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Abstract. Computer worms are characterized by rapid propagation and
intrusive network disruption. In this work, we analyze the network behav-
ior of five Internet worms: Sasser, Slammer, Eternal Rocks, WannaCry,
and Petya. Through this analysis, we use a deep neural network to suc-
cessfully classify network traces of these worms along with normal traffic.
Our hybrid approach includes a visualization that allows for further anal-
ysis and tracing of the network behavior of detected worms.
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1 Introduction

Computer worms are small self-duplicating code that can rapidly infect hundreds
of thousands of systems. The Slammer worm spread to 90% of its target systems
in just 10 min [1]. In 2017, the NotPetya and WannaCry worms created a global
panic [2]. A great deal of research based on different frameworks and numerous
case studies are available for the analysis of the spread of worms across networks
[3-6]. Worms’ detrimental influence on computer systems has been significant
over the last several decades. The worms propagate from one machine to the next
and are detected using different methods. Therefore, it has become important
to develop intrusion detection systems and prevention mechanisms to counter
them.

The main goal of this work is to detect and visualize worms by understanding
their network behavior. Our approach is a hybrid system that consists of machine
learning intrusion detection and a visualization tool in order to classify and
detect worms based on their network behavior. Our hybrid approach is meant to
confront and deal with anomaly and network behavior aspects of worms through
the use of machine learning and a visualization tool. This study implements a
network traffic generator using the NS3 simulator, a packet analysis tool for
examining PCAP files, a deep neural network approach to classify and detect
worms, and a visualization tool based on D3 for analyzing network traces.
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2 Related Work

Signature-based detection uses a database of signatures containing known worms
[7-9]. The detection algorithm uses this database to determine if a packet is
infected, i.e., if it contains a known signature of a worm in the database. The
main drawback of this method is that it relies upon knowing these signatures,
therefore new worms will go undetected until they are discovered and added
to the database. Due to the limitations of signature-based detection, anomaly
or behavior-based detection was introduced. This approach looks for anomalous
behavior of a worm by distinguishing it from what is normal behavior [10,11].
This function and purpose of a worm characterizes its behavior and provides a
profile for this method.

Several recent works have analyzed network behavior for worm detection and
classification. Sarnsuwan et al. [12] use network-based Internet worm detection
utilizing thirteen packet features. Data mining algorithms such as Bayesian Net-
work, Decision Tree, and Random Forest are used for classification of Internet
worms, normal data, or network attack data. Barhoom et al. [13] propose a model
that makes use of data mining techniques by combining different classifiers with
an adaptive approach for detecting known or unknown worms. Another technique
proposed by Rasheed et al. [14] focuses on detecting polymorphic worms. How-
ever, only a single worm MSblaster was used for testing. Tang et al. [15] proposed
an intrusion detection system using the Deep Neural Network (DNN) model. A
visualization of the computer system state during a worm attack requiring man-
ual intervention by the user is presented by Axelsson et al. [16]. It was observed
that the worm request clusters were noticeably different from the clusters formed
by normal traffic.

3 Analyzed Worms

We analyze and develop a Finite State Machine (FSM) model for the following
worms: Sasser, Slammer, Petya, WannaCry, and EternalRocks.

3.1 Sasser Worm

The Sasser worm targets computers running Microsoft Windows XP and Win-
dows 2000. It has the capability of spreading rapidly over vulnerable computers
via TCP port numbers 445 or 139 to infect other computers without any human
interaction. This worm belongs to self-replicating worms from the W32.Sasser
family [17] and exploits a vulnerable LSASS.EXE to infect the system, allowing
the attacker to gain full control of the system [18].

3.2 Slammer Worm

The Slammer worm exploits a buffer overrun in the Microsoft SQL service. The
worm’s payload is small enough to fit inside a single packet. It spreads very
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rapidly [19] infecting unpatched SQL servers. It propagates by transmitting the
same message to other SQL servers rapidly using random IP addresses. This
attack can only be mitigated by taking the server offline. There is no addi-
tional malicious content included in the worm payload. However, because of the
behavior and the speed with which it attacks systems, it executes an effective
DoS attack as the network’s resources are drained [20].

3.3 EternalRocks, WannaCry and Petya

EternalRocks, WannaCry and Petya utilize the EternalBlue exploit which was
leaked as part of the EternalRocks Shadow Brokers dataset!. EternalBlue
exploits a flaw in the SMBv1 service’s NT Transaction request handler by send-
ing a large NT Transaction Request, making it necessary for the target to accept
one or more Trans2 Secondary requests. By sending malformed Trans2 Secondary
requests, EternalBlue exploits a flaw in the protocol that allows shellcode to be
delivered and executed on the target machine [2].

4 Approach

The machine learning approach is employed to classify and detect predefined
worms and undefined worms with similar network behavior. Once the machine
learning tool detects suspicious activity, then the visualization tool will be used
to further analyze the network traffic. In analyzing the traffic, the visualization
tool displays suspicious worm activity, traces the attack, and displays the affected
nodes.

Our system architecture is shown in Fig. 1. Using a PCAP file as an input to
the ipsumdump utility [21], we extract features as a CSV file. The preprocessor
converts the features into a numerical array and normalizes the data. The data is
passed to the deep neural network (DNN) for detection of worms. If the machine
learning tool detects suspicious activity, the visualization tool is used to display
the suspicious worm activity, trace the attacks, and display the affected nodes.

We use the following features from ipsumdump:

— wire-length: Overall length of captured packet, including headers
— length: IP packet length

— protocol: IP protocol

— ip-id: IP-ID field

— ip-sum: IP checksum

— ip-ttl: IP time to live field

— ip-tos: IP type of service field

— ip-hl: TP header length

— capture-length: Length of IP data

— sport: Source TCP or UDP port

— dport: Destination TCP or UDP port

! http://www.ericconrad.com/2017/04 /shadowbrokers-pcaps-etc.html.
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Fig. 1. System architecture

— payload-md5-hex: MD5 checksum of payload

— tep-seq: TCP sequence number

— tep-ack: TCP acknowledgement number

— tep-window: TCP receive window

— udp-length: UDP length, reported in the header
— icmp-type: ICMP type

— icmp-code: ICMP code

4.1 Machine Learning

Deep neural network is a machine learning model that is trained using the
dataset. DNNs are used to solve complex problems and possess the ability for
unsupervised learning, a key component for automatically detecting worm vari-
ants and mutations.

We used the framework of Keras [22] to build a fully connected DNN. As a
proof of concept, we trained the DNN model with five real time PCAP capture
files from online sources [23-25] containing captures of worm traffic. In addition
to the worm traffic, we also captured normal network traffic generated by our
machine. The overall size of the processed dataset for training was 11.2 MB of
malicious traffic and 85.1 MB of normal traffic. The test dataset was 10% of the
entire dataset.

4.2 'Worm Visualization

One of the main contributions of this work is building the visualizer IDS with
D3. D3? is a JavaScript library that is used to create data visualizations. The
data generated by computer networks is considerably large and visualization
methods such as D3 are necessary to interpret and process this overwhelming
data. The visualization tool is designed to help interpret the large amount of
data and display this data on the screen in a visually appealing format.

2 https://d3js.org.
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Fig. 2. Worm visualization. The FSM of the detected worm is shown on the right.

The worm visualization analysis tool presented in this paper uses the Finite
State Machine (FSM) model, which defines the expected behavior of worm net-
work traffic. When the behavior deviates from this expectation, the FSM will
not display the new states, however, we will still be able to detect the worm
attack using machine learning. Our packet analysis tool processes one or more
captured network PCAP files and produces a JSON file. The JSON file is pro-
vided to the visualization tool to be interpreted. We use our FSM model to
divide the packets into four categories: TCP, SMB, FTP, and Exploit. Packets
in the Exploit category are various worm states of attack. Four colors have been
assigned to these categories in order to visually determine the kind of packet.
Exploit packets are red, and any red activity in the display can be associated
with potential or actual worm attacks.

An example of the visualization tool can be seen in Fig. 2. The visualization
tool displays each node represented by a wedge shape. Nodes are grouped based
on their IP address and a specific color is assigned based on the network the
node belongs to. The wedge shape is then filled depending on the overall per-
centage of the defined packet activity. This makes it easier to observe the overall
activity distribution on the nodes during an analysis session. However, if a worm
attack is detected, the activity area will be displayed as red. Packet transmis-
sions between any two nodes are depicted by an arc made in the color of the
packet category. Since the visualizer shows the network traffic over time, these
interconnecting arcs will change and fade color as other categorized packets are
transmitted. The complete PCAP session, whether from one or multiple files, is
combined into a single timeline. We can navigate from the beginning to the end
and to any point along the timeline of the session. The visualizer will update to
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show all activity up to the current index. Along with the pictorial representation
of inter-connectivity and packet activity, the visualization tool displays packet
statistics. At the center of the main graph the current packet type is always dis-
played. This text continuously and quickly updates based on the current timeline
position. There is an overview of general TCP statistics, showing different TCP
packet types and counts for each type. This is also dynamically updated with
the position of the timeline. When a node is clicked, detailed statistics for that
node is displayed, as seen in Fig. 2. When clicking on the connection between two
nodes, we can see detailed FSM information. As with all parts of this tool, these
statistics update dynamically based upon the current timeline position. This
detail helps us determine in which direction the infection is occurring. From this
view, we can click on a specific packet and see even more detail about its state.
By changing the index on the timeline, it is easy to determine which node gets
infected first by seeing the first node turn red, we can then determine the source
of the attack.

5 Evaluation

5.1 Worm Traffic Generator Using NS3 Simulator

NS-3% is an open-source discrete event network simulator. Using Wireshark,
a packet capture and analysis tool, we gather information about a particular
worm. This information is fed into the simulator to simulate an attack from the
worm. We simulate an attack because it is very difficult to get all attack data
from online sources as many companies hide details of the attack for security
reasons. Due to the hiding of the data, we cannot see the propagation of the
worm throughout the network. Using a test network and the simulator allows
us to simulate an attack and provides us with complete data about the attack
giving a clear picture of the network behavior of the worm. In addition, by using
the traffic generator we can change the network topology and simulate multiple
worm attacks, capturing the attacks to PCAP files.

The network simulator configuration consist of six nodes in total as shown in
Fig. 3. Nodes 0 and 1 are in Subnet 1. Nodes 3, 4, and 5 are in Subnet 2. Node
2 is a router that exists in both subnets and routes the traffic through them.

The generated traffic consists of normal traffic, SMB, FTP, and multiple
packets containing the behavior of the Sasser and Slammer worms.

5.2 Experiment

We performed four experiments to demonstrate the ability of our method to
analyze network traffic.

In the first experiment, we analyze the performance of our DNN to classify
network traffic as being part of Sasser, Slammer, Eternal Rocks, Wannacry, or
Petya worm attacks or as being normal traffic. Recall that our dataset, described

3 https://nsnam.org.
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Fig. 3. Simulated evaluation network

Table 1. Performance of the DNN on classifying worm and normal traffic with known
worms.

Name Precision | Recall | F1
Sasser 0.8387 0.8125 | 0.8254
Slammer 1.0000 1.0000 | 1.0000

EternalRocks | 0.9650 0.8894 | 0.9257
Wannacry 0.9581 0.9970 | 0.9772
Petya 0.9444 0.3119 | 0.4690
Normal 0.9985 0.9998 | 0.9991

in Sect. 4.1, had 11.2 MB of worm traffic and 85.1 MB of normal traffic. We used
90% of the dataset for training and 10% of the dataset for testing. Table 1 shows
the precision, recall, and F1 score for the classification task on the test dataset.
Our DNN achieved high precision in most cases. The precision for Sasser was
lower, likely due to its high similarities to other worms. We observed low recall
for the Petya worm, likely because its sample included normal traffic packets.
We note that our classification of normal traffic was at 99%, which indicates that
our system would have relatively low false alarms.

In the second experiment, we tested the system using a PCAP file contain-
ing both Sasser and Slammer worm traffic, which was generated using our NS-3
worm traffic generator tool. The PCAP file was applied as the input to the detec-
tion system and yields the results shown in Table 2. Our system uses packet by
packet analysis to detect worms. The probability is calculated as:

XV [n]
v, )

where V'[n] is the vector of probabilities generated by DNN and N is the number
of vectors. In cases where the worm consists only of a single packet, the proba-
bility is low. In other cases where the worm attack consists of multiple packets,
the probability is high. Despite the Slammer attack consisting of only one packet
and having low probability, our system was still able to detect it.

P, =
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Table 2. DNN classification probabilities on the simulated Sasser and Slammer worms.

Name Probability
Sasser 0.7679
Normal |0.2030
Slammer | 0.0012

Table 3. DNN classification probabilities on the unknown NotPetya sample.

Name Probability
Petya 0.6046
Normal 0.2275
WannaCry | 0.1206

In the third experiment, we wanted to test the system on a previously unseen,
but similar worm. The main advantage of a DNN-based analyzer is the possibil-
ity to detect worms that may not be explicitly present in its training dataset.
We obtained a sample of the NotPetya worm from CTU captures [26] and tested
it with our classifier. NotPetya has similar, but not exactly the same, network
behavior as the Petya worm. Table 3 shows that the DNN reported a 60% prob-
ability that the NotPetya trace was the Petya worm, which shows that the DNN
can detect worms with similar network behavior.

Finally to further validate our DNN, we classified a sample of normal traffic
obtained from Netresec*. Our DNN reported that the traffic was normal with a
99.996% probability, successfully classifying the normal traffic.

6 Conclusion

In this work, we have presented a hybrid worm detection and analysis approach.
We trained a DNN classifier on the network traffic produced by several worms
and normal network traffic. On the five worms tested, our classifier had an aver-
age precision of 94.1%. We also successfully classified a set of normal traffic with
a 99.99% probability. In addition, we used our trained classifier to detect worm
traffic that was unknown to the classifier but had network traffic similar to one
of the known worms. The second part in our hybrid approach was the develop-
ment of a visualizer based on D3 to observe the network and infection behavior
of identified worms and to trace the attacks. The proposed hybrid approach pro-
vides better insight on worm activities and better detection of worms that have
similar network behavior.

4 https://www.netresec.com/?page=PCAP4SICS.
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