®

Check for
updates

On Efficiency and Effectiveness of Linear
Function Detection Approaches
for Memory Carving

Lorenz Liebler®™ and Harald Baier

da/sec - Biometrics and Internet Security Research Group,
University of Applied Sciences, Darmstadt, Germany
{lorenz.liebler,harald.baier}@h-da.de

Abstract. In the field of unstructured memory analysis, the context-
unaware detection of function boundaries leads to meaningful insights.
For instance, in the field of binary analysis, those structures yield fur-
ther inference, e.g., identifying binaries known to be bad. However,
recent publications discuss different strategies for the problem of func-
tion boundary detection and consider it to be a difficult problem. One
of the reasons is that the detection process depends on a quantity of
parameters including the used architecture, programming language and
compiler parameters. Initially a typical memory carving approach trans-
fers the paradigm of signature-based detection techniques from the mass
storage analysis to memory analysis. To automate and generalise the
signature matching, signature-based recognition approaches have been
extended by machine learning algorithms. Recently a review of func-
tion detection approaches claims that the results are possibly biased by
large portions of shared code between the used samples. In this work
we reassess the application of recently discussed machine learning based
function detection approaches. We analyse current approaches in the con-
text of memory carving with respect to both their efficiency and their
effectiveness. We show the capabilities of function start identification by
reducing the features to vectorised mnemonics. In all this leads to a sig-
nificant reduction of runtime by keeping a high value of accuracy and a
good value of recall.

Keywords: Memory forensics + Carving - Disassembly
Binary analysis

1 Introduction

The analysis of unknown binaries often starts with the examination of function
boundaries. Functions are a fundamental structure of binaries and most often
an initial starting point for advanced code analysis. As an important structural
component of code, they give a schematic representation of the original high level
semantics and provide a basis for further inferences. Whereas disassemblers are

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019
Published by Springer Nature Switzerland AG 2019. All Rights Reserved

F. Breitinger and I. Baggili (Eds.): ICDF2C 2018, LNICST 259, pp. 3-22, 2019.
https://doi.org/10.1007/978-3-030-05487-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05487-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-05487-8_1

4 L. Liebler and H. Baier

capable of reliably decoding the instructions of a binary, the problem of function
detection is still an ongoing field of research [1-3,13,14]. Binary analysis research
claims that the problem is not yet fully solved. New techniques tend to improve
in performance and generalizability, i.e., by the introduction of compiler- or
even architecture-agnostic approaches [2,13]. Functions are used to infer the
functionality of a given binary and thus, could be used to identify a unknown
sample. In more general terms, two binaries that share many similar functions are
likely to be similar as well [9]. Summarized, functions could be used to identify,
distinguish or interpret unknown code sequences. Beside the field of extended
binary analysis, those general tasks are obviously also relevant for other domains
of application, where function detection techniques have to consider the present
environmental circumstances and constraints.

The examination of process related code fragments is obviously one major
benefit of memory based forensically investigations. After successfully recon-
structing the running binary out of a process context, steps of binary analysis and
reverse engineering are often followed [11]. However, the reconstruction could be
hindered by malicious or legitimate changes. Additionally, remaining fragments
of already terminated processes are possibly ignored, due to missing structural
properties. In case of Linux operating systems the generation of an adequate
memory profile could be cumbersome. The continuous development of operat-
ing system internals and its related structures require the constant maintenance
of interpretive frameworks. Thus, even if the interpretation of operating system
related structures is a fundamental component of memory analysis, carving could
give a first solid impression or even be a last resort during examination.

In the course of function detection, machine-learning approaches have been
proposed, which are trained to recognize signatures located in function pro-
logues or epilogues [3,14]. Static function prologue signature databases have
to be maintained over time and the detection performance of those techniques
rapidly decreases for highly optimized binaries [4,6]. Machine learning based
approaches try to generalize this task and automate the process of signature
detection. Beside those signature related approaches, Andriesse et al. [2] intro-
duced an compiler-agnostic approach in the context of extended binary analy-
sis, which is mainly based on structural Control Flow Graphs. Moreover, their
research showed significant worrying for all top-tier work on machine learn-
ing based approaches, mainly caused by the usage of a biased dataset. The
compiler-agnostic approach has been extended by architecture-agnostic detection
methods [13].

Considering the function identification process in the field of memory carving,
the present conditions exclude most of the extended and agnostic approaches.
Those have been proposed in the field of extended binary analysis and require
steps of binary lifting, control flow analysis or value set analysis. In the course
of memory carving, we further denote suitable function detection approaches
as linear techniques. Those approaches do not rely on the reconstructability of
binaries and could also be used for context-unaware memory analysis.

Linear Function Detection 5

Contributions: We give an overview of recently discussed function detection
techniques in Sect.2 and categorize them into linear and non-linear applica-
tions. We outline the task of function detection and give insights in two particu-
lar machine learning techniques in Sect. 3. As recent publications underline the
importance of non-biased data sets for the task of training and evaluation, we
first summarize different data sets and the properties of our used set in Sect. 4.
The analysis is later used for adapting our proposed models. In Sect. 5 we outline
the concrete adaptations to the models and discuss the utilization of mnemonics
only. This reduces the overall feature size and improves the runtime performance
of the classification. We reassess the capabilities of linear function detection in
Sect. 6 and emphasize our desired classification goals (i.e., a better performance
in terms of recall and classification runtime). Our analysis underlines the appli-
cability by reaching those goals even with significant reduced feature vectors. In
contrary to recent publications, we consider runtime performance as an impor-
tant constraint. We summarize our findings in Sect. 7.

2 Related Work

The enumeration of unknown functions was first established with the genera-
tion of signature databases. Signature databases focus on proprietary compilers,
as open source compilers create an unhandable diversity of function prologues
[4,6]. Especially in case of Linux operating systems, a database lookup of saved
signatures during carving a memory image would be not feasible.

In Bao et al. [3] a weighted prefix tree structure was introduced to identify
potentially function start addresses. Therefore, they “weight vertices in the prefix
tree by computing the ratio of true positives to the sum of true and false positives
for each sequence” in a reference data set. The authors additionally introduce
an additional step of normalization, which improves precision and recall. The
authors created a set of 2,200 Linux and Windows binaries. The executables were
generated with different build settings, i.e., the authors used GNU gcc, Intel icc
and Microsoft Visual Studio. In addition, multiple different optimization levels
were selected during build time. Their approach, called Byteweight, was also
integrated into the Binary Analysis Platform (BAP)!.

In Shin et al. [14] the authors provide an approach for function detection
based on artificial neural networks. The paper proposes a function detection
technique with the help of Recurrent Neural Networks. In contrast to our work,
the approach of [14] was performed without an additional step of disassembling or
normalization. The authors point out that the tracking of function calls over large
sequences of bytes is not feasible. In fact, recognizing entry and exit patterns by
training with fixed-length subsequences is eligible. For training and testing the
work is based on the same data set provided by Bao et al.

Andriesse et al. [2] claim that the work of Shin et al. and Bao et al. suffer
from significant evaluation bias, as the most of the samples contain of large
amounts of similar functions. The authors additionally mention that the viability

! https://github.com/Binary AnalysisPlatform /bap (last access 2018-04).

https://github.com/BinaryAnalysisPlatform/bap

6 L. Liebler and H. Baier

of machine learning for function detection is not yet decided. The publication
proposes a compiler-agnostic approach called Nucleus, which is mainly based on
the examination of advanced control flow analysis and not relies on any signature
information. The approach is not applicable in our context, as we want to inspect
code fragments in large amounts of data within a sliding window: we have to
consider the linear characteristic of our application, which in turn leads us to a
signature-based or machine-learning based approach.

Potchik [13] introduced the integration of Nucleus in the Binary Ninja
Reversing Platform? and proposes multiple strategies over multiple analysis
passes than just rely on simple heuristics. The author mentions the possi-
ble reduction of complexity and scope reduction, by applying the technique
with the highest confidence first. Similar to other fields, the approach proposes
“a method to interpret the semantics of low-level CPU instructions” by the uti-
lization of value-set analysis. The process of value-set analysis is performed on
an extended intermediate language and thus, should be architecture agnostic.

3 Background

We first give a short introduction to the problem of function detection and
describe the already introduced condition of linearity (Sect.3.1). For a more
detailed and formal explanation of the task of function detection, we refer to
previous work [2,3,14]. The already introduced approaches in Sect. 2 are shortly
discussed and categorized. We depict two applicable approaches for signature-
based function detection and discuss their functionality: Recurrent Neural Net-
works (RNN) in Sect. 3.2 and Weighted Prefix Tress (WPT) in Sect. 3.3.

3.1 Linear Function Detection

The task of function detection is one of the main disassembly challenges [1]. The
problem of function detection (e.g., with the help of static signatures) could be
illustrated by the inspection of functions compiled with different optimization
levels invoked to the compiler. The function structure and function prologue
heavily changes due to optimization and compiler settings. An example could be
seen in Fig. 1, which was adopted from [14]. The example shows the remarkable
impact by simple adaptations of the compiler flags. Most of the instructions in
the function prologues of mul_inv heavily differ from each other. The process of
function detection itself is most often divided into subtasks. We stick to similar
notation of previous work and refer to those publications [2,3,14].

The subtasks of function detection could be differentiated into function start
detection and function end detection. The problem of function boundary detection
is a superset of function start and function end detection. In the course of this
work, we mainly focus on the task of function start detection. We borrowed most
of the following definitions from Shin et al., where C defines a given code base of

2 https://binary.ninja,/ (last access 2018-04).

https://binary.ninja/

Linear Function Detection 7

Listing 1.1: Original C Source Listing 1.2: gcc -00 Listing 1.3: gcc -03

int mul_inv(int a, int b) { <mul_inv>: <mul_inv>:
int b0 = b, t, q; push %rbp cmp $0x1,%esi
int x0 = 0, x1 = 1; mov %rsp,hrbp mov %edi ,leax
if (b == 1) return 1; mov %edi,-0x24 (%rbp) je 400878
while (a > 1) { mov %esi,-0x28(%rbp) cmp $0x1 ,%edi
gq=a/b, t=b, b=al%b, a=t; mov -0x28 (%rbp) ,%eax jle 400878
t=x0, x0=x1-q*x0, x1=t; mov Yhesi,hecx
X mov $0x1,%r8d
if (x1 < 0) x1 += bO; xor hedi,ledi
return x1; N
}

Fig. 1. Adopted example from [14] with a function written in C and compiled with
two different levels of optimization (gcc 4.9.1).

a binary, which consists of several functions f1,..., f, € F. A function f, € F
consists of a sequence of instructions I, with i, € I. The task of detection could
be simplified into three basic tasks for a given target function f;:

1. Function start: The first instruction of iy € I of f; € F within C.

2. Function end: The last instruction of i, € I of a f; € F within C.

3. Function boundaries: The tuple of instructions, which define the bound-
aries of a function, i.e., determine (is,i.) € I of f; € F within C.

The scope of function detection normally sticks to disciplines of analysing
stripped binaries in the context of reverse engineering, malware analysis or code
reuse detection. However, most of these applications are not limited in their form
of application and are not underlying any time constraints. As we transfer the
function detection problem to the field of context-unaware domains, we have
to consider the constraints of linear processing. A concrete field of application
is the examination of function boundaries in the domain of unstructured and
context-unaware memory analysis. As previous publications showed fundamental
improvements in the case of compiler- and architecture-agnostic techniques, we
emphasize the motivation behind signature-related techniques, as we could not
rely on features like binary lifting, intermediate representations or control flow
analysis. Our goal is the integration of a function start identification approach,
which works on an instruction buffer within a single sliding window pass. So
we refine the problem of function detection to be a linear function detection
problem. This leads to the evaluation of signature-based approaches.

Shown in Table 1, different approaches have been suggested. In this work we
focus on signature-related (Sig.) and linear approaches (Lin.). The approach of
Shin et al. [14] is based on Bi-directional Networks, which are not applicable in
our context. Those networks require the presence of a complete binary at appli-
cation time. The lookup of signature databases on for Linux operating systems
was already mentioned as impracticable. As we try to carve functions out of a
memory, we could not rely on the recreation of a previously detected process.

8 L. Liebler and H. Baier

Table 1. Overview of different approaches in the context of carving memory.

Approach Sig. | Lin. | Comment
Guilfanov [6]

Bao et al. [3]

Shin et al. [14]
Andriesse et al. [2]
Potchik [13]

v | Impractical for diversity of Linux systems
v | Weighted Prefix Trees are applicable
Bi-directional RNN not applicable

X Process-context recreation needed

SIRIENANE

X Process-context recreation needed

3.2 Recurrent Neural Networks

The authors of [14] provide a detailed overview of the different characteristics
of Recurrent Neural Networks. Beside the work of [14], we refer to [12] and [§]
for a detailed introduction. We outline differences between our approach and
the approach of Shin et al. [14] later: The specific settings, hyperparameters and
implementation details of our model are described in Sect. 5.

The processing of sequences with Recurrent Neural Networks is a promising
strategy for many different fields. In contrast to feedforward neural networks, the
cells keep different states of previously processed input and consider sequences
which have an explicit or implicit temporal relation. A sample z; of a sequence
is additionally labeled with its corresponding time step ¢ of appearance. Where
a corresponding target y; of labeled data also shares this temporal notation.
The basic architecture of those nets could strongly vary for different fields of
application. In Fig.2 a simplified and unfolded model is shown, which takes
multiple input vectors over time and outputs a single vector after several time
steps. The term unfolding denotes the unfolding of the cyclic characteristic, by
displaying each timestep. Each of the edges in between the columns span adjacent
time steps. The model in Fig. 2 depicts a many to one relation.

OL%,

) () (o) @) s
—) () B @) -
Fig. 2. Simplified RNN model with two LSTM-layers, where the model represents a

many to one structure. The final state is processed by a Fully Connected Layer F' and
a sigmoid layer, which outputs a probability.

Linear Function Detection 9

Long Short-Term Memory (LSTM): Training Recurrent Neural Networks
bares several pitfalls. Namely, the problems of vanishing and exploding gradients.
There are different extensions of RNNs which try to consider those issues, one
of those specimens are LSTM based Networks [5,8]. Those networks replace
traditional nodes in the hidden layers with memory cells (see Fig. 3). Each cell
consists of an input node (g) and internal state (¢). The memory cells contain
self-connected recurrent edges, to avoid vanishing or exploding gradients across
many time steps. Those edges are named gates, where each of the LSTM cells
has a forget gate (f), an input gate (i) and an output gate (o). A multiplication
node ([]) is used to connect those components with each other. The final memory
cell reaches an intermediate state between long-term and short-term memory of
classic RNNs. Those types of cells outperform simple RNNs in case of long-range
dependencies [12]. The original work of Shin et al. is based on Bi-directional
RNNs. The authors mention that those models are applicable in the context of
having access to the entire binary at once. As we discuss the applicability of
RNNSs in the context of linear processing large amounts raw data, we have to
consider the temporal component and focus on a LSTM based model.

rd

Tt —»

Ny

Fig. 3. LSTM Memory cell proposed by [5], which extends the model of [8] with addi-
tional forget gates (f:).

Training and Classification: There are different strategies for training and
updating a neural model. The predominant algorithm for training is backprop-
agation, which is based on the chain rule. The algorithm updates the weights of
the model by calculating the derivative of the loss function for each parameter in
the network and adjusts the values by the determined gradient descent. However,
the problem is a NP-hard Problem and different heuristics try to avoid stuck-
ing in a local minimum. A common strategy for training is stochastic gradient
descent (SGD) using mini-batches. In the course of RNNs with time-related con-
nections between each time step, the process of training is often denoted as back-
propagation through time (BPTT) [12]. Bao et al. [3] proposed a flipped order
of prologues during processing to support the training phase. Additionally, the

10 L. Liebler and H. Baier

work shows a better performance for bidirectional structures than unidirectional
structures like LSTM. Each model was trained with 100.000 randomly-extracted
1000-byte chunks. A one-hot encoding converts a byte into a R?*® vector.

3.3 Weighted Prefix Tress

Bao et al. [3] introduced the application of weighted prefix trees for the task
of binary function detection, called Byteweight. The approach uses a weighted
prefix tree, and matches binary fragments with the signatures previously learned.
The path from the root node to the leaf node represents a byte sequence of
instructions. Inside the tree, the weights are adapted to the previously processed
ground truth. In the original implementation an additional step of value-set
analysis and control flow recovery process is proposed for boundary detection.

Byteweight: Similar to this work and the work of Shin et al. [14], Byteweight
focuses on the task of function start identification. More formally, the authors
denote the problem as simple classification problem, where the goal is to label
each byte of a binary as either function start or not. Their approach was demon-
strated on raw byte sequences and previously disassembled sequences. The ref-
erence corpus is compiled with labelled function start addresses. In contrary
to raw bytes, the usage of normalized disassembled instructions showed a bet-
ter performance in case of precision and recall. The authors proposed a twofold
normalization: immediate number normalization and call-jump instruction nor-
malization. In Fig.4 an overview of the normalized prefix tree is given. A given
sequence of bytes or instructions is classified by inspecting the corresponding
terminal node in the tree. As soon as the stored value exceeds a previous defined
threshold ¢, the sequence is considered as a function start. We do not consider
subsequent steps of advanced control flow graph recovery as proposed by the
authors.

Training and Classification: A corpus of input binaries is used during the
learning phase. The maximum sequence length [defines the upper bound of the
resulting trie height. The first [elements are used for training, where elements

call[q]* +0x[0-9a-
£]*

0.0000

sub (<! -)0x[1-9a-
£][0-9a-]* %rsp

mov %rbp,-0x[1-9a-
f1[0-9a-f]*\(%rsp\)

mov %rbx,-0x[1-9a-
1[0-9a-f]*\(%rsp\)

Fig. 4. Example of normalized prefix tree proposed by Bao et al. [3].

Linear Function Detection 11

could be disassembled instructions or the raw bytes itself. The likelihood that
a sequence of elements corresponds to a function start (i.e., represented as a
specific path in the trie) is saved in each corresponding node as specific weight.
Considering the example in Fig. 4, the instruction push %ebp were truly function
starts in 14.45% of all cases. The weights of a prefix are lowered if they do not
correspond to a function start. As described in Eq. 1, the weight of a specific
node W, is the ratio between positive function starts (7'¢) and all matches
(T'y +T-). The classification of an input sequence is performed by matching the
given elements against the tree. The weight of the last matching terminal node,
describes the final weight of a sequence and is compared to t. For the process

of training and classification, the authors proposed an input size of [= 10
consecutive instructions and a threshold of t = 0.5.
T
W, = = (1)

T+ T

4 Training and Evaluation Data Sets

In recent publications, different sources of ground truth binaries have been pro-
posed and criticized. In this paragraph we give a short overview of the different
sources and outline some details of capacity and source. As we focus on the
domain of Linux executable binaries, we formally introduce ELF binaries con-
tained in different test suites. A comprehensive overview of the different test

suites is given in Table2 which have been public available®#:5 at the time of
writing.
Table 2. Overview of different evaluation datasets [13].
Source System Description (ELF, Linux)

WIN |LIN | OSX

Byteweight |V X ELFs (129): coreutils, binutils and
findutils; used by Bao et al. [3] and
Shin et al. [14]

Nucleus v X ELFs (521): real-world applications and the
SPEC CPU2006 Benchmark Suite; see
Table 3 for details

CGC Corpus v |/ ELF binaries of custom-made programs
specifically designed to contain
vulnerabilities

3 https://github.com/Vector35/function_detection_test_suite (last access 2018-04).
* https://github.com /trailofbits/cb-multios (last access 2018-04).
5 http://security.ece.cmu.edu/byteweight/ (last access 2018-04).

https://github.com/Vector35/function_detection_test_suite
https://github.com/trailofbits/cb-multios
http://security.ece.cmu.edu/byteweight/

12 L. Liebler and H. Baier

As already outlined in the introduction, the work of Bao et al. [3] and Shin
et al. [14] are criticized by Andriesse et al. [2] for using a biased data set, with a
large amount of overlapping and similar functions. Andriesse et al. [1] outlined
that the average binary in their SPEC-based test suite contains less than 1% of
shared functions, not considering bootstrap functions. We base our analysis on
the data set introduced by Andriesse et al. [1] and perform a detailed examination
of the function structures in the following paragraphs.

The Nucleus data set consists of approximately 4.2 GiB precompiled ELF
files and its corresponding ground truth assembly structure. The process of data
set generation depends on some major parameters: operating system, instruc-
tion set architecture, language, compiler and optimization level. The 521 binaries
consist of the SPEC CPU2006 Benchmark Suite and some real-world applica-
tion written in C and C++. The samples are compiled for x86 and x64 with
five different optimization levels (O0-O3 and Os). The set contains dynamically
and statically linked binaries, where some of them are stripped and some are
equipped with symbols. For further details on the construction of the ground
truth we refer to [1]. An overview of the binaries is given in Table3. In the
following paragraphs we give a detailed introduction of the data set. There-
fore, we focus on three properties of our used data set: Function Sizes, Function
Prologue Distribution and Mnemonic Distribution. As already described in the
introduction, the examination of the underlying code structure should give us
additionally insights for better design and parameter decisions.

Table 3. Nucleus - ELF ground truth obtained by [1] (gcc-510, llvin-370).

Samples | Arch Compiler | Language | Optimization

32 |64 gce llvm|C |C+4 /00|01 |02 O3 OS
SPEC |v v |v vV |V |V AR A A A
glibce X v |V | X X X X | X X X |X
Server |V |V |V V/ |X |X X X |[Xx X |X

Count |200 321|321 /200 360 140 |100|100|100 100 100

Function Sizes: The examination of the frequencies of different function sizes is
required for further analysis and inferences. The function size defines the possible
size of extracted features, before a single feature vector overlaps with a subse-
quent function start. In addition, the function size gives better insights into the
possible dimension of further function prologues examinations. We examined the
function size (in bytes) of the different binaries. As could be seen in Fig.5, the
function sizes vary for different compiler and optimization levels. The median
function size illustrates that in every language, compiler and optimization set-
ting, the amount of small functions (i.e., smaller than 200 Bytes) is significant.
The average value of function sizes outlines the presence of large functions, where
in all settings the average size is always lower than 800 Bytes.

Linear Function Detection 13

C avg C med C++ avg C++ med

gee clang vs2015
800
2
g 600
o 400
Q
£, 200
= 0
00 O1 02 03 Os 00 O1 02 03 Os 00 Ol 02 03 Os

800
3
% 600
w400
Q
£, 200
e}

0

00 O1 02 03 Os OO0 O1 02 O3 Os O0 O1 O2 O3 Os

Fig. 5. Average and median function size in bytes.

Function Prologue Distribution: To gain a better understanding of the func-
tion detection problem with the help of signature-based detection mechanisms,
we examined the present ground truth set and the distribution of common func-
tion prologues. We extracted the functions of each binary and aggregated them
into a comprehensive set. Figure 6 illustrates the population of function pro-
logues by comparing the ratio n between distinct function prologues pg to the
overall amount of function prologues p for a specific language, compiler and
optimization level (for further details see Eq. 2).

_ #tdistinct function prologues pg 9
N # function prologues o 2)
We discriminate the function prologues by its consisting number of instruc-
tions ¢, which are considered and which have been decoded to a single mnemonic.
The plot underlines the common axiom that function prologues strongly vary
for different compilers, languages and optimization levels. The plot visualizes
the impact on the diversity of the prologue instructions in dependency to the
selected optimization levels and helps to argue about an appropriate input size.
With the x86 instruction set an instruction could have variable-length, where
one instruction could vary between one and fifteen bytes. For further details we
refer to the Intel Instruction manual®. Considering the previous examination of
function sizes and the median value of 200 Bytes per function, we do not expect
all instructions of a prologue sequence to reach the maximum amount of fif-
teen bytes. It is clear that a large chosen amount of input mnemonics raises the
diversity the model has to deal with, but also increases the possible classifica-
tion quality. Considering the plots in Fig. 6, the diversity significantly increases

5 https:/ /software.intel.com /en-us/articles/intel-sdm (last access 2018-04).

https://software.intel.com/en-us/articles/intel-sdm

14 L. Liebler and H. Baier

—00 o1 02 03—0s

. gce 64 C gee 64 C++ gee 32 C gee 32 C++
02
=04
0.2
0
5 10 15 5 10 15 5 10 15 5 10 15
clang 64 C clang 64 C++ clang 32 C clang 32 C++
1
82
=04
0.2
0
5 10 15 5 10 15 5 10 15 5 10 15

Fig. 6. Illustration of distinct function prologues; 77 denotes fraction of distinct function
prologues to the number of all functions for ¢ instructions (mnemonic).

for several settings, even after a considerable short amount of consecutive pro-
logue instructions. For example, inspecting clang-32-C without optimization
(i.e., 00), approximately 40% of all function prologues of 10 consecutive instruc-
tions represent a distinct instruction sequence. Figure 6 also underlines that non-
optimized binaries (00) often share the same beginning instructions (mnemonic).

Mnemonic Distribution: We use the ground truth of assembly files to deter-
mine the distribution of mnemonics in the used set. Additionally, we extract
the bigrams of mnemonics, which could be often found in the course of assem-
bly based code and similarity analysis. The following values give us an initial
overview of the mnemonics distribution. For details see Table4. Roughly spo-
ken it is an overview of the instruction distribution of already decoded byte
sequences. We splitted the set of assemblies by its architecture and determined
the total amount of unigrams and bigrams. In our case a unigram consists of a
single mnemonic. The total amount of occurring mnemonics also represents the
total amount of occurring instructions. The column of distinct values describes
the set of all occurring mnemonics. The columns max, mean and min describe
the assignment of the total amount of instructions to each distinct occuring uni-
gram or bigram. In detail, the most frequently occurred mnemonic in the set of

Table 4. Overview of unigram and bigram mnemonic counts.

32 bit (200 files) 64 bit (321 files)

Total Distinct | Max Mean | Total Distinct | Max Mean
Unigrams | 35,232k 322 11,714k | 1531 | 61,441k 436 21,627k | 1859
Bigrams | 35,232k | 11632 5,889k 17 61,441k | 16059 10,360 k 28

Linear Function Detection 15

32 bit files, namely mov, represents 11,714,270 instructions. Thus, mov represents
approximately 33.25% of all instructions in the course of 32 bit files.

5 Linear Function Detection

In this Section we discuss concrete adaptations and realizations of linear func-
tion detection techniques. Beside the reassessing of machine learning-based
approaches we aim for a reduction of the used feature sizes to improve the
theoretically runtime performance. Therefore, we introduce an additional step
of approximate disassembling by the usage of an approximate disassembler [10].
In previous work the created pipelines are partially based on the processing of
features on a byte-level. The input sequences for training and evaluation are
one-hot encoded into R?%6. As our approach is based on integerized mnemonics,
the distinct occurring mnemonics define our underlying vocabulary size.

We first describe the general pipeline and the used set for training and eval-
uation (Sect.5.1). We explicitly address the problem of imbalanced classes, i.e.,
the ratio between function starts and general offsets. Afterwards, we introduce
the proposed models and concrete adaptations (Sects. 5.2 and 5.3).

5.1 General Pipeline of Feature Extraction

In Fig. 7 an overview of the single steps of feature extraction is given. We only
considered allocable code sections (i.e., .text) of the used ground truth ELFs
[1]. Thus, we filtered all offsets which are known to be data @®.

Similar to Bao et al. [3] and contrary to Shin et al. [14] we propose a layer of
disassembling for further feature extraction ®@. We additionally reduce the used
vectors to mnemonics only. We decode the raw byte sequences into an approxi-
mate disassembly with an integerized mnemonic for each instruction. Beside the
reduction of variances in the underlying byte structure, this additionally reduces
the overall amount of data which needs to be processed and saved. The clas-
sification is not performed at each byte offset, but rather at every instruction
offset. Thus, we reduce the overall vector input size and therefore the runtime
performance.

As we have to deal with an heavily imbalanced set of classes, we first deter-
mine the positive (function beginnings) and negative classes (code offsets) for
each file ®. For each class, we created vectors of N,,., consecutive instructions
at each instruction offset, represented by a single and integerized mnemonic.
Considering the function prologue distribution in Sect. 4, most of the displayed
distributions showed tendencies to stabilize after the first 20 instructions. The
future vector size should also consider the determined average and median func-
tion sizes, as we try to avoid feature vectors which overlap into subsequent
functions. Where Shin et al. proposed the processing of 1000-byte chunks for
RNN-based classification and Bao et al. suggested the usage of 10 consecutive
instructions for the creation of Weighted-Prefix-Trees, we considered a maximum

16 L. Liebler and H. Baier

vector size of Ny,q, = 20 mnemonics for creating our data set. This empowers
us to vary different input sizes during different model evaluation passes.

We created two sets for both classes and performed an additional step of
deduplication for each class over the whole set. This results in two sets of dis-
tinct feature vectors @. In Table5 an overview of the imbalanced distribution
of classes is given. We also examined possible overlaps between each class, i.e.,
vectors of mnemonics which occur in the positive Ty and negative class T_.
This is obviously caused by the strong reduction to mnemonic feature vectors.
We relabel the negative classes of Ty NT_ to provoke false positives. We outline
this decision in Sect. 6. The two distinct features have been shuffled before and
splitted into a training and test set @. In the case of RNN based training, we
additionally added an step of oversampling 7 and undersampling 7 ®.

Table 5. Overview of class distribution, i.e., number of distinct function starts (77)
and distinct inner function offsets (7-) for all used 64 bit binaries.

Set T T+ T+ UurT_ T+ NT_
Count | 18,575,407 | 207,714 | 18,779,238 | 3,883

5.2 RNN Model Adaptation

In the following subsection, we describe the final model settings for our linear
RNN-based classification. The basic steps of processing are displayed in Fig. 8.
The extracted and integerized mnemonics are transformed into a one-hot encod-
ing and fed into the RNN for further processing. This pipeline is consistent for
all further training and evaluation steps performed on our RNN settings.

® ©
8 (1) ‘?
—>-I—» (1)

.

Fig. 7. Simplified overview of the general pipeline of feature extraction.

Linear Function Detection 17

sliding window |—| disassembly | vectorization | LSTM RNN

31 ed 49 89 di1 5e : 092 : 31 ed 20:00010000000000000

: 095 : 49 89 di 21:00000000000000010 : ;
: 105 : be x2:00000000100000000 : I:I

: 095 : 48 89 e2 x3:00000000000000010 C

: 090 : 48 83 e4 fO 14:01000000000000000 O — -

48 89 e2 48 83 e4
0

SwWw P, W N

Fig. 8. The general processing pipeline during RNN-based classification.

Input Vectors: We are not expecting to train with an input time series larger
than 20. In particular, we try to avoid long series for classification, to minimize
the impact on runtime performance later. After the examination of distinct func-
tion prologues shown in Fig. 6, we varied the input vector size between 16 and
20 consecutive and integerized instructions. For the final model, we depicted the
vector size of instructions as N; = 16. Similar to Shin et al. we reversed the order
of our input vectors, which showed a significant improvement in nearly all of our
evaluations. Summarized, the network expects a reversed one-hot encoded input
vector z; € RE for each decoded instruction i;, where K describes the current
size of the vocabulary.

Hidden Cells and Layers: As already described in Sect. 3, we use Long Short-
Term Memory cells for creating our RNN model. In detail, we use a two-layered
model with a different number of hidden cells. To reduce the complexity we
use LSTM in contrary to bi-directional RNNs as suggested by Shin et al.. We
initially compared two-layered RNNs with one-layered models. In most of the
cases a two-layered model improved the accuracy, which made us to perform
all of the further proceedings with a two-layered model. We vary the number of
hidden cells in the subsequent evaluation between 32 and 512 for our two-layered
setting. We finally choose the amount of N; = 256 hidden cells.

Training and Optimization: Similar to Shin et al. [14] we performed our steps
of optimization by the usage of stochastic gradient descent. We tried different
concepts of gradient adaptation and initially used RMSProp for optimization
with different initial learning rates. In the further proceedings of the evaluation,
we switched to AdamOptimizer which showed a similar performance. The gra-
dients were updated with the help of mini-batches, where the size of the batches
was also varied during evaluation and performance tuning. After several manual
test runs, we set the final batch size to N, = 2048.

Dropout: We reduced the risk of overfitting our models by adding an interme-
diate Dropout layer. A Dropout step randomly turns off activations of neurons
between our two LSTM layers. The Dropout is not applied on the recurrent
connections itself [7]. A defined value of Ny = 0.75. sets the probability if a
connection is not deactivated. We keep this value for all of our trained models.

18 L. Liebler and H. Baier

Output Layer: For a binary classification of the function starts we process the
output of the final LSTM state by a fully connected layer. The final layer of the
setup is a sigmoid layer, which is used for transforming our output into a binary
classification. A single probability is generated with the help of an additional
sigmoid cross entropy layer or weighted cross entropy layer. With the usage of
a weighted cross entropy layer, we could additionally set the focus on improving
our final recall or precision rate.

Training and Sampling: To handle the heavily imbalanced ground truth, we
performed an additional step of oversampling the positive and undersampling
the negative class. Those steps had an remarkable influence on the performance
in case of precision and recall. During training we randomly selected the half of
the negative class member (inner function offsets) and oversampled the positive
class members (function starts) to an even amount.

5.3 Weighted Prefix Tree Adaptation

The major adaptation in case of our proposed Weighted-Prefix-Tree model, is the
utilization of single mnemonic representatives instead of raw bytes or normalized
disassembly instructions. The basic steps of processing are displayed in Fig.9.
We selected different lengths for trie creation up to 4. = 20 instructions. The
mentioned vocabulary size K (see Sect.4) gives us the theoretical upper bound
for the possible trie size. The implementation of evaluation was realized with
Python, not yet considering runtime in first case. We depict an initial threshold
value of ¢ = 0.5 and | = 10, which was proposed by Bao et al. [3].

Tree Pruning: Similar to the original approach we additionally performed a
step of tree pruning. In detail, we deleted all intermediate nodes with no negative
counts (T_ = 0) and thus, all first occurring intermediate nodes with W; =
1 are transformed to terminal nodes. This reduces the overall tree size from
approximately 1.9 million nodes to 264,834 nodes.

sliding window | disassembly |— WPT
31 ed 49 89 d1 5

© © 092 095 105 095 090 O<O—>O<IO
48 89 e2 48 83 e4 f0 O O

Fig. 9. The general processing pipeline during WPT-based classification.

6 Evaluation

In this section, we discuss the different evaluations of our proposed models. We
inspect the time of creation and training our models, without considering the
pass of feature extraction (Sect.6.1). Afterwards, we examine the performance
in terms of accuracy, precision and recall for both models (Sect. 6.2). Finally, we

Linear Function Detection 19

discuss in detail the possible application of weighted prefix trees (Sect. 6.3). Our
evaluation aims to answer the following questions:

1. Could we use only mnemonics for the task of function start identification?
2. Which of the considered linear techniques is better suited for our context?

Classification Goals: We consider our models for the fast identification of func-
tion starts in large portions of raw data. As described in Sect. 5.1, the reduction
of our proposed features leads to overlapping class members. We relabelled those
members to positive members and further treat recall more important than pre-
cision: we accept higher values of false positives by lower values false negatives
with a constant high value of true negatives. We propose an additional step of
classification for lowering the value of false positives afterwards.

Methodology: To argue if our models generalise the task of function detection,
we performed a 10 fold validation by dividing our set of distinct integerized
mnemonic vectors into ten equally sized sub-sets. We used nine of those sub-
sets for training and one for evaluation. In the case of WPT-based training,
we repeated this task 10 times. In our current evaluation we focus on 64 bit
ELF binaries of the Linux operating system. Our used test set consists of nearly
1.9 million unique vectors with approximately 20k positive cases. The set of
training consisted of 16 million negative and nearly 190k positive class members.

6.1 Training Performance

First, we examine the general runtime performance in case of model creation
and training. Both models have been fed with the already prepared integerized
mnemonic vectors and a maximum length of 20. In the case of our RNN model,
we already cropped the initial feature vectors to a maximum size of 16.

As already described in Fig.8, in case of training our proposed RNN the
processing began with the reversing of the input vector and the one-hot encoding.
Considering those steps, the training of our model took approximately 2.5 hours
for one epoch. As we trained our model for 10 to 20 epochs, the process most
often took several days on a machine with 64 cores and more than 256 GiB of
RAM. We utilized Tensorflow and implemented our model in Python.

In contrary, the creation of the weighted prefix tree was performed on an
ordinary Laptop with Intel Core i5 2x 2,2 GHz Processor and 8 GiB RAM. The
time of building the initial tree, calculating the final weights, pruning the tree
and performing an additional step of lookup took approximately 180 s in total.
Our current prototype implementation was realized in Python.

Table 6. Performance of the function start identification for x86-64 ELF binaries.
(*:average values of 10-fold cross validation)

Model | Accuracy | Precision | Recall | Population | TP TN FP FN
WPT* | 0.9943 0.7532 0.7233 11,878,311 | 15,023 | 1,852,616 | 4,924 | 5,747
RNN |0.9861 0.4300 0.7674 1,878,016 | 15,940 | 1,836,117 | 21,128 | 4,831

20 L. Liebler and H. Baier

6.2 Function Start Identification

For our final models, we used the in Sects.5.2 and 5.3 described settings. As
could be seen in Table 6 the application of our RNN performs similar to our pro-
posed WPT. In both cases we gain a high value of accuracy with lower values of
precision and recall. However, the results of the WPT clearly outperforms the
RNN in case of precision. As already described in Sect. 5.2, the adaptation of
the underlying RNN model could influence the classification in terms of focusing
on better values of recall or precision. However, in contrary to our WPT imple-
mentation, the adaptation of those RNN parameters must be done before the
training of the model. The WPT approach empowers to influence the value of
recall by parametrizing the lookup, which is more flexible than approaching the
perfect parameters by multiple time consuming training passes.

6.3 Examination of WPT

As the previous evaluations underlined, we achieved similar or better classifi-
cation capabilities in less training time by the utilization of our WPT model.
For the WPT model, we could additionally adapt the classification goal during
a lookup pass. This leads to a detailed examination of our WPT model.

To improve the quality of WPT-based classification, we examined the differ-
ent parameters and their influence on the overall classification task. In detail, we
varied different parameters, like the maximum sequence length [and the thresh-
old . In addition, we introduce a third parameter m, which denotes the minimum
required length of a matching sequence inside the tree. After the inspection of
the Prologue Distributions in Sect. 4, we selected a range from 0 to 18 (instruc-
tions) for the parameters m and [. Respecting our classification goal, we focus on
runtime performance by accepting a higher amount of false positives instead of
false negatives. Inspecting the classification in Table 7, we could argue that the
reduction of false negatives could be achieved by increasing the considered vector
size [. The processing time for the nearly 1.9 million test vectors was approxi-
mately 12 s for all of the parameter variations. We should mention that during

Table 7. WPT classification by varying different parameters ¢, [and m.

| Accuracy | Precision | Recall Time (sec.)
10 14 18 14 18 10 14 18 10 14 18

0.6829 | 0.7222 0.7278 | 11.043 11.134 11.152
0.6793 0.7186 0.7243 | 11.063 11.163 11.154
0.5067 0.5460 0.5517

11.066 11.135 11.371

11.408 11.853 11.871
11.429 11.084 11.564
11.587 11.556 11.422

11.316 11.481 11.881
11.804 11.653 11.326
11.326 11.908 11.950

0.7283 0.6931 0.6835

0.7098 0.6868 0.6786 | 0.7385
0.7127 0.6893 0.6810 | 0.7359
0.7504 0.7147 0.7029 | 0.5542 0.5901 0.5957
0.6686 0.6476 0.6415
0.5757 0.5707
0.5875 0.5821

0.6752 0.6535 0.6472
0.6414 0.6327 | 0.6064 0.6332 0.6379

11.297 11.418 11.539
11.505 11.430 11.414
11.055 11.135 11.277

o & ol & oo & oflw & of3

Linear Function Detection 21

our initial implementation we did not focus on any runtime optimizations, which
could be further improved.

7 Conclusion

In this paper, we inspected the capabilities of linear function detection and
underlined the need of signature-based detection methods in the course of mem-
ory carving. After performing a detailed analysis of our underlying ground truth,
we introduced several considerations and model adaptations. The main adapta-
tion of our approach is the utilization of mnemonics only.

Our analysed models showed good classification results in term of accuracy,
where we achieved for RNN and WPT based models a value of accuracy above
98%. The utilization of menmonic-based weighted prefix trees showed good capa-
bilities for our considered context of application. The application of WPT per-
forms the classification of 1.9 million offsets in 12 s and reaches with simple
parameter adaptations an acceptable value of recall beyond 80%.

Considering the mentioned techniques within multiple steps of classification,
our proposed WPT could be used for the fast identification of possible function
starts and drastically reduces the amount of offsets which need to be reclassified.

Acknowledgement. This work was supported by the German Federal Ministry of
Education and Research (BMBF) as well as by the Hessen State Ministry for Higher
Education, Research and the Arts (HMWK) within CRISP (www.crisp-da.de).

References

1. Andriesse, D., Chen, X., van der Veen, V., Slowinska, A., Bos, H.: An in-depth
analysis of disassembly on full-scale x86/x64 binaries. In: USENIX Security Sym-
posium (2016)

2. Andriesse, D., Slowinska, A., Bos, H.: Compiler-agnostic function detection in bina-
ries. In: IEEE European Symposium on Security and Privacy (2017)

3. Bao, T., Burket, J., Woo, M., Turner, R., Brumley, D.: Byteweight: learning to
recognize functions in binary code. In: USENIX (2014)

4. Eagle, C.: The IDA Pro Book: The Unofficial Guide to the World’s Most Pop-
ular Disassembler. No Starch Press, San Francisco (2008). ISBN 1593271786,
9781593271787

5. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to Forget: Continual Predic-
tion with LSTM (1999)

6. Guilfanov, I.: IDA Fast Library Identification and Recognition Technology (Flirt
Technology): In-depth (2012)

7. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, 1., Salakhutdinov, R.R.:
Improving neural networks by preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580 (2012)

8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735-1780 (1997)

www.crisp-da.de
http://arxiv.org/abs/1207.0580

22

10.

11.

12.

13.

14.

L. Liebler and H. Baier

Jin, W, et al.: Binary function clustering using semantic hashes. In: 2012 11th
International Conference on Machine Learning and Applications (ICMLA), vol. 1,
pp. 386-391. IEEE (2012)

Liebler, L., Baier, H.: Approxis: a fast, robust, lightweight and approximate disas-
sembler considered in the field of memory forensics. In: Matousek, P., Schmiedecker,
M. (eds.) ICDF2C 2017. LNICST, vol. 216, pp. 158-172. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-73697-6_12

Ligh, M.H., Case, A., Levy, J., Walters, A.: The Art of Memory Forensics: Detect-
ing Malware and Threats in Windows, Linux, and Mac Memory. Wiley, US (2014)
Lipton, Z.C., Berkowitz, J., Elkan, C.: A critical review of recurrent neural networks
for sequence learning. arXiv preprint arXiv:1506.00019 (2015)

Potchik, B.: Architecture agnostic function detection in binaries. https://binary.
ninja/2017/11/06/architecture-agnostic-function-detection-in-binaries.html

Shin, E.C.R., Song, D., Moazzezi, R.: Recognizing functions in binaries with neural
networks. In: USENIX Security Symposium, pp. 611-626 (2015)

https://doi.org/10.1007/978-3-319-73697-6_12
http://arxiv.org/abs/1506.00019
https://binary.ninja/2017/11/06/architecture-agnostic-function-detection-in-binaries.html
https://binary.ninja/2017/11/06/architecture-agnostic-function-detection-in-binaries.html

	On Efficiency and Effectiveness of Linear Function Detection Approaches for Memory Carving
	1 Introduction
	2 Related Work
	3 Background
	3.1 Linear Function Detection
	3.2 Recurrent Neural Networks
	3.3 Weighted Prefix Tress

	4 Training and Evaluation Data Sets
	5 Linear Function Detection
	5.1 General Pipeline of Feature Extraction
	5.2 RNN Model Adaptation
	5.3 Weighted Prefix Tree Adaptation

	6 Evaluation
	6.1 Training Performance
	6.2 Function Start Identification
	6.3 Examination of WPT

	7 Conclusion
	References

