l‘)

Check for
updates

Multi-item Passphrases: A Self-adaptive
Approach Against Offline
Guessing Attacks

Jaryn Shen', Kim-Kwang Raymond Choo?, and Qingkai Zeng!®)
! State Key Laboratory for Novel Software Technology, Nanjing University,
Nanjing, Jiangsu 210023, China
jarynshen@gmail.com, zgk@nju.edu.cn
2 Department of Information Systems and Cyber Security, University of Texas at
San Antonio, San Antonio, TX 78249-0631, USA
raymond.choo@fulbrightmail.org

Abstract. While authentication has been widely studied, designing
secure and efficient authentication schemes for various applications
remains challenging. In this paper, we propose a self-adaptive authenti-
cation mechanism, Multi-item Passphrases, which is designed to mitigate
offline password-guessing attacks. For example, “11th July 2018, Nan-
jing, China, San Antonio, Texas, research” is a multi-item passphrase. It
dynamically monitors items and identifies frequently used items. Users
will then be alerted when there is need to change their passphrases based
on the observed trend (e.g., when a term used in the passphrase consists
of a popular item). We demonstrate the security and effectiveness of the
proposed scheme in resisting offline guessing attacks, and in particular
using simulations to show that schemes based on multi-item passphrases
achieve higher security and better usability than those using passwords
and diceware passphrases.

Keywords: Offline guessing attacks - Self-adaptive - Authentication
Passphrases

1 Introduction

Access control schemes, such as those based on biometrics, graphical passwords,
and hardware tokens [1,11], are fundamental in ensuring the security of systems
and data. Due to the associated benefits of using (textual) passwords (e.g., low
cost, and ease of use and implementation), the latter is the most commonly used
form of authentication and likely to remain popular in real-world applications.
There have been a number of incidents where hashed passwords were exfil-
trated or leaked due to the servers being compromised (e.g., by exploiting
existing vulnerability(ies) in the servers) [4,8]. As most user passwords are
human-memorable with low entropy [14,24], it would also be easy to brute-force

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019
Published by Springer Nature Switzerland AG 2019. All Rights Reserved

F. Breitinger and I. Baggili (Eds.): ICDF2C 2018, LNICST 259, pp. 204-221, 2019.
https://doi.org/10.1007/978-3-030-05487-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05487-8_11&domain=pdf
https://doi.org/10.1007/978-3-030-05487-8_11

Multi-item Passphrases 205

such passwords offline, particularly using advanced probabilistic password guess-
ing/cracking techniques [13,15,17]. In other words, organizations can no longer
rely on only salt and hashing to protect user passwords.

In this paper, we propose a self-adaptive approach, Multi-item Passphrases. A
multi-item passphrase is a sequence of multiple items. For example, “3rd August
2005, Jack, wife, holiday, Maldives” is a multi-item passphrase. Bonneau et al. [3]
explained that passphrases are vulnerable to guessing attacks in practice, because
users select popular words in natural language. Our approach is designed to mit-
igate this limitation because Multi-item Passphrases can self-adaptively remove
popular words. In other words, our approach builds on existing password-based
authentication and hence, will be significantly less expensive for e-commerce
organizations to adopt this approach (rather than one that requires a complete
overhaul of the entire system).

Our approach monitors items that are being used and flags frequently used
words in a self-adaptive way. The items in a multi-item passphrase can be input
in a different order than initially enrolled. The proposed Multi-item Passphrases
approach includes our self-adaptive algorithm, which is designed to recognize
and remove popular items dynamically. To demonstrate the potential of this
approach, we build three text password-based authentication systems for eval-
uation. Findings from the quantitative experiment show that multi-item pass-
phrases achieve higher security and better usability than passwords and diceware
passphrases. The participants also rated multi-item passphrases higher. We also
evaluate participants’ attitude towards frequent passphrase changes and sum-
marize their remarks.

In the next section, we will describe the relevant background materials.

2 Background

Offline attackers are able to guess user private passwords correctly from the files
of hashed passwords, mainly due to advances in computing technologies and the
low entropy of the passwords (e.g., users selecting easy-to-remember passwords
and the set that comprises these passwords is small).

For simplicity, we consider a setting with two users, Alice and Bob. All the
possible passwords in the password space constitute the set P. In theory, Alice
can choose any password in P. In fact, Alice only selects those that are easy to
remember in P, say set A. In other words, passwords in A (i.e., P — A) are hard
to remember for Alice, and hence Alice does not choose passwords in A. The
same can be said for Bob, where Bob does not choose passwords in B = P — B,
where B is the set of easy-to-remember passwords for Bob.

In reality, there are passwords that are deemed to be easy to remember by
both Alice and Bob. Thus, Alice’s password set overlaps Bob’s: A B #), which
is illustrated in Fig.la. If there are three users: Alice, Bob and Charlie, then
these three users’ password sets contain certain common passwords (see Fig. 1b).
If there are more users, they are most likely to share common passwords (see
Fig. 1c). This is evident from several real-world incidents [15,24]. The implication

206 J. Shen et al.

of this is that these commonly used passwords (the central dark circle in Fig. 1¢)
can then be used to facilitate password guessing, and this is also leveraged in
password cracking tools such as John the Ripper.

Therefore, in this paper, we seek to remove the overlapping user password
sets, such as the central dark circle in Fig. lc.

1D

Fig.1. (a) The area of circle A represents all potential passwords that Alice may
choose, the area of circle B represents those that Bob may choose. Alice’s password set
overlaps Bob’s: A B # . (b) Alice, Bob and Charlie’s password sets contain common
passwords: A\ B[C # 0. (c) Users’ password sets contain common passwords. The
central dark circle are the common passwords for all users.

Our proposed Multi-item Passphrases approach is based on the premise that
if both Alice and Bob construct their passwords independently and in a way
that both their potential password sets are different (i.e., A()B = (), then the
adversary will have no leverage in the password guessing. We will present the
proposed approach in the next section.

3 Proposed Multi-item Passphrases Approach

Our approach seeks to identify and remove popular passwords from the password
space.

3.1 Passphrase

There are a number of questions we need to consider. First, if a specific password
is popular, should we remove the whole password or some characters in this
password? If we do the former, how do we address other passwords that similar
to this one and how do we define this kind of similarity? If the latter, which
characters in this password should be removed? Additionally, there are only 95
printable characters in total, if we remove some characters, then the password
space shrinks fast. Hence, we utilize passphrases instead of passwords.

A passphrase composes of items, and these are mainly English words. Com-
mon English words include nouns and noun phrases, such as “sun”, “flower”,

Multi-item Passphrases 207

salt|[l; salt||[l;y - salt|[L;

[HASH] [HASH] --- IH:SH]

RS et s e s i

Fig. 2. The process from a user’s passphrase to the final digital digest. The items in a
passphrase are sorted in this process.

“Romeo and Juliet”. As there are significantly more numerals and some num-
bers are private to users (e.g., concatenation of user’s and user next of kin’s
birthdays), attackers will take a longer time to correctly guess the numerals.
Verbs and nouns can form sentences, and sentences may be clues to the attack-
ers. Hence, we do not suggest users select a verb as an item. Adjectives and nouns
always constitute frequently-used set structures, which decrease the attackers’
guessing difficulty. Hence, we also do not suggest users select an adjective as an
item. In order to enrich the item space, characters (including English letters, dig-
its and symbols) and their arbitrary combinations are also considered as items
in passphrases.

3.2 Modeling

The noun space is INy, the noun-phrase space is INs, the numeral space is INg3,
and the character space is INy. N = IN; (N3 | JIN3 [JIN4. The total number
of nouns, noun phrases, numerals, character combinations in IN is n = |IN|.
Each noun, noun-phrase, numeral, or character combination is an item, and
each item belongs to IN. IN is the item space. A passphrase P consists of k items:
P ={L,,L,,5L,,....L, }. Each item is sorted by alphanumeric order in IN. For
example, if r < s, I, < I. Each passphrase P is just a set of items whose order
does not matter. For example, if P; = {I,,I;} and Py = {I,, 1.}, then P; = Ps.
Here, r, s, k, i1, 19, i3, ..., i are all natural numbers.

When a user creates an account and specifies a passphrase P =
{L;,,1;,, 1, ..., I, }, the authentication system of the server computes the dig-
ital digest of this passphrase P. The authentication system needs to sort the
items in the passphrase P because the user can input these items in any
order. Without loss of generality, we assume i; < s < i3 < ... < fk. First,
the authentication system generates a random salt value for this passphrase.
Then, it computes the hash value for each item attached this salt with a
hash function HAsH: Hy = HasH(salt|L;,), Ho = HasH(salt|l;,), Hs =
HasH(salt||L,), ..., H, = HAsH(salt]|T;,). After that, the authentication system
iteratively computes HMAC values with an HMAC function HMAC: hmac; =
Hwmac(salt, Hy), hmacy = HMAC(hmacy, Ha), hmacs = HMAC(hmacs, Hs), ...,
hmac,, = HMAC(hmacg—1, Hy). Finally, it computes the digest with a slow hash
function SLOWHASH: digest = SLOWHASH(hmacy,). These procedures are illus-
trated in Fig. 2.

208 J. Shen et al.

Prior to computing the final digital digest with the slow hash function, we
use salt, a hash function and an HMAC function to preprocess each item. salt
is used to prevent offline attackers from building potential rainbow tables in
advance. We use the hash function to avoid the need to keep plaintext items of
passphrases in the memory. We use the HMAC function to turn each passphrase
and its corresponding salt into the final digital digest. The SLOWHASH function
is used to increase the time required for offline guessing attacks. In other words,
the model is designed to increase the difficulty of offline attacks.

The authentication system stores the final digital digest with the account
name and the salt value in a disk file, which is used for verifying the account
information when a user logs on each time.

3.3 Usage

When a user creates an account, the authentication system will prompt the user
to select passphrases. The user may select some nouns, noun phrases, numerals or
character combinations to form the passphrase. A user can, for example, choose
the items for the passphrase based on something that only the user knows (e.g.,
a particular event such as a meeting) and can remember easily. For instance, a
user selects “11th July 2018, Nanjing, China, San Antonio, Texas, research” to
form the passphrase associated with the research collaboration between teams
from Nanjing, China and San Antonio, Texas, and the kickoff meeting was held
on July 11th, 2018. In other words, passphrases can be personalized and pri-
vate to the users. Other example multi-item passphrases include “smile:-), @_Q,
0 * k) (—elims” and “M_08032005, M_Jack, M_wife, M_holiday, M_Maldives”.
After specifying the passphrase, the user can then log on the system using the
passphrase. The input order of the items in a passphrase is irrelevant.

4 Self-adaptive Algorithm

4.1 Definitions and Assumptions

Definition 1. § denotes the least upper bound of the total number of times
needed to correctly guess a secure cryptographic secret key. If the least upper
bound of the total number of times to correctly guess a password is no less than
0, then the password is secure.

A cryptographic key is randomly generated. If the b-bit key is the shortest
secure key, then § = 2°. A password is selected by a user. Given a password, if
the number of guesses to break this password is at least 2°, then this password
is secure and cannot be brute forced by the attackers in a reasonable amount of
time. We give the following assumption.

Multi-item Passphrases 209

Assumption 1. § = 2128,

Here, 6 = 2'28 means that a 128-bit cryptographic key is currently secure.
With advances in hardware and software, we need to increase the value of §
accordingly. Multi-item Passphrases is robust, and it is not affected by the exact
value of 6. 6 = 2'28 in Assumption 1 is for demonstration purpose only.

Definition 2. ¢ denotes a maximal negligible probability of occurrence. If the
probability of an event is not greater than €, then this event is negligible and
unlikely to happen. However, if the probability of an event is greater than €, then
this event is non-negligible and likely to happen.

Assumption 2. ¢ =278,

For example, consider an event: p users select the same item (p > 2). Assume
that each item is selected with equal probability in the item space IN, we can obtain
P, the probability that p users select the same item: P = |IN|7P. If P > ¢, this
event is likely to happen; otherwise (i.e., P < ¢), this event is unlikely to happen.

4.2 Algorithm

In order to explain the self-adaptive algorithm, we start with the simplest case
and work our way up to the general case. Consider the simplest case: there are
only two users, Alice and Bob. Alice chooses a passphrase P4, which consists
of |P4| items, and Bob chooses Pp comprising |Pg| items. P4 and Pg have ¢
identical item(s): [PoNPp| = q, ¢ > 1. Pp,p,|=q denotes the probability that
q item(s) are identical in P4 and Pp. Assume each item is selected with equal
probability in the item space IN, and n = |IN|, we obtain the following equation:

n—
P _ () () (oa) W

[PaNPsl=¢q (n)(n)

[Pal/ \|PB|

If Pp,npyi=q < € then P4 NPy are popular item(s). Reasons are as follows:

It is unlikely that both Pp,np,1—q < € and [Pa NPp| = ¢ > 1 are true
according to Definition 2. Because it is the established fact that |[P4aNPg| = ¢ >
1, which must be true, it is false that Pp,~p, =4 < €. Therefore, Pip,qp,1=q > €
This means that Alice and Bob select these ¢ item(s) with a higher probability
in IN. Hence, P4 N Py are popular item(s).

Thus, if the value of Eq. 1 is not greater than €, then the self-adaptive algo-
rithm should remove P4 N Pg from IN and Alice and Bob should change their

passphrases.
Consider the general case: there are u users in the system and n = |IN|.
P P
P denotes the chance of | (| P;| = ¢, where 2 <p <wu,1 < g < mi{l |P;]:
. =

D
! ‘ml Pil=a i=1
i=

S L ol (1)
() (e 2e) I (' Pil—g q)
Py = =2 : (2)

210 J. Shen et al.

p
Similarly to Eq. 1, when both P| B pie <eand | () Pi| = g, one of the two

N Pil=q i=1
i=1
P
must be false. Since | (] P;| = ¢ is the established fact, P| B o < e is false.
i=1 1 Pil=q
p
Therefore, P‘ A p > ¢ and () P; are popular items. The self-adaptive algo-
il=q i=1

i=1
p
rithm removes () P; from IN, and these p users should change their passphrases.
i=1
When a new passphrase P* is submitted to the system, we need not compute

Eq. 2 with all the passphrases U {P;} because those passphrases U {P:}—{P*}

have been handled before P* JOHlS in. Hence, the self-adaptive algorlthm for the
general case (see Algorithm 1) is efficient.

Algorithm 1. Self-Adaptive Algorithm for the general case

u u
Input: P, U {Pz} //Input the passphrases, P* € |J {P:}.
=1 i=1
Output: P, N //Output the popular items, P C N.
u
1: S— U{P}—-{P} //S contains what are handled, P* is a fresh one.
=1

2: Comp_are P* to every element in S //To see whether there are identical item(s).
3: Find all distinct groups that p passphrases from S which have the same ¢ item(s)

¥ P
as P //That is, |(P)NP*|=q>1.
i=1
4: if There is no passphrase from S that has the same item as P* then
5: Exit the algorithm //Find no identical item(s), so exit.
6: end if
7: for each group that p > 1 do //If no such group, do Line 4 to Line 6.
N P
8: P — (n 'PZ) ﬂP* //For convenience, let P denote (fp] Pi)P*.
i=1
9: if P|7’\ e and |P| = g then //Pip=q < € s false; |P| = q is the established fact.
10: N~ N+ P //P are q popular item(s), which are added to WN.
11: Set these p 4+ 1 users’ PassphraseStatus fields to “1”
12: end if
13: end for

Once a user registers or changes a passphrase, the self-adaptive algorithm exe-
cutes. If the self-adaptive algorithm asks some users to change their passphrases,
then these requests will be recorded in the disk file that stores the account infor-
mation. The main structure of this disk file is as below:

|User Name|salt|Digital Digest| PassphraseStatus|

The PassphraseStatus field stores the status of the corresponding user’s
passphrase. The default value of this field is “0”. If the self-adaptive algorithm

Multi-item Passphrases 211

asks a user to change the passphrase, then this user’s PassphraseStatus field is set
to “1”. When a user logs on with success, if the value of this user’s PassphraseS-
tatus field is “1”, this user is asked to change the passphrase at once. If this user
changes the passphrase successfully, then the value of this field is reset to “07;
otherwise, the system rejects this user’s further access until this user changes
the passphrase successfully.

It is noteworthy that the self-adaptive algorithm does not directly compare
the plaintext items of different passphrases other than the hash values of the
items. All hash values of the items for every users’ passphrase are kept in memory.
The plaintext passphrases are discarded. For the purpose of resisting the rainbow
table, we hash every item with the attached salt of the corresponding passphrase.
This is performed to prevent a malicious insider from dumping the contents
of memory and learning all the passphrases. The item comparison of different
passphrases incurs little cost.

We do not employ the slow hash function to protect the items in memory just
because slow hashing is time-consuming and Eq.2 (see Line 9 in Algorithm 1)
needs to compare each hashed item with attached salt. As each user’s salt is
generally different, it will need a lot of time if slow hashing is employed in the
items in memory especially when there are millions of users in the system.

The digital digests of every passphrase are stored in the disk file. When
rebooting the server, all the hash values of the items of every passphrase in
memory will disappear. However, it does not matter since the system can rec-
ognize users because the disk file records the digests of user passphrases. The
removal of the hash values in the memory results in S = (J in Algorithm 1. If the
rebooting is intentional, then all the hashed items in memory can be dumped
before rebooting and restored after rebooting. If the rebooting is accidental,
as users log on successively, S is filled up again. The accidental rebooting does
not affect the registered user passphrases, but newly registering user passphrases
may be under the influence of the accidental rebooting because S will not become
full swiftly after the accidental rebooting. The solution to the accidental reboot-
ing is simple: rerun Algorithm 1 for these newly registering user passphrases as
long as S is changed by those registered user passphrases. The rebooting of the
server does not destroy the self-adaptive algorithm (i.e., Multi-item Passphrases
is reliable).

Scaling up is also not a concern, although Algorithm 1 might be time-
consuming. For example, according to the PassphraseStatus field of the disk
file, users can change their passphrases in a timely fashion. Without the slow
hash operation, the system can protect user passphrases ahead of offline attack-
ers. Moreover, we can obtain the value of Eq. 2 by a look-up table, so as to avoid
unnecessary repetitive computation.

4.3 Item Space Construction

There are two methods to construct the item space: the direct method and the
indirect method. The direct method is to set a large table representing IN, all the
potential items are contained in this table. When need to remove some popular

212 J. Shen et al.

items selected by users, just remove them from this large table. The indirect
method is to set a table representing IN. The items outside this table are all
feasible items that users can select. Once need to remove some popular items
chosen by users, just add them into this table.

We adopt the latter indirect method. Users are not allowed to select items
in the table IN. All of the elements in IN are generated dynamically by the self-
adaptive algorithm (see the 10th line in Algorithm 1). As a supplement, we
can also add popular words to IN in advance so as to stop users choosing these
popular items.

The most main reason we do not employ the former but the latter is that
a direct item space table IN exposes users’ password sets and is equivalent to a
word list of a password cracking tool, which helps attackers. Instead, the table
IN can include word lists of existing password cracking tools in advance, which
resists password guessing attacks.

4.4 Size of Item Space

Because we take numerals and character combinations into account, the actual
size of the item space is infinite. For maximum convenience of users, we manage
to make our approach easy to use on the condition that only English words
belong to the item space.

Given a k-item passphrase P, according to Definition 1, for security, the
number of guesses to certainly crack P should be at least §. is made up of
two parts: § = d; X do. Part 1, 41, derives from the traversal of (Z) distinct
passphrases. Part 2, do, is the number of cycles for slow hash, which stems from
the slow hash function in the model of Multi-item Passphrases.

A frequently-used slow hash function is berypt [18]. We take berypt as an
example of the slow hash function in this paper. In berypt, 6o = 2%t cost is
an adjustable parameter. According to Assumption 1, 2!2% = (7) x 2¢s*, We
assign 88 to cost and evaluate n with different k. The detailed results are listed
in Table 1.

Table 1. Size of item space

kln (61 =285 = 1) | n (61 = 2%°, 6, = 2%9)
2>2.6 x 10*° 1,482,911
3/>1.2x10" 18,756
419,506,325,306 2,268

5 132,496,421 669

6 (7,910,346 307

711,080,111 181

Multi-item Passphrases 213

When the slow hash function is out of use, 62 = 1, §; = 2!?%, and n exceeds
one million even though k£ = 7. Because there are not so many nouns in English,
the slow hash function is necessary to our approach in consideration of usability.

When cost = 88, 6, = 2% and §; = 2%°. Assume the hash time of the slow
hash function is 1 ms when cost = 88. The average time that attackers crack
a passphrase equals 1 ms times 23?, which means a large time span for more
than 17years. It is a time span long enough that we believe the passphrase is
secure. In order to ensure this level of security of a passphrase, if £ = 7, the item
space needs only 181 items; if £ = 3, the item space needs no more than 20,000
items. At the same time, there are 218,632 words inside the Second Edition of
the Ozford English Dictionary, over half of them (more than 100,000 entries) are
nouns, and noun phrases are much more [6,16]. Hence, provided the slow hash
function comes into use, the item space is big enough to actualize our approach
Multi-item Passphrases.

4.5 Relationship Between 6 and 6§, = 2¢°5¢

When hardware computing speed increases, § and §; = 2°°t should be aug-
mented correspondingly. Thus, 6; need not be changed because § = §; x 2°°5¢,
as explained using the following example:

Assume the hash time of the slow hash function is 1ms when cost = 20,
and 6; = 240, then 6 = 2°° means a large time span for more than 34 years.
If hardware computation speeds up 1000 times, the iterative times of the slow
hash function dy = 220 is reduced from 1 ms to 1 microsecond. Then, we adjust
cost from 20 to 30, remain §; = 240, and § = 270 still means a large time span
for more than 34 years.

Hence, we do not need to expand the passphrase space as hardware computing
speed improves. Multi-item Passphrases is a stable approach.

We assume § = 2128 in Assumption 1 and assign 88 to cost in Table 1. They
are just examples for demonstration purposes. In fact, because § = §; x J2 =
81 x 2¢9%t we can always obtain an appropriate value of § through adjusting the
value of cost as long as d; is large enough such as 6; = 2%°.

4.6 Parameter Values

n can be assigned €% in the self-adaptive algorithm although the actual item
space is boundless. In Eq. 2, when n is assigned no less than ¢~%-%, different users
are restricted from selecting the same item; when n is assigned less than e %2,
the smaller n is, more of the same items can be selected by different users. We
may decrease the value of n in order to reduce users’ frequency of changing their
passphrases due to popular items.

In Assumption 2, we set € = 2780 which is a widely used value in the cryp-
tographic literature.

k is a small integer between 3 and 20 generally, which is used to strike a
balance between security and the usability of passphrases. In general, given an

214 J. Shen et al.

item space, the larger k is, the more secure passphrases are. The smaller k is,
the more usable passphrases are.

o1 = Zk (Z)

5 Experiments

We performed a series of experiments to evaluate the multi-item passphrases,
using an online website we built. There were four experiments on this website.
These experiments contained three text password-based authentication systems:
passwords, multi-item passphrases, and diceware passphrases [19]. For the exper-
iments, we recruited a total of 372 undergraduate students, aged between 18 and
23, from the school of management. There were 189 female and 183 male par-
ticipants. Our experiments were approved by Nanjing University’s IRB.

We randomly grouped these 372 participants into four groups by their student
numbers, in order to obtain four independent samples at random: Group 1: 86
persons for Experiment 1; Group 2: 81 persons for Experiment 2; Group 3: 86
persons for Experiment 3; and Group 4: 119 persons for Experiment 4.

The experiments were divided into two phases: day one and day four (i.e.,
three days after they had started the experiment). In the second phase (i.e., day
four), only 293 participants (149 females and 144 males) returned to complete
the experiments.

Group 1: 68 persons
— Group 2: 74 persons
Group 3: 73 persons
— Group 4: 78 persons

The experiment setup is now explained below.

Experiment 1: Passwords. We asked the recruited participants to visit our
website on a certain day. They were asked to register and log on to their accounts
using their user credentials. Their account names were arbitrary, and the pass-
words they specified must include at least three of the following four character
types: lowercase English letters, uppercase English letters, numbers, and sym-
bols, and the passwords were at least 16 characters long.

Three days later, we asked them to access our web site again and log on
to their accounts. On this occasion, however, they were presented with their
account names and they only needed to input their passwords. Participants
were allowed to try as many times as possible, if they had entered an incorrect
password. Then, we asked the participants to comment on the usability of this
authentication system.

Experiment 2: Multi-item Passphrases. In this experiment, we assigned
e 95 tonin Eq. 2. Participants were asked to register and log on to their accounts
using their chosen multi-item passphrases on our web site on a certain day. The
passphrases must include five or more than five unpopular items and the order of
these items was irrelevant. If an item they specified was popular, then they were

Multi-item Passphrases 215

asked to change their passphrases. Similar to Experiment 1, the participants
returned three days later to enter their passphrases. However, if an item in their
passphrases had become popular during these three days, then they would be
asked to change their passphrases when they logged on.

We asked for their comments on the usability of this authentication system,
and particularly the following questions:

Q(1) How do you feel about the need to change your passphrase (repeatedly)
when you select a popular item during account registration?

Q(2) How do you feel about the need to change your passphrase because others
selected the same item(s) as you?

To these two questions above, we provided the following four options for the
participants:

(A) Tt is good, because now I know which item is popular and can avoid using
such item(s) from now on.

(B) T can accept it in order to ensure that my account is secure.

(C) Tt annoys me a little as I have to think of a different passphrase.

(D) It is absolutely unacceptable!

Experiment 3: Diceware Passphrases. Participants were told to register and
log on accounts using diceware passphrases, which include five ordered diceware
words selected at random from the diceware item list [19]. Three days later,
they were asked to log on to their accounts on our website and comment on the
usability of this authentication system.

Experiment 4: Rating. Participants were asked to finish all of the experiments
in Experiments 1, 2 and 3. After that, based on usability and security, they were
asked to rate these three password-based authentication systems where 1 is the
lowest (worst) and 3 is the highest (best). They had to also provide a reason for
the ratings.

5.1 Findings I: Multi-item Passphrases vs. Passwords

Quantitative Results. The findings are as follows: after creating their
accounts, 28 of the 68 participants remembered their passwords and logged on to
their accounts successfully three days later in Experiment 1; 40 of the 74 partic-
ipants remembered their multi-item passphrases and logged on to their accounts
successfully three days later in Experiment 2.

Strength. In Experiment 1, we asked participants to specify a 16-character-
long password although most passwords were only 8 characters long, and the
password space of a 16-character-long password is 956,

In Experiment 2, without even considering the numerical and character com-
binations, the total number of nouns and noun phrases is significantly larger
than 669 based on what we obtained from the Oxzford English Dictionary [6,16].
Thus, according to Table1, n >> 669 and k > 5, so §; > 240 and § > 2'2® when

216 J. Shen et al.

dy = 288, Because 6 > 2'28 >» 95!6 considering only English words, the multi-
item passphrases’ space is significantly larger than that of passwords. Hence,
taking the numerical and character combinations into account, the strength of
multi-item passphrases in Experiment 2 is very much greater than that of pass-
words in Experiment 1.

Recall. Let p; and py be the true proportion of users who can recall successfully
their multi-item passphrases and passwords, respectively.

Hy :p1 = pa.
Hy:pi > pa.
a=0.1.

The null hypothesis of Hy is that multi-item passphrases and passwords are
both equally hard to remember, and the alternative hypothesis H; indicates
that multi-item passphrases are easier to remember than passwords. For the
hypothesis testing, we use “Two Samples: Tests on Two Proportions” [23]:

o P1— P2 (3)
VG +)60 -)

In Eq. 3, the sizes of the two independent samples are n; and ns, respectively:
ny = 74,no = 68. The point estimates of p; and py are p; and py for the two

samples respectively, and they are computed as p; = % and po = %. The
pooled estimate of the proportion is p = 29428 Thus, z = 1.53. Therefore,

74168
P = P(Z > 1.53) = 0.0630. Hence, we reject Hy (o = 0.1 and p = .0630) and

accept Hi. In other words, multi-item passphrases are easier to remember than
passwords.

5.2 Findings II: Multi-item Passphrases vs. Diceware Passphrases

Quantitative Results. The findings are as follows: after creating their
accounts, 19 of the 73 participants remembered their diceware passphrases and
logged on to their accounts successfully three days later in Experiment 3; 40 of
the 74 participants remembered their multi-item passphrases and logged on to
their accounts successfully three days later in Experiment 2.

Strength. In Experiment 2, there are a large number of non-popular items
(e.g., numeric and arbitrary combinations of characters). Since the diceware list
only contains 7776 items, the diceware passphrase space is PY776 = 5!(77576) =

120(77576) in Experiment 3. Hence, the strength of multi-item passphrases is much
greater than that of diceware passphrases.

Recall. The findings here echoed those of Findings I, in the sense that multi-item
passphrases are much easier to remember than diceware passphrases (p < .0001).

Multi-item Passphrases 217

5.3 Findings III: Usability Under Frequent Passphrase Changes

The breakdown to the questions is as follows: Question (1): 41 participants chose
(A), 68 participants chose (B), 42 participants chose (C), and one chose (D); and
Question (2): 19 participants chose (A), 67 participants chose (B), 46 participants
chose (C), and 20 participants chose (D). The findings are also reported in Fig. 3.

B cuestion (1)

68 67 00 Question (2)

60

1
10
2
! W 0
O | I— - —

Mm\)de &A\Am’\tx\de KB\ande Kclxmmde ®)

#participants

Fig. 3. Attitudes to frequent passphrase changes.

From the findings, we observe that the majority of the participants were
positive towards Question (1), since they might be used to frequently changing
their passwords due to stringent password composition policies (although they
might not enjoy doing so, and this is beyond the scope of this study).

Participants were generally more negative towards Question (2) because they
were new to the fact that they had to change the passphrase for their existing
account just because it comprised a popular item. This is a mindset that will
require some adjusting. Users could, for example, be educated on why they need
to avoid popular passwords/passphrases (e.g., the overlapping parts in Fig. 1c).

5.4 Findings IV: Rate Three Authentication Systems

In Experiment 4, 78 participants scored the three systems and the findings are
shown in Table 2.

From Table 2, we observe that multi-item passphrases system has the high-
est score of 2.58, followed by passwords (score 1.87) and diceware passphrases
(score 1.55). The average score of multi-item passphrases is much higher than
those of the other two (Kruskal-Wallis test, p < .0001). The highest rating
score suggests that the participants strongly believe that Multi-item Passphrases
is a better password-based authentication system than passwords and diceware
passphrases.

218 J. Shen et al.

Table 2. Ratings for the three authentication systems

Systems #Score Average score
H#1 | #2 | #3

Multi-item passphrases | 4 |25 |49 |2.58

Passwords 26 136 |16 |1.87

Diceware passphrases |48 |17 |13 |1.55

5.5 Findings V: Qualitative Results from Participants’ Remarks

Participants in Groups 1, 2, and 3 commented on the respective authentication
systems, and participants in Group 4 explained their ratings. Some interesting
findings are as follows:

(1) Although the space for passwords is much greater than the space for dice-
ware passphrases (i.e., 95'¢ > PI77%) many participants believed that
“diceware passphrases were more secure than passwords”. They did not trust
the security of passwords, which is perhaps because several participants “had
the experience of having the passwords stolen”.

(2) Many participants commented that “diceware passphrases were secure”, but
at the same time, they also said they “would never consider making use of
it because it was too difficult to remember” .

(3) Participants’ security awareness was strong, which is not surprising consider
the age group of these participants (i.e., digital natives) and their educa-
tional background. Some participants even commented that they hoped to
see the next release of our research.

We now present a snapshot of the participants’ remarks on the three
password-based authentication systems:

Passwords. “A 16-character password was too long.” Although it was the most
commonly used, “it was somewhat difficult to recall” as it must contain three of
the following four character types: lowercase English letters, uppercase English
letters, numbers, and symbols. Hence, “A shorter or simpler password was bet-
ter” for using but was easy to crack.

Multi-item Passphrases. “It was the best of the three.” “It was a good tradeoff
between user experience and security.” “The order of items in a passphrase was
indifferent, which was humanized.” “The system could find popular items, which
was good.” However, “five items were a bit too many”.

Diceware Passphrases. It was picked randomly, so “it was very hard to remem-
ber” although “it was secure” because of its randomness. “It was a painful and
difficult experience” for users.

Multi-item Passphrases 219

6 Related Work

Passwords have been used for decades, and one known limitation is password-
guessing attacks such as offline guessing attacks [2,5,7,15]. Passphrases may
be a slightly better option than passwords because passphrases are generally
harder to guess, with minimal implementation changes or disruption to user
experience [22].

A closely related work is Diceware [19], which comprises a Diceware list. In
order to pick passphrases, Diceware selects items at random from the Diceware
list. Although Diceware is simple and straightforward, participants rated our
approach to be better than Diceware in terms of usability and security (see
Findings II).

Another similar related work is Telepathwords [10]. Telepathwords predicts
users’ passwords with several fixed patterns to prevent users from creating weak
passwords. These patterns include common character sequences, keyboard move-
ments, repeated strings, and interleaved strings. This particular approach relies
on the pattern of a password, while Multi-item Passphrases focuses on concrete
elements (popular items) in passphrases. It is not sufficient to make use of finite
fixed patterns to avoid weak passwords. For example, Telepathwords can detect
“abcedefg”, but cannot detect the weak password “gfedcba” because Telepath-
words does not consider reverse character sequences. The constructive patterns
of passphrases are much more complicated than those of passwords. Hence,
Multi-item Passphrases does not employ fixed patterns to avoid weak passphrases.
Instead, our approach prevents the use of popular items in user passphrases.

In the Bloom filter-based approach proposed by Schechter et al. [20], a key
limitation is a high false positive (i.e., unpopular passwords being wrongly
flagged as popular). Moreover, their approach cannot resist offline attacks due
to the inherent weakness of the Bloom filter.

Segreti et al. [21] undertook a user study, focusing on the approaches of
Schechter et al. [20] and PathWell [12]. PathWell is similar to Telepathwords.
Key differences between the study of Segreti et al. and ours are: the former
focuses on passwords and does not include any qualitative study.

When constructing the item space, we construct a complement of the item
space: IN. The concept “a complement of the item space” is similar to the pass-
word blacklist studied by Habib et al. [9]. A key difference between them is that
the complement of the item space is automatically generated and dynamically
added in our approach.

7 Conclusion

It may not be realistic to expect that password-based systems will fade away
in the near future, and hence we need to design sufficiently robust password-
based authentication systems to mitigate existing known limitations (e.g., users
selecting weak and easy-to-guess passwords). Thus, this motivated the design of
our proposed Multi-item Passphrases approach. We demonstrated the security of
the proposed approach, as well as evaluated its performance.

220 J. Shen et al.

Acknowledgement. We thank the anonymous reviewers for their constructive feed-
back. This work has been partly supported by National NSF of China under Grant No.
61772266, 61572248, 61431008.

References

1. Biddle, R., Chiasson, S., Van Oorschot, P.C.: Graphical passwords: learning from
the first twelve years. ACM Comput. Surv. (CSUR) 44(4), 19 (2012)

2. Bonneau, J., Herley, C., van Oorschot, P.C., Stajano, F.: Passwords and the evo-
lution of imperfect authentication. Commun. ACM 58(7), 78-87 (2015)

3. Bonneau, J., Shutova, E.: Linguistic properties of multi-word passphrases. In:
Blyth, J., Dietrich, S., Camp, L.J. (eds.) FC 2012. LNCS, vol. 7398, pp. 1-12.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34638-5_1

4. Burnett, M.: Today I am releasing ten million passwords, February 2015. https://
xato.net/passwords/tenmillion-passwords/

5. Chatterjee, R., Athayle, A., Akhawe, D., Juels, A., Ristenpart, T.: pASSWORD
tYPOS and how to correct them securely. In: IEEE Symposium on Security and
Privacy, pp. 799-818 (2016)

6. Oxford Living Dictionaries: How many words are there in the English language?
(2018). https://en.oxforddictionaries.com/explore/how-many-words-are-there-in-
the-english-language/

7. Wang, D.;, Cheng, H., Wang, P., Yan, J., Huang, X.: A security analysis of hon-
eywords. In: Proceedings of the 25th Annual Network and Distributed System
Security Symposium (2018)

8. D’Orazio, C., Choo, K.K.R., Yang, L.T.: Data exfiltration from Internet of Things
devices: iOS devices as case studies. IEEE Internet Things J. 4(2), 524-535 (2017)

9. Habib, H., et al.: Password creation in the presence of blacklists. In: Proceedings
of USEC (2017)

10. Komanduri, S., Shay, R., Cranor, L.F., Herley, C., Schechter, S.E.: Telepathwords:
preventing weak passwords by reading users’ minds. In: USENIX Security Sympo-
sium, pp. 591-606 (2014)

11. Krol, K., Philippou, E., De Cristofaro, E., Sasse, M.A.: “they brought in the hor-
rible key ring thing!” analysing the usability of two-factor authentication in UK
online banking. In: Symposium on NDSS Workshop on Usable Security (2015)

12. Leininger, H.: Libpathwell 0.6.1 released, 2015 (2015). https://blog.korelogic.com/
blog/2015/07/31/libpathwell-0_6_1

13. Li, Z., Han, W., Xu, W.: A large-scale empirical analysis of Chinese web passwords.
In: Proceedings of 23rd USENIX Security Symposium, USENIX Security, August
2014

14. Mazurek, M.L., et al.: Measuring password guessability for an entire university. In:
Proceedings of the 20th ACM SIGSAC Conference on Computer and Communi-
cations Security, pp. 173-186. ACM (2013)

15. Morris, R., Thompson, K.: Password security: a case history. Commun. ACM
22(11), 594-597 (1979)

16. OED: Dictionary milestones: a chronology of events relevant to the history of the
OED (2017). http://public.oed.com/history-of-the-oed/dictionary-milestones/

17. Paul: New 25 GPU monster devours passwords in seconds, December 2012. https://
securityledger.com/2012/12 /new-25-gpu-monster-devours- passwords-in-seconds/

18. Provos, N., Mazieres, D.: A future-adaptable password scheme. In: USENIX
Annual Technical Conference, FREENIX Track, pp. 81-91 (1999)

https://doi.org/10.1007/978-3-642-34638-5_1
https://xato.net/passwords/tenmillion-passwords/
https://xato.net/passwords/tenmillion-passwords/
https://en.oxforddictionaries.com/explore/how-many-words-are-there-in-the-english-language/
https://en.oxforddictionaries.com/explore/how-many-words-are-there-in-the-english-language/
https://blog.korelogic.com/blog/2015/07/31/libpathwell-0_6_1
https://blog.korelogic.com/blog/2015/07/31/libpathwell-0_6_1
http://public.oed.com/history-of-the-oed/dictionary-milestones/
https://securityledger.com/2012/12/new-25-gpu-monster-devours-passwords-in-seconds/
https://securityledger.com/2012/12/new-25-gpu-monster-devours-passwords-in-seconds/

19.

20.

21.

22.

23.

24.

Multi-item Passphrases 221

Reinhold, A.G.: The diceware passphrase home page, October 2017. http://world.
std.com/~reinhold /diceware.html

Schechter, S., Herley, C., Mitzenmacher, M.: Popularity is everything: a new app-
roach to protecting passwords from statistical-guessing attacks. In: USENIX Con-
ference on Hot Topics in Security, pp. 1-8 (2010)

Segreti, S.M., et al.: Diversify to survive: making passwords stronger with adaptive
policies. In: Symposium on Usable Privacy and Security (SOUPS) (2017)
Tazawa, H., Katoh, T., Bista, B.B., Takata, T.: A user authenticaion scheme using
multiple passphrases and its arrangement. In: International Symposium on Infor-
mation Theory and Its Applications (ISITA), pp. 554-559. IEEE (2010)

Walpole, R.E.: One- and two-sample tests of hypotheses. In: Probability and Statis-
tics for Engineers and Scientists, 7 edn. Pearson (2001). Chapter 10

Wang, D., Cheng, H., Wang, P., Huang, X., Jian, G.: Zipf’s law in passwords. IEEE
Trans. Inf. Forensics Secur. 12(11), 2776-2791 (2017)

http://world.std.com/~reinhold/diceware.html
http://world.std.com/~reinhold/diceware.html

	Multi-item Passphrases: A Self-adaptive Approach Against Offline Guessing Attacks
	1 Introduction
	2 Background
	3 Proposed Multi-item Passphrases Approach
	3.1 Passphrase
	3.2 Modeling
	3.3 Usage

	4 Self-adaptive Algorithm
	4.1 Definitions and Assumptions
	4.2 Algorithm
	4.3 Item Space Construction
	4.4 Size of Item Space
	4.5 Relationship Between and 2 = 2cost
	4.6 Parameter Values

	5 Experiments
	5.1 Findings I: Multi-item Passphrases vs. Passwords
	5.2 Findings ii: Multi-item Passphrases vs. Diceware Passphrases
	5.3 Findings iii: Usability Under Frequent Passphrase Changes
	5.4 Findings iv: Rate Three Authentication Systems
	5.5 Findings v: Qualitative Results from Participants' Remarks

	6 Related Work
	7 Conclusion
	References

