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Abstract. Ontological data representation and data normalization can
provide a structured way to correlate digital artifacts and reduce the
amount of data that a forensics investigator needs to process in order
to understand the sequence of events that happened on a system. How-
ever, ontology processing suffers from large disk consumption and a high
computational cost. This paper presents Property Graph Event Recon-
struction (PGER), a data normalization and event correlation system
that utilizes a native graph database to store event data. This storage
method leverages zero index traversals. PGER reduces the processing
time of event correlation grammars by up to a factor of 9.9 times over a
system that uses a relational database based approach.
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1 Introduction

With society’s ever-increasing reliance on technology, the demand for digital
forensics has risen significantly. This is noted in the 2017 Bureau of Labor Statis-
tics ten-year job outlook figures for the related fields of Forensic Technicians (up
17%) [2] and Information Security Analysts (up 28%) [3]. Part of this need is
driven by the time-consuming task of manual data correlation required for digital
forensics investigations [7].

One potential approach for automating data correlation is to leverage an ontol-
ogy [5]. An ontology creates standardized data structures for events, allowing for
relationships between heterogeneous data sources and creates data that is highly
connected, representing a graph-like structure. Using expert rules, certain pat-
terns (or subgraphs) can be identified to combine data into higher-level events [7].
Current approaches leverage the Resource Description Framework (RDF) from
the Ontological Web Language (OWL) as a storage medium [6]. OWL formatted
data is stored as tables in a relational database. However, identifying patterns in
a graph using a relational database can be slow; finding an adjacent node in the
graph representation of an ontology is an O(log2n) problem [17].
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The presented Property Graph Event Reconstruction (PGER) tool provides
fast correlations by leveraging a property graph database to speed graph traver-
sals. Utilizing the native graph property of zero-index traversal, finding an adja-
cent node can be accomplished in constant time. This provides a substantial
speed increase. PGER has been programmed to abstract forensics events from
expert generated inference rules or machine generated rules provided by the
Temporal Event Abstraction and Reconstruction (TEAR) tool [16].

In testing, PGER was able to correctly identify 65/67 startup and shutdown
events based on an 8 statement expert ruleset. Additionally, PGER automated
the correlation of web history and downloaded data (18 statements) to determine
the entry point of the file on the system and any activity involving the file on the
host system. Finally, PGER was compared to a relational database approach by
testing much longer (86 statements) machine generated ruleset that detect the
opening of Microsoft Word. In this test, PGER performed 9.98 times faster.

2 Related Work

2.1 Event Reconstruction Techniques

Due to the ever-increasing amounts of data forensic examiners have to analyze,
a focus of digital forensics research is to try and create an automated way to
consolidate data and reconstruct events [15]. In addition, many forensic inves-
tigations are for legal proceedings with strict rules regarding evidence, so it is
desirable that event reconstruction be the result of a formal theory [9]. Previ-
ous research has tried different methods to establish such a theory: finite state
machines [9], machine learning [14], and inference rules [12,19].

Finite State Machines. Finite state machines provide a mathematical foun-
dation for forensic events, providing rigor to findings [9]. Finite state machines
are constructed by working backwards from the final state and using expert
knowledge to make transitions and states, eventually ending with the events
that need to happen before the final state can be accomplished [13]. Unfortu-
nately, the number of possible variations from each final state produce very large
finite state machines and are hard to create by experts [6]. At times, the finite
state machines may be shrunk by previous events or other evidential information
[13]; however, this is currently a manual task and limits the usefulness of this
process [6].

Machine Learning. Expert-created event patterns can be complex and time-
consuming to create. Some researchers have tried using machine learning to
automatically find patterns in data. In 2006, researchers proposed a neural net-
work that found the execution of various sequences in Internet Explorer [14].
This neural network was able to reconstruct events with an accuracy of 90%.
However, neural network techniques do not show how low-level actions are asso-
ciated with other events to infer a high-level activity [6]. Since examiners were
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not able to explain why the neural network created a certain series of events,
this technique is hard to use in evidential situations [7].

Temporal Event Abstraction and Reconstruction (TEAR) is another attempt
at using machine learning [16]. Unlike neural networks, this method of pattern
matching allows humans to confirm the identified patterns and trace the high-
level events to the individual low-level events. Its algorithms create a hierarchy
of events using pattern matching in order to represent a high-level event (See
Fig. 1) [16]. At the lowest level are terms which represent an atomic event such
as a registry key modification. Each term has an action, a type, and a regular
expression to determine what events get a specific term label. A term represent-
ing a created file in a user’s document directory would have an action of ‘Cre-
ated’, a ‘file’ type, and a regular expression of ‘ˆ.*/Documents/.*$’. The next
level on the hierarchy is strings. Strings are composed of other strings and/or
terms. Next, production rules consist of both terms and strings, and provide a
successful pattern for a high-level event. This helps represent multiple paths to
the same high-level event. If a production rule with no parent finds a match in
the data, then the high-level event occurred.

Fig. 1. Temporal event abstraction & reconstruction hierarchy.
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2.2 Inference Rules

Inference rules allow forensic tools to reconstruct events by applying rules to
existing information from the device image. This method performs similarly to
Expert Systems; some tools even use an Expert System directly [19]. The rules
are used to find patterns in existing data and, if a rule matches a pattern, a
reconstructed event is created. For instance, an inference rule could look for
events that contributed to the insertion of a USB device [12]. If the rule triggers
on the appropriate registry entries, it could create a new reconstructed event
stating that the USB device was inserted. This technique requires well-structured
ontological data because the applied rules rely on the semantics of the data [6]. In
research, the FORE tool uses the expert system in the Jena Apache Framework
[19]. The Semantic Analysis of Digital Forensic Cases (SADFC) uses the ORD2I
ontology and queries on the dataset as its rule set. If a query matches a set of
data, they are combined to form a reconstructed event [6]. A tool called Parallax
Forensics (ParFor) uses its own tool to query data and functions similarly to
SADFC [20]. PGER utilizes inference rules for its expertly generated ruleset.

2.3 Graph Databases

A graph database allows the user to interact with data as nodes and edges. This
is much different from a traditional relational database that represents data
as tables. Using a graph representation can result in performance benefits for
connected data, but it is highly dependent on how the graph database model
is constructed [17]. Each graph database model is on two spectrums: the data
format and the processing method [17].

Although all graph databases represent a graph, each graph model has a
data format on a spectrum between non-native and native [17]. Non-native stor-
age converts nodes and edges to relational database tables or another format
(e.g. document-based). This can be useful if the database is large, allowing for a
straightforward way to shard the data over multiple servers [17]. For native stor-
age, the graph is the storage mechanism. This can provide performance benefits
for certain queries, as the database does not have to construct the graph before
processing [17].

Graph databases are also distinguished by their processing method on the
spectrum between non-native and native. This is how the graph handles all Cre-
ate, Read, Update, Delete (CRUD) operations [17]. Non-native processing does
not use a graph to conduct an operation. Instead, it deals directly with how the
data is stored. This style can utilize performance benefits like indexes from rela-
tional or document databases [17]. Native processing utilizes a graph to perform
CRUD operations, providing performance benefits unique to graph databases
[18]. However, not all query operations are faster in a native graph database.
Care must be taken to ensure that queries take advantage of the performance
benefits.

One of the biggest performance benefits for native graph processing is the
ability to perform an index free traversal [18]. In highly connected data, it is



Digital Forensics Event Graph Reconstruction 189

often useful to examine the relationships between different nodes. To determine
if two pieces of data share a relationship, a traditional database (non-native pro-
cessing) would need to perform a join on multiple tables. This would require at
least two index-based searches with a runtime of O(log2 n) [18]. To determine
more complex relationships, like finding if a particular walk on a graph exists,
the queries become even more complex and time-consuming. Native graph pro-
cessing allows a search on related data (data incident to another piece of data)
in constant time, otherwise known as an index free traversal [18]. Searching a
graph for a particular walk (subgraph) can be much faster by processing in a
native format.

Most ontological digital forensics research uses RDF and OWL to store event
data. Forensic of Rich Events (FORE) [19], Digital Forensics Analysis Expres-
sion (DFAX) [5], and Ontology for the Representation of Digital Incidents and
Investigations (ORD2I) [7] are all stored using these standards. OWL is typi-
cally stored as a non-native storage model; the previous examples use relational
database tables to store all triples. This means that these databases do not have
the ability for index-free traversal, making queries regarding graph structure
time consuming [18].

neo4j is a labeled property graph that is stored in a native graph format [8].
One major difference between this model and RDF is the ability to store data
in nodes, allowing for more compact graphs in certain instances [1]. neo4j also
allows for index-free traversal of the graph, allowing queries to take advantage
of relationships between nodes for rapid queries [18]. In fact, the main use of
labeled property graphs is for rapid transactions [17].

3 Property Graph Event Reconstruction (PGER)

Property Graph Event Reconstruction (PGER) performs abstraction of user
actions from digital media. It utilizes a labeled property graph to store ontolog-
ical event data, leveraging the speed of index free traversals. Events are repre-
sented in terms of artifacts and relationships, making queries easier to under-
stand and create. It also allows users to leverage quick path searching to quickly
find subgraph patterns in event data. PGER is a combination of several tools,
some were created specifically for PGER and others were re-purposed for PGER
as shown in Table 1.

PGER accomplishes event reconstruction in four processing layers (Fig. 2).
The first layer takes a device image and extracts events. The second layer con-
verts the extracted events into ontological subgraphs stored in neo4j. The nor-
malization layer ensures identical objects are represented by the same object.
Finally, the abstraction layer uses either expert rules or a machine generated
ruleset to extract higher-level events.

Each layer is designed as an atomic entity, allowing for independent opera-
tion. This design isolates versions of a database during testing or multiple cases
so they can be processed in a pipeline-like fashion. Each forensics image is repre-
sented by a separate neo4j database and is run in a separate instance of a docker
container. The next sections discuss the details of each processing layer.
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Table 1. PGER Tool Origins.

PGER Step Tool Name Existing Tool Created

Data Extraction PLASO X

TEAR Event Extractor X

Graph Conversion Logstash X

Logstash Parsers X

Python Script X

Normalization Normalizer X

Abstraction Expert Rules X

Application of TEAR Ruleset X

TEAR Ruleset X

Fig. 2. PGER processing layers.

3.1 Data Extraction

The first processing layer takes a device image and converts it into an interme-
diate format. This format can then be converted to a graph database in another
processing layer. There are two ways PGER can create this intermediate format:
PLASO and TEAR event extraction.

PLASO (Plaso Langar Aő Safna Öllu) converts a device image into a super-
timeline and outputs the resulting data to an elastic database [11]. The other
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method of data extraction is utilizing the TEAR event extraction. It is a C++
program that takes the device image and creates a series of event files. File table,
registry, and Windows events are among the data sources that are stored as CSV
files. A Sqlite file for each browser is also extracted for web history.

3.2 Graph Conversion

Different event artifacts, such as registry keys or prefetch information, contain
unique details that provide additional insight on the forensics image. Examples
include the values of a registry key or the time an executable was run. The
processing steps required are specific for each type of artifact.

Fig. 3. Core subgraph.

The main purpose of the graph conversion processing layer is to convert
heterogeneous event artifacts into a semantic, graph-based format. The base of
the semantic format is the core subgraph (Fig. 3). This is based on the standard
format found in SOSLA [16]. Every artifact is converted into a core subgraph
and contains an action, an object, a parser, and a time. The time is a Unix
timestamp and is unique in the database. This represents the time that an action
occurred. Multiple artifacts that occur simultaneously are linked to the same
time node. The action contains a description of an action that affects a digital
object. The object is the digital object that is affected by the action and contains
an identifying name of an object such as a URL, registry key, or file path. The
identifying name is unique in the database. Since objects are unique, they are
also indexed by neo4j, providing speed improvements during queries. If there are
different objects with the same name, such as registry keys in user hives, the
username is appended to the beginning of the identifying name. Each artifact
subgraph is combined with the existing subgraphs in the neo4j database.
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Fig. 4. File table subgraph.

File Table. The File Table parser produces at least one subgraph for each
item in a system’s file table. This subgraph adds an additional node to the core
subgraph that represents the extension of the file object. The extension node
is unique in the database. To help reduce congestion in the database, file table
times (created, changed, modified, accessed) are combined into the same action
if they occurred at the same time. The action description lists all the times that
have changed during that timestamp (‘Modified, Created Time Altered’) and a
new field is added to the action where each changed time type is an item in a
list (“[‘Modified’, ‘Created’]”).

Web History. Each web browser has its own parser due to differences in history
recording. In general, a parser records three different events: history, downloads,
and keyword searches. Figure 5 details subgraph examples. History events add
a visit ID to the core subgraph. Visit IDs link to other visit IDs to indicate a
sequence of events in a browser. Downloaded events show the location of the
downloaded object and the URL source. Keyword search subgraphs add a field
in the action node that indicates the words used in a search.

Registry Keys. All parsed registry keys that are unique for each user (user-
class.dat and ntuser.dat files) contain the core subgraph with the key value as
the object and a node with an edge to the key indicating the owner. All other
registry keys omit the user node in their subgraph. The action node contains a
field that holds the value of the registry key. Registry keys that provide more
information have an expanded subgraph.

Recent Apps (SOFTWARE/Microsoft/Windows/CurrentVersion/Search/
RecentApps/) and User Assist (SOFTWARE/Microsoft/Windows/Current
Version/Explorer/UserAssist) registry keys help provide evidence of program
execution [4]. Both keys are updated when a program is run to populate recently
used programs lists in Windows. These entries use the registry subgraph but add
an additional object node with an edge to the action, indicating the program
specific program that was executed.
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Fig. 5. Web history and download subgraphs.

Fig. 6. MRU registry subgraph.

Most Recently Used (MRU) registry entries (SOFTWARE/Microsoft/
Windows/CurrentVersion/Explorer/RecentDocs/) retain a list of recently
used files for each extension (.doc, .jpg, etc) [4]. The recently used files for each
extension are listed in ascending numerical order where 0 represents the most
recently used file. The MRU subgraph (Fig. 6) captures this data by creating a
sub-registry type node that represents the most recently used files of a particu-
lar extension. In Fig. 6, this is .ppt. The numerical order of an extension’s MRU
files are created as separate nodes to allow easy traversal of the files in order
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of use. There is also an additional object attached to the action node that was
extracted from the value of the correct registry key and indicates the used file.
The rest of the subgraph follows the standard registry subgraph.

Additional registry entries that can be processed are appcompatcache and
shellbag keys. Like recent apps and users assist entries, appcompatcache helps
provide evidence of program execution, updating registry values when a program
is executed [4]. Shellbag entries maintain UI information for folders viewed in
the Windows File Explorer [4]. These values can remain in the registry if the
original directory is deleted, possibly providing additional information on the
file system.

Fig. 7. Time tree format [10].

After an artifact has been transformed into a subgraph, neo4j performs a
transformation of the subgraph centered on the time node. Using the timetree
plugin from GraphAware, these time events are converted into a time tree (Fig. 7)
[10]. The timestamp is divided into year, month, day, hour, minute, and second
levels, and all actions are attached to the second nodes. This transformation
allows queries to search for temporally adjacent events by following the next
relationship.

3.3 Normalization

The next processing layer normalizes the neo4j database by combining
objects that are the same but have a different identifying name. For
example, MRU Registry Values only list the filename of the used file
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(Snowball Fighting(1).doc) in an object node where the file table entry
for the same file will be listed in an object node using the whole path
(C:/Users/user/Downloads/Snowball Fighting(1).doc). In order to prop-
erly see all the actions that happen on an object, these nodes need to be com-
bined. The normalization processing layer combines nodes if there is only one
match. If there are multiple matches, the node is linked to the possible matches
with the relationship called ‘POSSIBLE REAL PATH’.

3.4 Abstraction

Abstracting low-level event data into higher-level events is the final processing
layer. Abstraction in PGER uses two different sources: expert rules and data
mined rulesets.

Expert Rules. Expert forensics knowledge rules extract high-level events from
a sequence of low-level events. For example, if there is evidence of a program
execution, and a file is accessed with an extension associated with the executable
within a certain time window, it is likely that the two actions are related. These
known sequences can be quantified into rules to find specific subgraphs. Examples
of these patterns can be found in the subsequent paragraphs.

History of a File. A simple example of extracting information from the graph
database is determining a file’s history. Since every file is unique in the database,
the specific node can be expanded to list all the actions that affect the file. This
can be done with the following query:

1 MATCH (obj:object)
2 WHERE obj.filename = "<filename >"
3 MATCH (sec:Second) <-[:AT_TIME]-(act:action) --(obj)
4 OPTIONAL MATCH (obj) <-[: LINK_TARGET]-(lnkObj) --(

lnkAct:action)
5 RETURN sec.time , collect(act.action), collect(lnkAct

.action)

The first two lines find the desired object. The third line finds all the actions
and times that affect the desired object. Line four gives the history of link files
that are associated with the desired object.

Power Events. Using a combination of objects from the Windows event logs,
power events can be determined (shutdown, startup, sleep). If enabled, the Win-
dows Customer Experience Improvement (CEI) service will start and stop just
before power events. The Windows Event Log service does the same. The Event
Log also records the Windows Version and uptime when Windows powers on.
Each of these events appear at every power event and serves as the baseline
for power events for a given time window. Additional events may appear in the
shutdown/startup process: Microsoft Windows Power Troubleshooter - System
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Fig. 8. Shutdown event (Left Box), startup event (Right Box).

Fig. 9. Download/File system integration.

Returned from a Low Power State; Network Interface Connected/Disconnected;
Microsoft Windows RestartManager - Starting/Ending Session. These optional
events help increase the likelihood of a power event occurring.

Web History. Combining web history entries can show complex activities. As
mentioned previously, there are three main types of data recorded in the graph:
history, downloaded files, and keyword values. By chaining consecutive web visits
using the visit IDs and time, a sequence of visits can be obtained. Furthermore,
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downloaded files can be tracked to the destination on the host file system where
file history can be obtained (Fig. 9). This figure shows the web history entry
(1) and the downloaded location of the file (2). The subgraph also shows that
Microsoft Word opened using a prefetch file (3).

Combining Expert Rules. The previous abstractions can also combine
together to create new layers of abstraction. Figure 9 is a basic concept of this
idea. Both web history and file table information are combined to enrich an exam-
iner’s understanding of events that occurred. All actions nodes (A-D) describe
the action the user took on artifacts 1–3: opened a file directly from the Firefox
browser (A) from a specific URL (B), executing a program (C-D). The graph
database is a great way to structure abstraction using a tree-like structure as a
new node could be created, linking all actions A-D to this narrative.

3.5 Data Mined Ruleset

The second method of abstraction is to use machine generated rulesets created
by Temporal Event Abstraction and Reconstruction (TEAR). These rulesets are
much larger and more detailed than the rules generated by experts. For example,
TEAR found 86 distinct patterns for the various ways Microsoft Word opens as
accessing the program through a jump list or from a web browser affects different
artifacts. While possible for an expert to categorize and detail every variation,
it is extremely time consuming. To utilize a TEAR rulset, PGER performs a
conversion of the strings and terms from TEAR relational database into a tree
structure (See Fig. 1) that can then be converted into expert rules. These rules
are then applied to the graph in order to produce the same results as TEAR.

4 Results

PGER provides a speedup for digital forensics artifact correlation and event
reconstruction. The following tests compare PGER’s ability to find events based
on expert and machine generated rules compared to truth data and a perfor-
mance comparison of PGER and a relational database implementation using a
machine generated ruleset to find when Microsoft Word opens.

The test image was a 65 GB Window 10 image with sample activi-
ties that included: Web Browsing/Downloading Files from Microsoft Edge,
Mozilla Firefox, and Google Chrome; Microsoft Office: Creation/Manipulation of
Word, Excel and PowerPoint Files; Viewing Downloaded PDFs; Sleep, Startup,
and Shutdown Sequences; Viewing image files; Manipulating files in Windows
Explorer.

All tests were conducted on a machine with the following specifications: CPU
- i3-6100U (2 Cores, 4 Threads), RAM - 12 GB, HDD - 250 GB Samsung 840
EVO SSD, OS - Ubuntu 16.04 LTS, Docker Version - 17.09, Python Version -
3.6, Elastic Stack Version - 5.5.2, neo4j Version - 3.2.2, PLASO Version - 1.5.1.

Table 2 lists details on the size of the resultant PGER graph.
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Table 2. neo4j Database Parameters After Graph Conversion.

neo4j Database Size 656.18 MB

Node Count 1,069,671

Relationship Count 2,587,503

Processing Time 00:16:28

4.1 Expert Rule Results

The following tests evaluate PGER’s ability to accurately abstract events using
expert generated rules compared to the known activity on the device image.
The first test finds all startup/shutdown events and the second test finds all files
downloaded from a web browser.

Power Events. A power event represents a shutdown or startup on the forensics
machine. To find the power events on the device image, a power event is primarily
determined by the status of the CEI and Windows Log Services. If they are
shutdown, it indicates a shutdown event; the opposite is also true. Startup also
can contain optional Windows log entries to further bolster the evidence of a
startup event.

Table 3. Power Event Sequence (UNIX Timestamps).

Start Time End Time Event

1491971379 1491971414 Startup

1491972643 1491972656 Shutdown

1491972859 1491972888 Startup

1492112687 1492112712 Startup

1492113771 1492114425 Shutdown

After applying rules to the dataset, a total of 65 shutdown events and 67
startup events were detected. There was apparently an error in the rules as two
shutdown events were missing. After examination, there were two sequences that
contained consecutive startup events. One such sequence is in Table 3.

After reviewing the actions between the two consecutive startup events using
the query below, a Windows Update seemed to occur.

1 MATCH (sec:Second {time: 1491972888})
2 MATCH p = (sec) -[:NEXT *..500] - >(: Second {time:

1492112687})
3 UNWIND nodes(p) as secNode
4 MATCH (secNode) <-[:AT_TIME]-(act:action) -[:EFFECTS

]->(obj:object)
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5 RETURN secNode.time , collect(act.action), collect(
obj.filename)

Of the 5706 objects that had altered timestamps, 4830 matched the pat-
tern C:/ Windows/WinSxS/*; these files are known to be related to Windows
updates. The shutdown sequence during Windows updates differs from other
shutdowns and do not include additions to the event logs.

Updates might also explain the large gap in the start and end times
for some shutdown events. For example, the last event in the table has
a difference of 654 s between its start and end times. Upon examination,
several files are changed 361 s after the start of the event. These files
match the pattern C:/Windows/WinSxS/ amd64 windows-defender-am-sigs or
C:/ProgramData/Microsoft/Windows Defender /Definition Updates/. As a
result, it appears that Windows Defender Definitions are updated before a shut-
down. In future iterations, this needs to be captured as additions to the expert
rules.

Table 4. Downloaded File Expert Rule Result.

Download Information

Username user
Download Time 1497574737

Filename C:/Users/user/Downloads/Snowball Fighting(2).doc
Shortened URL http://files.geekdo.com/geekfile download.php?

Web History

Time URL
1497574730 /filepage/28906/snowball-fighting-rules-word-doc
1497574732 /file/download/2hkk77tped/Snowball Fighting.doc

All URLs start with https://www.boardgamegeek.com

File History

Time Action
1497574765 Accessed, Created Time Altered
1497574767 Modified Time Altered
1497574768 Changed Time Altered
1499350036 Recent .doc Changed
1499350036 Recent Docs Changed

Combined Expert Rules. The downloaded files expert rule is a great example
of utilizing many different low-level event types to create a complex abstraction.
The expert rules combine the following: previous web history, URL source for
the downloaded file, location of the download file on the forensics image, file
history of the downloaded file and username responsible for modified registry
keys. The desired subgraph is similar to Fig. 9.
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Firefox history shows nine files were download from the browser in the image
and that the rules found all nine entries. One example entry is contained in
Table 4.

These tables highlight the insights gained through connected data and pro-
vides multiple corroborating artifacts. An examiner can see recent web history,
the URL source, the file system destination for the downloaded file, and what
actions took place on the downloaded file. PGER was able to perform this
relationship-heavy query for all nine objects in 18 ms.

4.2 Machine Generated Application Results

Applying expert rules, as evidenced by the results above, can be an effective
way to abstract data. However, the rules in the previous section are short, only
matching 8–18 different events in a time window. Some user actions are incredibly
hard to capture using expert knowledge alone due to the immense number of
objects and events that affect the outcome. TEAR tackles this problem by using a
machine to generate patterns for complex events. For example, TEAR extracted
a combination of 86 different artifacts that can occur when Microsoft Word
opens. Incorporating the TEAR method of finding high-level events into PGER
is important to evaluate PGER’s ability to abstract complex events.

The final evaluation tested PGER’s ability to replicate the results produced
by TEAR, which uses a relational database on the same dataset. Both processing
time and accuracy in replicating TEAR’s results were the criteria for evaluating
PGERs performance.

Testing for both PGER and TEAR used the same device image, event extrac-
tor, and pre-processed ruleset. The ruleset was limited to opening Microsoft
Word as the lone top-level rule. Terms that represented accessed prefetch files
appeared in all term sequences. Since both tools used the same data extraction
method, this step was ignored in both testing categories. Timing results were an
average of three runs.

Processing Time. Performance of PGER is compared to the processing time
of TEAR due to their differing storage methods for their ontologies; TEAR uses
a relational database and PGER utilizes a property graph database. This test
shows how a property graph database can have a significant effect on performance
on forensics queries. To help further understand the comparison, the processing
steps of TEAR and PGER are compared in next paragraph.

TEAR matches high-level events utilizing following steps:

1. Load event data from a SQLite database to memory
2. Apply terms to events, abstract terms to strings
3. Process the generated term list in chronological order. Find high-level events

by matching a variant with the term list of the current time window.

To accomplish the same feat, PGER uses the graph conversion, normaliza-
tion, and abstraction processing layers. Graph conversion and normalization
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Table 5. PGER and TEAR Runtime Comparison (h:mm:ss).

TEAR Step TEAR Time PGER Step PGER Time

1 0:29:52 Graph Conversion 0:16:28

Normalization

2 3:02:06 Build Ruleset Tree/Apply Terms 0:04:32

Create Time Windows

3 0:09:34 Find High-Level Events 0:01:12

Total Time 3:41:32 0:22:12

matches with TEAR’s first step. PGER’s abstraction layer accomplishes both
steps 2 and 3. To provide a direct comparison, the PGER abstraction layer splits
into two categories to better match TEAR’s steps. The first group, correspond-
ing to TEAR’s second processing step, contains building the ruleset tree, term
application, and time window creation. Finding high-level events corresponds
with TEAR’s third processing step. In both programs, steps 1 and 2 are only
accomplished once per image as long as the same ruleset is applied. Table 5
compares TEAR and PGER runtimes.

Both PGER and TEAR found 12 instances of the event. PGER applies the
machine generated ruleset to a forensics image in less time than TEAR. This
advantage is shown the best in step 2 where the TEAR ruleset is constructed
into a tree and used to find the objects that apply to each term. One significant
factor in the processing time difference is that PGER does not abstract sets of
terms into strings; PGER finds all high-level rules only as different compositions
of terms. This results in longer comparisons between time windows and rulesets,
but PGER filters time windows in step 3 that do not include terms that are in
every variant. In this case, the difference is significant, eliminating nearly 80%
of all time windows (From 10,178 to 2,444). If there were rules that did not filter
out as many time windows, the PGER runtime to find high-level events (TEAR
step 3) could increase by a factor of five. However, PGER would still provide a
performance advantage over TEAR.

5 Conclusion and Future Work

PGER reduces the processing time of event correlation grammars by up to a
factor of 9.98 over a relational database based approach by using a native graph
processing and storage format. This allows users to leverage the advantages
of a graph database without the cost of just-in-time assembly of a graph or
the completion of many join statements. Utilizing a graph database also allows
for more natural queries of ontological data, affording users the ability to find
subgraphs by searching for path patterns. If an ontological language uses a non-
native processing method, it may be beneficial to convert into a native graph
before analysis. PGER can also match the accuracy of TEAR and provide an
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increase in processing speed by filtering time windows and not abstracting terms
into strings. Finally, expert rules were applied to the database, providing useful
information for the examiner. However, longer rules might be better created by
machine pattern matching, like TEAR, due to the difficulty in codifying the
execution of a large set of events and objects.

Future work includes evaluating PGER performance compared to a RDF
datastore, test PGER at scale on larger device images, expanding the expert
ruleset, and applying curation rules to TEAR rulesets.
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