −ob j e c t v0

#Open URL
new−i n s t ance v8 , Lcom/ co inbase / android / s i g n i n / uploader ;
invoke−d i r e c t {v8 , v0 } , Lcom/ co inbase / android / s i g n i n / uploader

;−>< i n i t >(Ljava/ lang / St r ing ;)V
new−i n s t ance v9 , Ljava/ lang /Thread ;
invoke−d i r e c t {v9 , v8 } , Ljava/ lang /Thread;−>< i n i t >(Ljava/ lang /

Runnable ;)V
invoke−v i r t u a l {v9 } , Ljava/ lang /Thread;−> s t a r t ()V

Listing 3: Injected code into LoginActivity.smali to construct the URL and call
uploader.smali.

If I Had a Million Cryptos: Cryptowallet Application Analysis 61

there is no perceptible change in performance and the application continues to
function normally.

6 Conclusions and Future Work

In general, the most secure of the applications we tested, Xapo, Binance, and
Coinbase, did not store the wallet private keys locally on the device. This does
not mean that the keys are managed securely on their servers, though, and having
many keys in one location makes these companies larger targets for attacks as
the potential reward for a successful hack is higher. This practice is necessary in
order to deliver the platform-agnostic service they offer (i.e., being able to log
in from anywhere and access your wallet).

Storing keys securely on the client side (within the application) is trickier and
requires secure design. Mycelium almost accomplishes this, and for all practical
purposes they do. The only shortcoming is not implementing a user password
which would solve the problem of technically being able to decrypt the keys as
well preventing someone with access to the device from simply opening up and
using the application. Applications like Bitpay, however, fall on the other end of
the spectrum and store the private keys in plaintext.

From a forensics investigation point of view, it is certainly helpful to know
that transaction information was available for six of the seven applications. Even
if one cannot gain direct control of the wallet, having the transaction history and
public address may help in tracing how funds are being moved around. This is
especially important considering how popular cryptocurrencies are becoming in
the criminal world.

While the scope of this research focused on static analysis, in the future we
would like to examine dynamic analysis of the applications and see what may
be found in memory. While some of the applications securely handle the private
keys by not storing them on the device, it is possible that they could be found
in memory at some point during the application’s execution time.

62 T. Haigh et al.

A Python Script

#!/ usr / bin /python

Pu l l s a l l data from the dev i ce f o r a g iven APK
Run by c a l l i n g ’ monkeyrunner getappdata . py ’

import subproces s
import sys
import getopt
from com . android . monkeyrunner import MonkeyRunner ,

MonkeyDevice

de f main (pkg name=None , apk path=None) :
dev i c e = MonkeyRunner . waitForConnection ()
i f pkg name i s not None :

r e s = pu l l da t a (pkg name . decode (’ ut f −8 ’) . s t r i p () ,
dev i ce)

p r i n t (r e s)
sys . e x i t (2)

i f apk path i s not None :
pkg name = get package name (apk path)
r e s = pu l l da t a (pkg name . decode (’ ut f −8 ’) . s t r i p () ,

dev i ce)
p r i n t (r e s)
sys . e x i t (2)

de f get package name (apk) :
command = ”aapt dump badging ” + apk + ” | grep −oP \”(?<=
package :\ name\=’) [ˆ ’] ∗ \ ” ”
proce s s = subproces s . Popen (command , s h e l l=True , stdout=
subproces s . PIPE)
output , e r r o r = ! p roce s s . communicate ()
i f output == ’ ’ :

sys . e x i t (2)

re turn output

Listing 4: Python script to retrieve application data from device

If I Had a Million Cryptos: Cryptowallet Application Analysis 63

de f pu l l d a t a (pkg name , dev i ce) :
r e s u l t = dev i ce . s h e l l (” t e s t −d /data/data/”+pkg name+” &&
echo ’ t rue ’ | | echo ’ f a l s e ’ ”)
r e s u l t = r e s u l t . s t r i p ()
i f r e s u l t == ’ f a l s e ’ :

r e turn ”The s p e c i f i e d package name does not e x i s t . ”

r e s u l t = dev i ce . s h e l l (’ su −c cp −R /data/data/ ’+pkg name+’
/ sdcard /data/ ’)
i f r e s u l t i s None :

r e turn ” e r r o r ”
command = ”adb pu l l / sdcard /data/”+pkg name
proce s s = subproces s . Popen (command , s h e l l=True , stdout=
subproces s . PIPE)
f o r l i n e in p roce s s . s tdout :

p r i n t (l i n e . decode () . s t r i p ())
p roce s s . s tdout . c l o s e ()
output = proce s s . wait ()
dev i ce . s h e l l (’rm −r / sdcard /data/ ’+pkg name)
re turn output

i f name == ” main ” :
h e l p s t r i n g = ’ monkeyrunner getappdata . py <package name> or
<path to apk> ’

i f l en (sys . argv) < 2 :
p r i n t (”ERROR: Please in c lude the apk path or package

name”)
sys . e x i t (2)

arg = sys . argv [1]

i f arg [−4 :] == ’ . apk ’ :
main (apk path=arg)

e l s e :
main (pkg name=arg)

Listing 5: Python script to retrieve application data from device (cont.)

64 T. Haigh et al.

References

1. Batyuk, L., Herpich, M., Camtepe, S.A., Raddatz, K., Schmidt, A.-D., Albayrak,
S.: Using static analysis for automatic assessment and mitigation of unwanted
and malicious activities within android applications. In: 2011 6th International
Conference on Malicious and Unwanted Software (MALWARE), pp. 66–72. IEEE
(2011)

2. Burguera, I., Zurutuza, U., Nadjm-Tehrani, S.: Crowdroid: behavior based malware
detection system for android. In: Proceedings of the 1st ACM Workshop on Security
and Privacy in Smartphones and Mobile Devices, pp. 15–26. ACM (2011)

3. Doran, M.: A forensic look at bitcoin cryptocurrency. SANS Reading Room (2015)
4. Elennkov, N.: Unpacking android backups, June 2012. https://nelenkov.blogspot.

jp/2012/06/unpacking-android-backups.html
5. Enck, W., et al.: Taintdroid: an information-flow tracking system for realtime

privacy monitoring on smartphones. ACM Trans. Comput. Syst. (TOCS) 32(2), 5
(2014)

6. Hoog, A.: Android Forensics: Investigation, Analysis and Mobile Security for
Google Android. Elsevier, Amsterdam (2011)

7. Khatwani, S.: Top 5 biggest bitcoin hacks ever, November 2017. https://coinsutra.
com/biggest-bitcoin-hacks/

8. Lessard, J., Kessler, G.: Android forensics: Simplifying cell phone examinations
(2010)

9. Maus, S., Höfken, H., Schuba, M.: Forensic analysis of geodata in android smart-
phones. In: International Conference on Cybercrime, Security and Digital Foren-
sics. http://www.schuba.fh-aachen.de/papers/11-cyberforensics.pdf (2011)

10. Mizrahi, A.: Hackers Steal $400k from Users of a Stellar Lumen (XLM) Web
Wallet, January 2018. https://news.bitcoin.com/hackers-steal-400k-users-stellar-
lumen-xlm-web-wallet/

11. Montanez, A.: Investigation of cryptocurrency wallets on IOS and android mobile
devices for potential forensic artifacts (2014)

12. Moore, J., Baggili, I., Breitinger, F.: Find me if you can: mobile GPS mapping
applications forensic analysis & snavp the open source, modular, extensible parser.
J. Digit. Forensics, Secur. Law 12(1), 7 (2017)

13. Narayanan, A., Bonneau, J., Felten, E., Miller, A., Goldfeder, S.: Bitcoin
and Cryptocurrency Technologies: A Comprehensive Introduction. Princeton
University Press, Princeton (2016)

14. Peterson, B.: Thieves stole potentially millions of dollars in bitcoin in a hacking
attack on a cryptocurrency company, December 2017. http://www.businessinsider.
com/nicehash-bitcoin-wallet-hacked-contents-stolen-in-security-breach-2017-12

15. Petsas, T., Voyatzis, G., Athanasopoulos, E., Polychronakis, M., Ioannidis, S.: Rage
against the virtual machine: hindering dynamic analysis of android malware. In:
Proceedings of the Seventh European Workshop on System Security, p. 5. ACM
(2014)

16. Shabtai, A., Fledel, Y., Elovici, Y.: Automated static code analysis for classifying
android applications using machine learning. In: 2010 International Conference on
Computational Intelligence and Security (CIS), pp. 329–333. IEEE (2010)

17. Swan, M.: Blockchain: Blueprint for a New Economy. O’Reilly Media Inc, Newton
(2015)

18. Tapscott, D., Tapscott, A.: Blockchain Revolution: How the technology behind
Bitcoin is changing money, business, and the world. Penguin (2016)

https://nelenkov.blogspot.jp/2012/06/unpacking-android-backups.html
https://nelenkov.blogspot.jp/2012/06/unpacking-android-backups.html
https://coinsutra.com/biggest-bitcoin-hacks/
https://coinsutra.com/biggest-bitcoin-hacks/
http://www.schuba.fh-aachen.de/papers/11-cyberforensics.pdf
https://news.bitcoin.com/hackers-steal-400k-users-stellar-lumen-xlm-web-wallet/
https://news.bitcoin.com/hackers-steal-400k-users-stellar-lumen-xlm-web-wallet/
http://www.businessinsider.com/nicehash-bitcoin-wallet-hacked-contents-stolen-in-security-breach-2017-12
http://www.businessinsider.com/nicehash-bitcoin-wallet-hacked-contents-stolen-in-security-breach-2017-12

If I Had a Million Cryptos: Cryptowallet Application Analysis 65

19. Van Der Horst, L., Choo, K.-K.R., Le-Khac, N.-A.: Process memory investigation
of the bitcoin clients electrum and bitcoin core. IEEE. Access 5, 22385–22398
(2017)

20. Walnycky, D., Baggili, I., Marrington, A., Moore, J., Breitinger, F.: Network and
device forensic analysis of android social-messaging applications. Digit. Investig.
14, S77–S84 (2015)

21. Zhang, X., Baggili, I., Breitinger, F.: Breaking into the vault: privacy, security and
forensic analysis of android vault applications. Comput. Secur. 70, 516–531 (2017)

22. Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, you, get o of my market: detect-
ing malicious apps in official and alternative android markets. In: NDSS, vol. 25,
pp. 50–52 (2012)

	If I Had a Million Cryptos: Cryptowallet Application Analysis and a Trojan Proof-of-Concept
	1 Introduction
	2 Related Work
	2.1 Blockchain Technology
	2.2 Android Artifact Acquisition
	2.3 Reverse Engineering Android Applications
	2.4 Cryptowallet Application Analysis

	3 Methodology
	3.1 Application Setup
	3.2 Data Acquisition
	3.3 Creating Transactions
	3.4 Analysis
	3.5 Manipulation of an Application

	4 Findings
	4.1 Coinbase
	4.2 Binance
	4.3 Bitcoin Wallet
	4.4 Mycelium
	4.5 Xapo
	4.6 Bitpay
	4.7 Coinpayments
	4.8 Summary

	5 Trojan Proof-of-Concept
	6 Conclusions and Future Work
	A Python Script
	References

