
fishy - A Framework for Implementing
Filesystem-Based Data Hiding Techniques

Thomas Göbel(B) and Harald Baier

da/sec - Biometrics and Internet Security Research Group,
Hochschule Darmstadt, Darmstadt, Germany
{thomas.goebel,harald.baier}@h-da.de

Abstract. The term anti-forensics refers to any attempt to hinder or
even prevent the digital forensics process. Common attempts are to hide,
delete or alter digital information and thereby threaten the forensic inves-
tigation. A prominent anti-forensic paradigm is hiding data on different
abstraction layers, e.g., the filesystem layer. In modern filesystems, pri-
vate data can be hidden in many places, taking advantage of the struc-
tural and conceptual characteristics of each filesystem. In most cases,
however, the source code and the theoretical approach of a particular
hiding technique is not accessible and thus maintainability and repro-
ducibility of the anti-forensic tool is not guaranteed. In this paper, we
present fishy, a framework designed to implement and analyze different
filesystem-based data hiding techniques. fishy is implemented in Python
and collects various common exploitation methods that make use of
existing data structures on the filesystem layer. Currently, the frame-
work is able to hide data within ext4, FAT and NTFS filesystems using
different hiding techniques and thus serves as a toolkit of established
anti-forensic methods on the filesystem layer. fishy was built to support
the exploration and collection of various hiding techniques and ensure
the reproducibility and expandability with its publicly available source
code. The construction of a modular framework played an important role
in the design phase. In addition to the description of the actual frame-
work, its current state, its use, and its easy expandability, we also present
some hiding techniques for various filesystems and discuss possible future
extensions of our framework.

Keywords: Anti-forensics · Anti-anti-forensics · Digital forensics
Data hiding · File system analysis · ext4 · NTFS · FAT

1 Introduction

Since there are new cyber attacks and threats on a daily basis, the topic anti-
forensics is now an important part of digital forensics. As cybercrime increases
and attacks become more frequent and sophisticated, research in the field of anti-
forensics is becoming increasingly relevant. In order to gather reliable evidence
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

F. Breitinger and I. Baggili (Eds.): ICDF2C 2018, LNICST 259, pp. 23–42, 2019.

https://doi.org/10.1007/978-3-030-05487-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05487-8_2&domain=pdf
https://doi.org/10.1007/978-3-030-05487-8_2

24 T. Göbel and H. Baier

during a digital forensic investigation, it is important to know about appro-
priate countermeasures and mitigation strategies against anti-forensic methods,
techniques and tools. Current data hiding approaches vary from encryption tech-
niques on different abstraction layers, various steganography types, data contra-
ception methods, hard disk and filesystem manipulation, to network-based data
hiding [1].

In recent years, various taxonomies have been presented that categorize and
summarize known anti-forensic techniques and methods [2–4]. The most recent
taxonomy was proposed by Conlan et al. [1]. Their extended taxonomy distin-
guishes between hiding techniques on the hard disk layer and hiding techniques
on the filesystem layer. In fact, a prominent anti-forensic paradigm is hiding
data on different abstraction layers, e.g., the filesystem layer. As an example
of potential hiding places in the filesystem, the authors mention alternate data
streams and slack spaces.

Various proof of concept implementations and tools for different hiding tech-
niques have been released in the past. These are known to the forensic commu-
nity1. However, in most cases the authorship of the previously published tools
is unknown and the source code or the documentation of the tools is inaccessi-
ble. For this reason, the maintenance of existing anti-forensic projects and the
reproducibility of the source code of available tools are not guaranteed. More-
over, the theoretical approaches of potential hiding techniques in the filesystems
are often not published. In addition, there is usually a separate tool for each
hiding technique that can only be used with a specific filesystem (e.g., the anti-
forensic tool called slacker can only conceal data within NTFS slack space). A
common anti-forensic toolkit that collects various hiding techniques is missing
so far. Furthermore, many of the existing tools are obsolete as they relate to old
filesystems, such as ext2.

The aforementioned problems make research in the field of anti-forensics
considerably more difficult. The inconsistent provision of the tools not only
prevents the validation, reproducibility and further development of the hiding
approaches themselves, but also the possible evaluation of existing forensic suites.
The importance of digital forensic tool testing in order to get authentic, accurate
and reliable evidence is obvious and well known to the members of the digital
forensic community [4]. If the forensic software is unable to detect hidden data
on the medium for some reason, this could cause courts to render judgments
based on inaccurate or incomplete evidence [5]. This scenario gives an attacker
the opportunity to exploit the weakness of forensic software to hide relevant
evidence [6].

1.1 Contribution

The practical, uniform and publicly available implementation of multiple hiding
techniques is advantageous for a later evaluation of forensic software components.

1 http://www.forensicswiki.org/wiki/Anti-forensic techniques#Generic Data Hiding
(last accessed 2018-05-10).

http://www.forensicswiki.org/wiki/Anti-forensic_techniques#Generic_Data_Hiding

fishy - A Framework for Filesystem-Based Data Hiding 25

Therefore, we want to introduce our Python-implemented toolkit and framework
called fishy - filesystem hiding techniques in Python. While [7] presents the
current state of the framework and already implemented hiding techniques, this
paper focuses on the framework architecture, the usage of the framework, and
instructions on how to add further hiding techniques. In this paper, we also
publish the link that refers to our GitHub repository, which includes the full
source code of the framework2.

The toolkit is intended to introduce people to the concept of established
anti-forensic methods associated with data hiding on the filesystem layer. fishy
is able to obfuscate arbitrary data in a way that conventional file access methods
cannot recognize the concealed content. The new framework allows the digital
forensic community to implement, categorize and test filesystem-based data hid-
ing techniques. Since the framework is open source, it can be extended by anyone
and at any time with additional hiding techniques. The modular structure of the
framework allows us (i) to easily implement further custom hiding techniques,
(ii) to manipulate multiple filesystem types with one and the same framework,
and (iii) to add compatibility for additional modern filesystems (e.g., APFS,
Btrfs, ReFS, or XFS) in the future without having to change the basic functions
of the framework. Currently, fishy supports the most popular filesystems: ext4,
FAT and NTFS. The toolkit provides a command line interface that can be used
to hide data. Furthermore, the already implemented hiding techniques can be
used in other projects by importing fishy as a library, e.g., to analyze whether
existing hiding techniques are recognized by common forensic software.

To the best of our knowledge, there is currently no actively maintained toolkit
for filesystem-based data hiding techniques, other than fishy. As fishy aims to
provide an easy to use framework for creating new hiding techniques, this project
might be useful for security researchers and members of the digital forensic
community who are concerned with security issues and data hiding attacks.

In addition to a detailed description of the actual framework architecture,
we present some exemplary hiding techniques and demonstrate in detail how the
framework can be used and how additional hiding techniques can be integrated.

1.2 Structure of the Paper

The rest of this paper is organized as follows: Sect. 2 presents some related work,
especially relevant information about anti-digital forensics and previously pub-
lished tools that allow to manipulate or hide data within filesystems. In Sect. 3,
we explain in detail the core design principles and the modular structure of our
framework. Section 4 gives some background information about the manipulated
filesystem data structures and a brief explanation of all the hiding techniques
that have been implemented so far. In addition, other hiding techniques, which
are currently under development, are mentioned. Section 5 shows how to use
the framework by explaining the typical command structure and the integration
of new hiding techniques into the existing framework. Further technical details

2 https://github.com/dasec/fishy/.

https://github.com/dasec/fishy/

26 T. Göbel and H. Baier

can be found within the module reference in our GitHub repository. It doc-
uments the most important modules and classes, which you might use, if you
want to integrate fishy into your own projects. In Sect. 6, we evaluate the current
state of our implementation and present limitations of the framework. Section 7
concludes the paper and presents further tasks that supplement the work done
so far.

2 Related Work

In this section, we review related work with respect to anti-forensics in general
and previously published data hiding methods and tools for various filesystems
in particular.

2.1 Anti-Forensics

Well known definitions for the term anti-forensics were proposed by Rogers [2]
and Harris [3]. The most recent contribution in the field of anti-forensics is a
paper provided by Conlan et al. [1]. The authors summarized previous defini-
tions and defined the term anti-forensics as “any attempts to alter, disrupt,
negate, or in any way interfere with scientifically valid forensic investigations”.
To better distinguish different anti-forensic techniques, Rogers [2] subdivided
them into the following four categories: (i) data hiding, (ii) artifact wiping, (iii)
trail obfuscation, and (iv) attacks against the computer forensic process and
tools. Conlan et al. [1] expand Rogers’ widely accepted taxonomy by a fifth
category: (v) possible indications of anti-digital forensic activity, and came up
with a more comprehensive and up-to-date taxonomy. Now that a variety of
anti-forensic techniques are known, the authors additionally subdivide the five
categories into several subcategories. This allows a more precise categorization
of new anti-forensics techniques. Hiding techniques, as presented in this paper,
can be assigned to the data hiding category and, in particular, to its subcategory
filesystem manipulation.

2.2 Hiding Data in Filesystems

Hiding data in filesystem metadata was carried out by Anderson et al. [8] along
with the development of a steganographic filesystem. This resulted in StegFS
[9], a steganographic filesystem based on ext2, which allowed people to deny the
existence of hidden data. Meanwhile, many other hiding places are known which
make it possible to conceal sensitive data without affecting the actual function
of the filesystem. In addition to the well-known hiding places, such as file slack
or alternate data streams [10], hiding places in less popular filesystem structures
can be used to hide data, such as the slack space of several block bitmaps or inode
bitmaps [11]. Likewise, existing data structures, such as timestamps [12,23], or
reserved areas for future filesystem extensions, such as reserved group descriptor
table blocks [13], may be used to hide arbitrary data.

fishy - A Framework for Filesystem-Based Data Hiding 27

In digital forensic investigations, the knowledge of these, at first glance incon-
spicuous, hiding places definitely plays a decisive role in securing all incriminat-
ing digital traces. There are a few papers that deal with different filesystem
hiding methods and countermeasures. Our list of existing publications indicates
which filesystem is discussed in the respective paper. Eckstein et al. [14] show
how to hide data in file and directory slack space or reserved inodes in ext3 and
in alternate data streams in NTFS. Piper et al. [15] show how to hide data in the
partition boot sector, in reserved portions of the superblock and in redundant
superblocks of ext2/ext3 filesystems. Grugq [16] demonstrates further hiding
places in ext2, such as the manipulation of directory entries and the utilization
of reserved space in superblocks, group descriptors and inodes. Huebner et al.
[17] present various approaches to hide data in metadata files of NTFS, e.g., in
the $BadClus file, the $DATA attribute and the $Boot file. Krenhuber et al. [18]
show how to hide data in NTFS using file slack, faked bad clusters, additional
cluster allocation and alternate data streams. Other methods for ext filesystems,
such as file slack, the mount procedure and extended file attributes, are shown.
Berghel et al. [19] present approaches to conceal data using the slack space of
various ext2/ext3 data structures, such as superblocks, group descriptor tables
and directory entries. The authors also discuss some hiding places for NTFS, for
instance the $Bitmap file, additional $FILE attributes or MFT entries.

It should be mentioned here that many of the existing publications on this
topic are outdated and there are only a few recent contributions. A slightly newer
work analyzes the most important filesystem data structures of ext4 in a digital
forensic way [13]. Several potential data hiding places in ext4 are mentioned (e.g.,
group descriptor growth blocks, data structures in uninitialized block groups and
Htree nodes), but not explored any further. The most recent publication in this
field presents, analyzes and evaluates various anti-forensic techniques for ext4
and verifies whether previously mentioned hiding techniques still work in ext4
since most of them were developed for ext2/ext3 [11]. Unfortunately, this paper
only discusses ext4 and does not focus on NTFS.

2.3 Available Data Hiding Tools

In our literature research on existing tools for filesystem-based data hiding tech-
niques we found only a few working tools. None of these provide a consistent
interface with support for multiple filesystems and various hiding techniques. For
most of them it seems that development has been stopped. It is also noticeable
that the data set provided by Conlan et al. [1], which collects 308 anti-forensic
tools in total, only includes two tools (bmap and slacker) in its subcategory
filesystem manipulation.

Three filesystem-based data hiding tools, that seem to be used more often, are
bmap, slacker.exe and FragFS [21,22]. bmap is a Linux tool for hiding data in the
NTFS slack space. However, this project seems to have no official website or any
trustworthy repository, i.e., development of the tool probably stopped. Sources

28 T. Göbel and H. Baier

can only be found on some questionable websites3. slacker.exe is also a tool for
hiding data in NTFS slack space, but is built for Windows. It was developed
by Bishop Fox and integrated into the Metasploit framework under the name
Metasploit Anti-Forensic Investigation Arsenal (MAFIA) along with some other
anti-forensic tools (e.g., Timestomp - a tool to manipule NTFS timestamps)4.
However, the tool is currently not available for download. FragFS is able to hide
data within the last 8 bytes of an MFT entry in the NTFS Master File Table
[20]. Available download links were not found here either.

In addition, several anti-forensics tools have been developed in the past for
the ext filesystem [16]. Most of them, however, are outdated because they were
originally developed for ext2 instead of the current version ext4. First, Rune FS 5

was able to hide data by taking advantage of a bug in the Coroner’s Toolkit.
Second, Waffen FS adds an ext3 journal to an ext2 filesystem and conceals up to
32 MB of data. Third, KY FS manipulates a directory entry as if the entry is
not used to, subsequently, hide data in the directory entry. Fourth, Data Mule
FS is able to conceal about 1 MiB data in a 1 GiB large ext2 image using all
reserved areas in superblocks, group descriptors and inodes.

Two newer tools can hide data within timestamps. Timestamp-Magic [23]
conceals data within the nanoseconds part of multiple timestamps in the inode
table of an ext4 filesystem. TOMS [12] demonstrates a similar approach using
the filename attribute of MFT entries in NTFS.

When reviewing existing tools it is noticeable that, with a few exceptions,
the source code of the tools is often no longer publicly available. In addition,
many of the tools were originally developed for earlier filesystem versions and
development has been discontinued in the meantime. fishy allows a consistent
implementation of hiding techniques that will facilitate the reproducibility and
evaluation of forensic software in the future.

3 Framework Architecture

The following section explains in detail the basic architecture and the modular
structure of the fishy framework. The depicted architecture overview gives an
introduction to fishys’ core design principles and structures. The key modules
and classes someone might use to integrate fishy into their own projects are
mentioned here. The command structure and its use are described in Sect. 5.

In the design process, we made sure that the architecture is as modular
as possible. Different layers allow to encapsulate functionalities. The flowchart
diagram in Fig. 1 represents the logical procedure of using a hiding technique.
What we can see in the flowchart diagram is that the Command Line Inter-
face (CLI) parses the given command line parameters and calls the appropri-
ate Hiding Technique Wrapper. The Hiding Technique Wrapper then checks
3 https://packetstormsecurity.com/files/17642/bmap-1.0.17.tar.gz.html (last accessed

2018-05-10).
4 http://www.bishopfox.com/resources/tools/other-free-tools/mafia/ (last accessed

2018-05-10).
5 http://index-of.es/Linux/R/runefs.tar.gz (last accessed 2018-05-10).

https://packetstormsecurity.com/files/17642/bmap-1.0.17.tar.gz.html
http://www.bishopfox.com/resources/tools/other-free-tools/mafia/
http://index-of.es/Linux/R/runefs.tar.gz

fishy - A Framework for Filesystem-Based Data Hiding 29

for the filesystem type of the given filesystem image and calls the respective
Hiding Technique implementation for this filesystem. The modular structure
of the framework is clearly visible here by treating the three different filesystems
already implemented (ext4, FAT and NTFS) separately. In case of calling the
write method, the Hiding Technique implementation returns metadata needed
to restore the hidden data later. Currently, this metadata is written to the disk,
using a simple JSON data structure. As future work it is considered to hide the
metadata itself in the filesystem with a suitable hiding technique.

Fig. 1. Overview of the modular framework structure of fishy.

The command line argument parsing part is implemented in the cli.py mod-
ule. Hiding Techniques Wrapper are located in the root module. They adopt
converting input data into streams, casting/reading/writing hiding technique
specific metadata and calling the appropriate methods of those hiding tech-
nique specific implementations. To detect the filesystem type of a given image,
the Hiding Technique Wrapper use the filesystem detector function which uses
filesystem detection methods implemented in the particular filesystem module.
Several filesystem specific Hiding Technique implementations provide at least
a write, read and clear method to (i) hide data in the filesystem, (ii) to read
or restore hidden content, and (iii) to delete previously hidden data. Hiding
Technique implementations use either pytsk3 6 to gather information of the given
filesystem or use custom filesystem parsers which are then located within the
particular filesystem package.

6 Python bindings for The Sleuth Kit: https://github.com/py4n6/pytsk (last accessed
2018-05-14).

https://github.com/py4n6/pytsk

30 T. Göbel and H. Baier

3.1 Command Line Interface

As depicted in Fig. 1, the CLI module takes care of parsing the command
line arguments and, depending on the given subcommand, calls the appropri-
ate Hiding Technique Wrapper. The CLI thus forms the user interface of our
toolkit.

Each hiding technique is accessible with a special subcommand, which itself
defines further options. The CLI must be able to read data, that the user wants
to hide, either from stdin or from a file. Previously hidden data that the user
wants to recover is returned to either stdout or a specified file. If reading data
from a file, the CLI is in charge of turning the content into a buffered stream,
on which the hiding technique operates in the subsequent process.

3.2 Hiding Technique Wrapper

Each type of hiding technique has its own wrapper. This Hiding Technique
Wrapper gets called by the CLI and subsequently calls the filesystem specific
Hiding Technique, based on the filesystem type. As previously mentioned, to
detect the filesystem type, the filesystem detector function is called.

In order to find the correct offset of hidden data, read and clear methods
of the hiding techniques require some metadata, which is gathered during a
write operation. For this reason, the Hiding Technique Wrapper is responsible
for reading and writing metadata files and providing hiding technique specific
metadata objects for read and write methods. If the user wants to restore pre-
viously hidden data and store the information in a file instead of putting it to
stdout, the Hiding Technique Wrapper is responsible for writing that file.

3.3 Hiding Technique

Multiple Hiding Technique implementations do the real work of this toolkit.
Every Hiding Technique must at least offer a write, read and clear method
in order to conceal new data and to restore or to delete hidden content. These
methods must operate on streams only to ensure high reusability and reduce
boilerplate code. All hiding techniques in the framework are called by the Hiding
Technique Wrapper. The clear method must overwrite all hidden data with
zeros and leave the filesystem in a consistent state. If an error occurs during the
write process, i.e., while the private data is hidden, already written data must
be deleted before exiting the program.

To get the required information about the current filesystem, hiding tech-
niques use either the pytsk3 library or a filesystem parser implementation located
in the appropriate filesystem package.

If a hiding technique relies on some specific metadata (e.g., the exact offset
of a MFT entry in NTFS) to restore hidden data, it must implement a hiding
technique specific metadata class. This specific metadata class is used during
the write process to store all information that is necessary for the recovery of
the hidden data. The write method must return this metadata instance, so that

fishy - A Framework for Filesystem-Based Data Hiding 31

the Hiding Technique Wrapper can serialize it and pass it to the read and clear
methods.

Hiding techniques may implement further methods that are relevant for the
hiding procedure, such as sub-methods that are relevant to actually hide the
data in the right place or to split larger data into smaller parts to hide them in
multiple data structures.

3.4 Filesystem Detector

The filesystem detector is a simple wrapper function to unify calls to the filesys-
tem specific detection functions, which are implemented in the corresponding
filesystem package.

3.5 Metadata Handling

To be able to restore hidden data, most hiding techniques need some additional
information. These information are stored in a JSON metadata file. The main-
metadata class called fishy.metadata provides functions to read and write meta-
data files and to automatically decrypt or encrypt the metadata if a password is
provided. The main purpose of this class is to ensure that all metadata files have
a similar reasonable data structure. The program can thus recognize at an early
point that, for example, the user is using a wrong hiding technique to restore
hidden data.

When implementing a new hiding technique, this technique must also imple-
ment its own hiding technique-specific metadata class. The hiding technique itself
therefore defines which data will be stored later during the hiding process. The
write method then returns this hiding technique-specific metadata class which
then gets serialized and stored in the main-metadata class.

4 Implemented Hiding Techniques and Current Work

An overview of all currently implemented hiding techniques in the framework,
and hiding techniques that are stilfHides arbitrary data in l in development or
are about to be added in the near future, is given in Table 1. Already finished
hiding techniques are marked with the ✓ symbol, hiding techniques that are
still in progress are marked with the ✗ symbol. The - symbol addresses hid-
ing techniques which are filesystem specific, i.e., the respective data structure is
missing in other filesystems. The table also includes a brief explanation of each
implemented hiding technique. Moreover, all hiding techniques are briefly evalu-
ated for their gained capacity, stability and their detection probability. Capacity
addresses, how much data can be hidden by using the respective hiding tech-
nique, since an attacker is interested in storing a reasonable amount of data.
Detection probability means the difficulty of finding the concealed artifacts, i.e.,
the likelihood that a forensic investigator discovers hidden data. For example,
the default filesystem check or the standard GUI filesystem interface should not

32 T. Göbel and H. Baier

Table 1. Overview of currently implemented Hiding Techniques (function call based
on the respective subcommand) and work in progress of the framework fishy for dif-
ferent filesystems (FS) and our rating according to available Capacity (C), Detection
probability (D) and Stability (S) (�=low; ��=medium; �=high).

Hiding Technique

(Subcommand)

FS FS FS Description C D S

FAT NTFS EXT4

fileslack ✓ ✓ ✓ Exploitation of File Slack � �� �
mftslack - ✓ - Exploitation of MFT Entry Slack � � �
ads - ✗ - Use of Alternate Data Streams � � ��
addcluster ✓ ✓ ✗ Additional Cluster/Block

Allocation

� �� �
badcluster ✓ ✓ ✗ Bad Cluster/Block Allocation � �� �
reserved gdt blocks - - ✓ Exploitation of reserved GDT

Blocks

� � ��
superblock slack - - ✓ Exploitation of Superblock Slack �� � �
superblock reserved - - ✗ Use of reserved space in

Superblocks

� �� �
superblock backups - - ✗ Exploitation of Superblock

Backups

�� �� �
osd2 - - ✓ Use of unused Inode Field osd2 � �� �
obso faddr - - ✓ Use of unused Inode Field

obso faddr

� �� �
nanoseconds - ✗ ✓ Use of Nanoseconds Timestamp

Part

�� � �
bootsector ✗ ✗ ✗ Exploitation of Partition

Bootsector

� � �
null dir entries - - ✗ Exploitation of Directory Entries � �� �
gdt slack - - ✗ Exploitation of GDT Slack Space �� � ��
groupdescr reserved - - ✗ Use of reserved space in

Group-Desc.

� �� �
gdt backups - - ✗ Exploitation of GDT Backup

Copies

� �� ��
blockbitmap slack - - ✗ Exploitation of Block Bitmap

Slack

� � �
inodebitmap slack - - ✗ Exploitation of Inode Bitmap

Slack

� � �
inode slack - - ✗ Exploitation of Inode Record

Slack

� �� ��
inode reserved - - ✗ Use of reserved space in Inode

Struct

� �� �
uninit datastructure - - ✗ Exploitation of Data Structures in

Uninitialized Block Groups

� �� �

disclose hidden data. Stability describes whether hidden data remains in the
filesystem without complications, i.e., the possibility of data being overwritten
is low.

As shown in Table 1, the development of many other hiding techniques is
still in progress right now, for example the transfer of the nanosecond hiding

fishy - A Framework for Filesystem-Based Data Hiding 33

approach to the NTFS filesystem [12]. Besides, a major focus is on the integration
of additional ext4 hiding techniques, as a recent work by Göbel and Baier [11]
reveals many interesting hiding techniques for this filesystem. Nevertheless, the
integration of the upcoming Windows filesystem ReFS and the upcoming Linux
filesystem Btrfs, as well as some completely new hiding techniques are considered
as future tasks. Members of the forensic community are also invited to add
further filesystems and new hiding techniques to our framework.
We now present the manipulated filesystem data structures and give a brief
explanation of each hiding technique that has been implemented so far.

4.1 File Slack

If a file is smaller than the cluster or block size of the filesystem, writing this file
will result in some unusable space, which starts at the end of the file and ends
at the end of the cluster/block. The remaining space can be used to hide data
and is in general called File Slack [24, p. 187].

Most filesystem implementations of FAT and NTFS pad the RAM Slack with
zeros, nowadays. This padding behavior must be honored by our implementation,
as non-zero values in this area would be suspicious to any observer.

In case of ext4 filesystems, most implementations pad the complete File Slack
with zeros, making the distinction between RAM and Drive Slack unnecessary
but also making the detection of hidden data more likely. Our implementation
for ext4 therefore calculates the end of a file on the filesystem and writes data
into the following File Slack until no data is left or the end of the current block
is reached.

4.2 MFT Entry Slack

The Master File Table contains the necessary metadata for every file and direc-
tory stored in a NTFS partition. An MFT entry does not have to fill up all of its
allocated bytes, which often leads to some unused space at the end of an entry.
The MFT entry slack is an suitable place to hide data inconspicuously.

NTFS uses a concept called Fixup [24, p. 253] for important data structures,
such as the MFT, in order to detect damaged sectors and corrupt data structures.
When an MFT entry is written to the disk, the last two bytes of each sector are
replaced with a signature value. To avoid damaging the MFT, it is important
to not overwrite the last two bytes of each sector when hiding data in the MFT
entry slack. Besides this measure, the framework is able to write a copy of the
hidden data in $MFT to corresponding entries in $MFTMirr to avoid detection
by a simple chkdsk [24, p. 219].

4.3 Bad Cluster Allocation

If a sector or a cluster of sectors is damaged, read and write operations would lead
to faulty data. Therefore the filesystem marks the affected area as bad clusters.

34 T. Göbel and H. Baier

The filesystem saves the addresses for future reference and won’t allocate them
to a file or directory anymore. By marking some actually free cluster or blocks
as faulty ones, we can reserve them to hide data in them.

In NTFS, affected areas are saved in an MFT file entry called $BadClus, the
entries in this file will be ignored. In FAT, clusters are marked as bad in the File
Allocation Table. In ext4, there is a list of bad blocks in the reserved inode 1
[24, p. 183, p. 225, p. 293].

4.4 Additional Cluster Allocation

Clusters are either unallocated or allocated to a file. By allocating an additional,
actually unallocated, cluster to a file, the filesystem does not attempt to allocate
or write data to that cluster, so that data can be hidden in that cluster [17].

If the file the cluster is allocated to grows in size and exceeds the boundary of
its originally allocated clusters, the file will grow into the additionally allocated
cluster and overwrite the hidden data. For this reason, a file that is unlikely to
grow should be preferred as a carrier to hide data.

4.5 Reserved Group Descriptor Table Blocks

Reserved GDT blocks of an ext4 filesystem are not used until the filesystem
is extended and group descriptors are written to this location. The reserved
GDT blocks are located behind the group descriptors and are repeated in each
backup copy. The number of copies varies depending on the sparse super flag,
which limits the copies of the reserved GDT blocks to block groups whose group
number is either 0 or a power of 3, 5, or 7 [13].

Since the GDT growth blocks are really big reserved areas, this hiding method
is quite obvious. Therefore our implementation skips the primary reserved GDT
blocks before embedding some data. This prevents e2fsck from noticing these
flaws in the filesystem. A big advantage of this technique is the high capacity. On
the other hand, hidden data is overwritten in the case of a filesystem extension.

4.6 Superblock Slack

Depending on the block size, there is an acceptable amount of slack space behind
the actual content of the Superblock which is repeated multiple times across
the ext4 filesystem. The amount of copies of the Superblock depends on the
sparse super flag, i.e., less space to hide data if the flag is set [19].

The hiding technique collects all block numbers of the Superblock copies
from each block group, taking the sparse super flag into account. Data then gets
written to the slack space of each of these blocks, considering the filesystem
block size. This hiding technique benefits from the Superblock’s characteristics,
resulting in a safe storage because this data structure does not get overwritten.
But as with all slack space hiding methods, hidden data is easy to find.

fishy - A Framework for Filesystem-Based Data Hiding 35

4.7 osd2, obso faddr

The osd2 hiding technique uses the last two bytes of the 12 byte osd2 field, which
is located at 0x74 in each inode of an ext4 filesystem. This field only uses 10
bytes at max, depending on the tag being either linux2, hurd2 or masix2 [25].

To hide data, the method writes data directly to the two bytes in the osd2
field in each inode, which address is taken from the inode table, until there is
either no inode or no data left. Available space is small, but hidden data might be
tough to find since data is distributed over several inodes across the filesystem.

The obso faddr field in each inode at 0x70 is an obsolete fragment address
field of 32bit length. This technique works accordingly to the osd2 technique,
has the same advantages and flaws but can hide twice the data.

4.8 Nanosecond Timestamps

Modern filesystems like NTFS or ext4 support nanosecond precise timestamps.
As shown in [12,23], hiding data in nanosecond timestamps is feasible. In ext4,
four extra 32-bit fields i [c|m|a|cr]time extra were added to the existing
inode structure. The lower 2 bits are used to extend the Unix epoch, the upper
30 bits are used for nanoseconds. Therefore, our implementation only uses the
upper 30 bits of the nanosecond timestamps.

Data hidden by this technique is difficult to find. Common file explorers, as
well as Autopsy, do not support nanosecond accuracy. Linux commands like stat
[file] or debugfs -R ’stat <inode>’ [image] are able to parse nanosecond
timestamps, but this does not offer concrete information about hidden data.
Furthermore, tests have shown that the Sleuthkit’s istat command does not
take the extra epoch bits into account and therefore timestamps beyond 2038
(Unix Epoch time overflow) are not decoded properly.

5 Use of the Framework

In this section we present how to use the framework and how to integrate new
hiding techniques into the existing architecture. If the paper is accepted, theres
is also an official module reference including the exact documentation of the
most important modules and classes that might be helpful if fishy is integrated
into other projects.

5.1 Using the CLI Interface

This section will give beginners a first introduction to the fishy command struc-
ture to better understand how to work with the toolkit. As we have already
seen in Table 1, the CLI groups all hiding techniques into specific subcommands.
Each subcommand provides specific information about how it is used via the
--help switch. Additionally to the subcommands above, there are the following
informational subcommands available:

36 T. Göbel and H. Baier

fattools. Provides relevant meta information about a FAT filesystem, such as
sector size, sectors per cluster or the offset to the data region. This command
also shows the entries of the file allocation table or current files in a directory.

Get some meta information about the FAT filesystem
$ fishy -d testfs -fat32.dd fattools -i
FAT Type: FAT32
Sector Size: 512
Sectors per Cluster: 8
Sectors per FAT: 3904
FAT Count: 2
Dataregion Start Byte: 4014080
Free Data Clusters (FS Info): 499075
Recently Allocated Data Cluster (FS Info): 8
Root Directory Cluster: 2
FAT Mirrored: False
Active FAT: 0
Sector of Bootsector Copy: 6
[...]

metadata. Displays the information stored in a metadata file which is created
while writing information into the filesystem and are required to restore those
information or to wipe hidden content. The first example shows the information
that is stored when hiding data in the FAT file slack: (i) the cluster ID with
hidden slack space data, (ii) the byte offset to the hidden content starting from
cluster ID, and (iii) the length of the data which was written to file slack. The
second example shows the information that is stored when hiding data in the
MFT entry slack: (i) offset to the MFT slack space, (ii) length of data which was
written to file slack, and (iii) sector address of MFT Mirror when an additional
copy of the hidden data is stored in the MFT Mirror. In addition, the metadata
file is password protected in the second case.

Parse a given metadata file
$ fishy metadata -m metadata1.json
Version: 2
Module Identifier: fat -file -slack
Stored Files:

File_ID: 0
Filename: 0
Associated File Metadata:

{’clusters ’: [[12, 512, 11]]}

$ fishy -p password metadata -m metadata2.json
Version: 2
Module Identifier: ntfs -mft -slack
Stored Files:

File_ID: 0
Filename: secret.txt
Associated File Metadata:

{’addrs ’: [[16792 , 11, 5116312]]}

The following subsections give some more examples how to use the subcom-
mands of selected hiding techniques in the framework. Since space is limited
here, not all techniques can be shown. However, the command structure of all
hiding techniques behaves similarly.

fishy - A Framework for Filesystem-Based Data Hiding 37

fileslack. Hides arbitrary data in the file slack. Provides methods to read (-
r), write (-w) and wipe (-c) the file slack of files and directories in ext4, FAT
and NTFS filesystems. In addition, we can use the info switch (-i) to check the
available slack space of a file in advance.

Write data into slack space of a file (here: testfile.txt)

$ echo "TOP SECRET" | fishy -d testfs -fat32.dd fileslack -d testfile.txt

-m metadata.json -w

Read hidden data from slack space

$ fishy -d testfs -fat32.dd fileslack -m metadata.json -r

TOP SECRET

Wipe slack space

$ fishy -d testfs -fat32.dd fileslack -m metadata.json -c

Show information about slack space of a file (size of testfile.txt: 5 Bytes)

$ fishy -d testfs -fat32.dd fileslack -d testfile.txt -i

File: testfile.txt

Occupied in last cluster: 5

Ram Slack: 507

File Slack: 3584

addcluster. Additional cluster allocation where data can be hidden. Provides
methods to read, write and wipe additional clusters for a file in FAT and NTFS.

Allocate additional clusters for a file (myfile.txt) and hide data in it
$ echo "TOP SECRET" | fishy -d testfs -fat12.dd addcluster -d myfile.txt
-m metadata.json -w

Read hidden data from additionally allocated clusters
$ fishy -d testfs -fat12.dd addcluster -m metadata.json -r
TOP SECRET

Clean up additionally allocated clusters
$ fishy -d testfs -fat12.dd addcluster -m metadata.json -c

mftslack. Exploitation of MFT entry slack. Provides methods to read, write
and wipe the MFT entries slack space in a NTFS filesystem. The info switch
prints further information about the available slack space of each MFT entry
(suppressed here because of its length).

Writes the contents of secret.txt (TOP SECRET) into MFT slack space
and additionally into MFT_Mirror slack space when --domirr is set
$ fishy -d testfs -ntfs.dd mftslack -m metadata.json --domirr -w secret.txt

Read hidden data from MFT slack space
$ fishy -d testfs -ntfs.dd mftslack -m metadata.json -r
TOP SECRET

Wipe MFT slack space
$ fishy -d testfs -ntfs.dd mftslack -m metadata.json -c

Display information about the MFT slack
$ fishy -d testfs -ntfs.dd mftslack -i

38 T. Göbel and H. Baier

reserved gdt blocks. Exploitation of reserved GDT blocks. Provides methods
to read, write and wipe the space reserved for a future file system extension. The
info switch summarizes all available bytes of different reserved GDT blocks in
all block groups starting from block group 1 since hidden data in block group 0
causes file system check errors. Furthermore, already used space is shown.

Writes the contents of secret.txt (TOP SECRET) into reserved GDT Blocks

$ fishy -d testfs -ext4.dd reserved_gdt_blocks -m metadata.json -w secret.txt

Read hidden data from reserved GDT Blocks

$ fishy -d testfs -ext4.dd reserved_gdt_blocks -m metadata.json -r

TOP SECRET

Clean up reserved GDT Blocks

$ fishy -d testfs -ext4.dd reserved_gdt_blocks -m metadata.json -c

Show relevant information about reserved GDT blocks

$ fishy -d testfs -ext4.dd reserved_gdt_blocks -i

Block size: 1024

Total hiding space in reserved GDT blocks: 1048576 Bytes

Used: 1024 Bytes

As we can see, the framework understands the same command switches
regardless of which hiding technique or filesystem is currently in use. For all
other hiding techniques the same command structure applies, which is why we
do not have to introduce all hiding techniques here. Achieving such behavior was
one of the goals of the basic design principles of the framework.

5.2 Integration of New Hiding Techniques

This section shows how additional hiding techniques can be integrated into the
existing project structure. This can also be understood as a call to the forensic
community to add self-developed hiding techniques to the framework. In order
to implement a new hiding technique, one can follow the following five steps:

1. Following the repository structure via the folder ‘fishy’ to the folder ‘wrap-
per’, where we first create a new wrapper module for each hiding technique
to be added. As already mentioned in Sect. 3, this wrapper module handles
the filesystem specific hiding technique calls and fulfills the main-metadata
handling. If, for example, another file system has already implemented this
type of hiding technique, no new wrapper module needs to be created.

2. Only the CLI module knows about a new wrapper module, not the filesystem
specific hiding technique module (bottom-up approach). Therefore, we first
need to integrate the new hiding technique wrapper to the CLI module.

3. All currently implemented hiding techniques are located either in the ext4,
fat or ntfs submodule. Please notice that further file systems can be added
in the future. To add a new hiding technique implementation, we create a new
file with an appropriate module name in the respective filesystem subfolder.
A simple example would be fishy/ext4/nanoseconds.py. The filesystem
specific implementation must then be added to the existing wrapper module.

fishy - A Framework for Filesystem-Based Data Hiding 39

4. A metadata class within the new hiding technique implementation is created.
This class holds hiding technique-dependent metadata to correctly recover
hidden data after write operations. The write method must return an instance
of this class, which then will be written to the metadata file.

5. At least one write, read and clear method is implemented within the new
hiding technique. The info method is optional. Additional internal helper
methods can be implemented as needed. In order to keep the actual hiding
technique implementation reusable and simple, we only operate on streams.

6 Evaluation

The practical usability of the framework has already been demonstrated in
Sect. 5. Some of the results of our evaluation have already been included in
Table 1. It offers an overview about the possible capacity gain of each hiding
technique. It also contains a founded rating of its stability. Lastly, we evalu-
ated the detection probability of each technique. The scenario we examined was
whether a common filesystem check would detect inconsistencies and point to a
modification. Accordingly, we used the standard OS filesystem check utilities to
perform the evaluation: fsck.ext4 for ext4, fsck.fat for FAT and chkdsk for
NTFS.

To test the currently implemented hiding techniques several unit test have
already been created. These can be found in the ‘tests’ folder of our fishy repos-
itory. Existing unit tests can be executed by running pytest.

Using the create testfs.sh script, it is possible to create prepared filesys-
tem images for all supported filesystem types. These images already include files,
which get copied from utils/fs-files/. The script has other options, which
will be useful when writing unit tests. The created filesystems are intended to
be used by unit tests and for developing a new hiding technique. To create a
set of test images, we simply run $./create testfs.sh -t all. The script is
capable of handling branches to generate multiple images with a different file
structure. These are especially useful for writing unit tests that expect a certain
file structure on the tested filesystem.

6.1 Limitations

fishy still has limitations that are important to mention. First, fishy is currently
only tested on Linux. Other operating systems may provide different functions
to access low level devices.

Although it is possible to hide multiple different files on the filesystem, fishy is
currently not capable of handling this situation. So, it is up to the user to avoid
overwritten data. The CLI is limited to store only one file per call and does
not consider other files already written to disk. A simple workaround would be
to store multiple files in a zip file before embedding them into the filesystem.
However, as a long-term solution, it is better to integrate the functionality of

40 T. Göbel and H. Baier

checking whether some data is already hidden and in case to add new content
to the previously hidden data.

Currently, fishy does not encrypt the data it hides. If the user actually needs
encryption, it is up to him to encrypt his data before using the framework. Since
tracing unencrypted data with forensic tools is relatively easy, regardless of the
hiding technique used (e.g., with file carving), the integration of an additional
encyption layer will definitely be considered as a future task. The same applies
to data integrity functionality. Since most hiding techniques are not stable, for
example if data is hidden in slack spaces where the associated files might change
at any time, some data integrity methods would be useful to at least detect
whether the hidden data has been damaged in the meantime. Therefore, some
redundant information could be added to the original file before the content is
actually hidden in the data structure. Depending on the amount of redundant
information, data can be recovered, even if some parts are missing.

Manipulating specific data structures in ext4 causes the original metadata
checksums to no longer match the new content of the data structures. Therefore,
we need to repair the metadata checksums to exactly match the new content,
otherwise this could raise suspicions during a forensic investigation. In ext4, the
filesystem check tool e2fsck can be used to repair inconsistencies, such as wrong
metadata checksums. The filesystem check repairs all inconsistencies and another
forced filesystem check does not give any further warnings afterwards. However,
it would be more convenient to integrate the metadata checksum calculation into
the framework to no longer rely on a workaround.

7 Conclusion and Future Work

This paper introduced a new framework called fishy, developed in Python. Cur-
rently, the implementation contains interfaces for three popular filesystems: ext4,
FAT and NFTS. The current state of the framework provides enough function-
ality to hide data within the supported filesystems and to recover it afterwards.
In contrast to previously released tools, we focused on the consistent implemen-
tation of different hiding techniques and their long-term reproducibility. The
reproducibility and expandability of the framework as well as its modular struc-
ture allow the integration of additional hiding techniques and other modern
filesystems in the near future (e.g., APFS, Btrfs, ReFS, or XFS).

However, the framework still has a lot of potential for future enhancements
and improvements. This section gives a brief overview of some future tasks that
complement the work done so far. The filesystem auto detection for FAT and
NTFS is currently performed by checking an ASCII string in the boot sector. In
order to increase the reliability of fishy, it could be reimplemented by using
the detection methods that are already realized in regular filesystem imple-
mentations. Hidden data can be further obfuscated by filesystem independent
approaches like data encryption and steganography. In its current state, fishy
does not provide on the fly data encryption and has not implemented data
integrity methods. Currently, fishy produces a metadata file for each hiding

fishy - A Framework for Filesystem-Based Data Hiding 41

operation. Although the metadata file can be encrypted, it is visible through
traditional data access methods and gives unwanted hints to hidden data. As a
workaround, the metadata file itself could be hidden using an appropriate hiding
technique. As a future work, we also consider to automate the evaluation of the
hiding approaches against respective filesystem checks as well as the evaluation
of forensic suites. Through the integration of fishy as an open source library into
forensic suites we can analyze whether common filesystem checks recognize hid-
den data or not. Furthermore, the integration of the CRC32C algorithm into the
framework is considered since it is used to calculate metadata checksums within
kernel code of ext4 filesystems. Finally, the introduction of multi-data support is
another future task. This would greatly enhance the regular use of this toolkit.

Acknowledgments. This work was supported by the German Federal Ministry of
Education and Research (BMBF) within the funding program Forschung an Fach-
hochschulen (contract number: 13FH019IB6) as well as by the Hessen State Ministry for
Higher Education, Research and the Arts (HMWK) within CRISP (www.crisp-da.de).
In addition, we would like to thank all participating students of the bachelor module
Project System Development, who played a major role in the implementation of the
framework.

References

1. Conlan, K., Baggili, I., Breitinger, F.: Anti-forensics: Furthering digital forensic
science through a new extended, granular taxonomy. Digit. Investig. 18, 66–75
(2016)

2. Rogers, M.: Anti-Forensics, presented at Lockheed Martin, San Diego, 15 Septem-
ber 2005. www.researchgate.net/profile/Marcus Rogers/publication/268290676
Anti-Forensics Anti-Forensics/links/575969a908aec91374a3656c.pdf. Accessed 12
May 2018

3. Harris, R.: Arriving at an anti-forensics consensus: Examining how to define and
control the anti-forensics problem. Digit. Investig. 3, 44–49 (2006)

4. Wundram, M., Freiling, F.C., Moch, C.: Anti-forensics: The next step in digital
forensics tool testing. IT Security Incident Management and IT Forensics (IMF),
pp. 83–97 (2013)

5. Ridder, C.K.: Evidentiary implications of potential security weaknesses in forensic
software. Int. J. Digit. Crime Forensics (IJDCF) 1(3), 80–91 (2009)

6. Newsham, T., Palmer, C., Stamos, A., Burns, J.: Breaking forensics software:
weaknesses in critical evidence collection. In: Proceedings of the 2007 Black Hat
Conference. Citeseer (2007)

7. Kailus, A.V., Hecht, C., Göbel, T., Liebler, L.: fishy - Ein Framework zur Umset-
zung von Verstecktechniken in Dateisystemen. D.A.CH Security 2018, syssec Verlag
(2018)

8. Anderson, R., Needham, R., Shamir, A.: The steganographic file system. In: Auc-
smith, D. (ed.) IH 1998. LNCS, vol. 1525, pp. 73–82. Springer, Heidelberg (1998).
https://doi.org/10.1007/3-540-49380-8 6

9. McDonald, A.D., Kuhn, M.G.: StegFS: a steganographic file system for Linux. In:
Pfitzmann, A. (ed.) IH 1999. LNCS, vol. 1768, pp. 463–477. Springer, Heidelberg
(2000). https://doi.org/10.1007/10719724 32

https://www.crisp-da.de
www.researchgate.net/profile/Marcus_Rogers/publication/268290676_Anti-Forensics_Anti-Forensics/links/575969a908aec91374a3656c.pdf
www.researchgate.net/profile/Marcus_Rogers/publication/268290676_Anti-Forensics_Anti-Forensics/links/575969a908aec91374a3656c.pdf
https://doi.org/10.1007/3-540-49380-8_6
https://doi.org/10.1007/10719724_32

42 T. Göbel and H. Baier

10. Piper, S., Davis, M., Shenoi, S.: Countering hostile forensic techniques. In: Olivier,
M.S., Shenoi, S. (eds.) Advances in Digital Forensics II. IFIP AICT, vol. 222, pp.
79–90. Springer, Boston, MA (2006). https://doi.org/10.1007/0-387-36891-4 7

11. Göbel, Thomas, Baier, Harald: Anti-forensic capacity and detection rating of hid-
den data in the Ext4 filesystem. In: Peterson, G., Shenoi, S. (eds.) Advances in
Digital Forensics XIV. IFIP AICT, vol. 532, pp. 87–110. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-99277-8 6

12. Neuner, S., Voyiatzis, A.G., Schmiedecker, M., Brunthaler, S., Katzenbeisser, S.,
Weippl, E.R.: Time is on my side: steganography in filesystem metadata. Digit.
Investig. 18, 76–86 (2016)

13. Fairbanks, K.D.: An analysis of Ext4 for digital forensics. Digit. Investig. 9, 118–
130 (2012)

14. Eckstein, K., Jahnke, M.: Data hiding in journaling file systems. In: Proceedings
of the 5th Annual Digital Forensic Research Workshop (DFRWS) (2005)

15. Piper, S., Davis, M., Manes, G., Shenoi, S.: Detecting Hidden Data in Ext2/Ext3
File Systems. In: Pollitt, M., Shenoi, S. (eds.) Advances in Digital Forensics. ITI-
FIP, vol. 194, pp. 245–256. Springer, Boston, MA (2006). https://doi.org/10.1007/
0-387-31163-7 20

16. Grugq, T.: The art of defiling: defeating forensic analysis. In: Blackhat Briefings,
Las Vegas, NV (2005)

17. Huebner, E., Bem, D., Wee, C.K.: Data hiding in the NTFS file system. Digit.
Investig. 3, 211–226 (2006)

18. Krenhuber, A., Niederschick, A.: Forensic and Anti-Forensic on modern Computer
Systems. Johannes Kepler Universitaet, Linz (2007)

19. Berghel, H., Hoelzer, D., Sthultz, M.: Data hiding tactics for windows and unix
file systems. In: Advances in Computers, vol. 74, pp. 1–17 (2008)

20. Thompson, I., Monroe, M.: FragFS: an advanced data hiding technique. In: Black-
Hat Federal, January 2018. http://www.blackhat.com/presentations/bh-federal-
06/BH-Fed-06-Thompson/BH-Fed-06-Thompson-up.pdf. Accessed 12 May 2018

21. Forster, J.C., Liu, V.: catch me, if you can... In: BlackHat Brief-
ings (2005). http://www.blackhat.com/presentations/bh-usa-05/bh-us-05-foster-
liu-update.pdf. Accessed 12 May 2018

22. Garfinkel, S.: Anti-forensics: techniques, detection and countermeasures. In: 2nd
International Conference on i-Warfare and Security, pp. 77–84 (2007)

23. Göbel, T., Baier, H.: Anti-forensics in ext4: On secrecy and usability of timestamp-
based data hiding. Digit. Investig. 24, 111–120 (2018)

24. Carrier, B.: File System Forensic Analysis. Addison-Wesley Professional, Boston
(2005)

25. Wong, D.J.: Ext4 Disk Layout, Ext4 Wiki (2016). https://ext4.wiki.kernel.org/
index.php/Ext4 Disk Layout. Accessed 12 May 2018

https://doi.org/10.1007/0-387-36891-4_7
https://doi.org/10.1007/978-3-319-99277-8_6
https://doi.org/10.1007/0-387-31163-7_20
https://doi.org/10.1007/0-387-31163-7_20
http://www.blackhat.com/presentations/bh-federal-06/BH-Fed-06-Thompson/BH-Fed-06-Thompson-up.pdf
http://www.blackhat.com/presentations/bh-federal-06/BH-Fed-06-Thompson/BH-Fed-06-Thompson-up.pdf
http://www.blackhat.com/presentations/bh-usa-05/bh-us-05-foster-liu-update.pdf
http://www.blackhat.com/presentations/bh-usa-05/bh-us-05-foster-liu-update.pdf
https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout
https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

	fishy - A Framework for Implementing Filesystem-Based Data Hiding Techniques
	1 Introduction
	1.1 Contribution
	1.2 Structure of the Paper

	2 Related Work
	2.1 Anti-Forensics
	2.2 Hiding Data in Filesystems
	2.3 Available Data Hiding Tools

	3 Framework Architecture
	3.1 Command Line Interface
	3.2 Hiding Technique Wrapper
	3.3 Hiding Technique
	3.4 Filesystem Detector
	3.5 Metadata Handling

	4 Implemented Hiding Techniques and Current Work
	4.1 File Slack
	4.2 MFT Entry Slack
	4.3 Bad Cluster Allocation
	4.4 Additional Cluster Allocation
	4.5 Reserved Group Descriptor Table Blocks
	4.6 Superblock Slack
	4.7 osd2, obso_faddr
	4.8 Nanosecond Timestamps

	5 Use of the Framework
	5.1 Using the CLI Interface
	5.2 Integration of New Hiding Techniques

	6 Evaluation
	6.1 Limitations

	7 Conclusion and Future Work
	References

