
Two Parallelized Filter Methods for Feature
Selection Based on Spark

Reine Marie Ndéla Marone1(&), Fodé Camara2, Samba Ndiaye1,
and Demba Kande1

1 Department of Mathematics, Cheikh Anta Diop University, Dakar, Senegal
reine.marie.marone@ucad.edu.sn

2 Department of Mathematics, Alioune Diop University, Bambey, Senegal
fode.camara@uadb.edu.sn

Abstract. The goal of feature selection is to reduce computation time, improve
prediction performance, build simpler and more comprehensive models and
allow a better understanding of the data in machine learning or data mining
problems. But the major problem nowadays is that the size of datasets grows
larger and larger, both vertically and horizontally. That constitutes challenges to
the feature selection, as there is an increasing need for scalable and yet efficient
feature selection methods. As an answer to those problems, we present here two
effective parallel algorithms developed on Apache Spark, a unified analytics
engine for big data processing. One of them is a parallelized algorithm based on
the famous feature selection method called mRMR. In the second algorithm we
propose a totally novel metric to select the more relevant and less redundant
features. To show the superiority of that algorithm we have created its cen-
tralized version that we have called CNFS_Spark.
Experimental results demonstrate that our algorithms achieve a great per-

formance improvement in scaling well and take less time than classical feature
selection methods.

Keywords: Feature selection � Parallel computing � Apache spark
mRMR � Novel method � Big data � Large scale � High dimensional

1 Introduction

Feature selection has been successfully applied for years as a preprocessing step and
has become an active research field in pattern recognition, statistics, and data mining
communities.

In supervised learning, the main goal of feature selection is to choose a subset of
input variables that produces higher classification accuracy by eliminating features with
little or no predictive information. Feature selection can also significantly reduce the
learning time of classification.

Feature selection methods are commonly categorized into filter, wrapper and
embedded approaches [1].

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019
Published by Springer Nature Switzerland AG 2019. All Rights Reserved
R. Zitouni and M. Agueh (Eds.): AFRICATEK 2018, LNICST 260, pp. 175–192, 2019.
https://doi.org/10.1007/978-3-030-05198-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05198-3_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05198-3_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05198-3_16&domain=pdf
https://doi.org/10.1007/978-3-030-05198-3_16

In the wrapper methods a subset of features is ranked by the prediction performance
of a classifier on the given subset [1]. The Wrapper methods are computationally
expensive and over fit on small training sets.

Embedded methods perform feature selection during the modeling algorithm’s
execution [1]. These methods are thus embedded in the algorithm either as its normal or
extended functionality. Embedded methods select features based on criterions that are
generated during the modeling algorithm’s execution. The chosen features are sensitive
to the structures of the underlying classifiers.

Filter methods rely on in various statistical tests to evaluate and select features
without involving any mining algorithm [1, 2]. The subset selection procedure is
generally a pre-processing step. In our studies we have focused on the filters methods
because they offer better computational complexity for datasets having large number of
features.

But generally, classical feature selection algorithms are designed to run on a single
machine and are not adapted for big-data problems [3]. In fact, algorithms do not scale
well when dealing with very large datasets and their efficiency significantly
downgrades.

Distributed computing techniques such as MapReduce [3] along with its open-
source implementation Apache Hadoop can be a solution to solve this problem.

But the MapReduce parallel programming with Apache Hadoop is not suited for
the feature selection because MapReduce programming model reads and writes from
disk [4]. As a result, it slows down the processing speed. Spark is lightning fast cluster
computing tool because of reducing the number of read/write cycle to disk and storing
intermediate data in memory. That explains our preference for apache spark.

On that basis we have developed two novel, parallel and scalable feature selection
algorithms named respectively PSFS-mRMR (for Parallel Spark Feature Selection
method based on mRMR) and PNFS_Spark (Parallel Neighbor Feature Selection based
on Spark) on the Spark framework.

The results that we obtained show that the parallelized methods outperform the
centralized ones, in terms of scalability and efficiency which shows that parallelization
is better than centralization.

The remainder of this paper is organized as follows:

Section 2 discusses related works.
Section 3 consists of defining the problem.
Section 4 presents the classical mRMR feature selection method.
Section 5 gives the metrics we used in our proposal.
Section 6 deals with the presentation of our methods.
Section 7 describes the experiments.
Section 8 consists of analyzing the experiment results.
Section 9 concludes the paper and gives some future works.

176 R. M. N. Marone et al.

2 Related Works

Filter methods are kind of feature selection methods that attempt to assess the
importance of features statically according to a heuristic scoring criteria without any
particular classifier. Many filter methods are based on information theory specifically
mutual Information but are centralized and do not scale well when dealing with big
data. They must be parallelized to gracefully scale with larger datasets [5]. So, in this
section we will discuss parallel approach of filter methods that have been proposed to
decrease the training time and produce better accuracy.

In [6] authors implement on Apache Spark, a generic feature selection framework
that includes a broad group of well-known information theory-based methods like
mRMR. The experimental results demonstrate that this framework handles efficiently
large-scale data and outperforms the sequential version.

Authors in [7] propose a package named mRMRe that extends mRMR by using an
approach to better explore the feature space and build more robust predictors. In
mRMRe, the main functions are implemented and parallelized in C using the openMP
Application Programming Interface. mRMRe provides less learning time and can
identify genes more relevant to the biological context and may lead to richer biological
interpretations.

The work in [8] is a combinaison of ReliefF and mRMR consisting on two-steps:
apply ReliefF on the first stage to find a candidate subset of gene and then use mRMR
method for reducing redundancy and selecting an effective set of gene from the can-
didate subset. The experimental evaluation demonstrates the effectiveness of this
algorithm.

In [9], a parallel version of mRMR called fast-mRMR is proposed to overcome the
computationally expensive of mRMR. Authors provide a package with three imple-
mentations of this algorithm in several platforms, namely, CPU for sequential execu-
tion, GPU (graphics processing units) for parallel computing, and Apache Spark for
distributed computing. The experimental results show that fast-mRMR outperforms the
original version of mRMR and show a clear improvement when using the parallel and
distributed versions over the sequential one.

In [10], authors reimplement four popular feature selection algorithms including
RELIEF-F, InfoGain, CFS and SVM-RFE in Weka. Multithreaded implementations
previously not included in Weka as well as parallel Spark implementations were
developed for each algorithm. Experimental results obtained from tests on real-world
datasets show that the new versions offer significant reductions in processing times.

In [11], authors, present a completely redesigned distributed version of the popular
ReliefF algorithm based on the novel Spark cluster computing model called DiReliefF.

But the proposed algorithms in the related work include iteratively one or many
features into the feature’s subset to return. So the number of onward and backwards
movements between the workers and the driver increases according to the number of
features to select. This can lead to high communication and synchronization costs
between the workers and the driver.

Two Parallelized Filter Methods for Feature Selection Based on Spark 177

In what we propose, the score of each feature is calculated by the workers and sent
once to the driver that selects the best features in one pass. That leads to less learning
time while keeping a good accuracy.

3 Problem Definition

Our work concerns the binary classification problems. c 2 {0, 1} denotes the class
label. Let F be the input set of attributes f1; ::; fnf g and I an instance represented by a n-
dimensional vector v1; ::; vnð Þ, where vj represents the value of the attribute fj in I and n
the number of features which can be large. J S0;Dð Þ is the objective function that
measuring the quality of a subset S0 of S using the data D. If J S01;D

� �
[JðS02;DÞ, it

means that the subset S01 is better than S02.
So in this work, we proposed a high-dimensional filter method: PSFS-mRMR for

Parallel Spark Feature Selection method based on mRMR (Minimum Redundancy and
Maximum Relevancy) and another one called PNFS_Spark (Parallel Neighbor Feature
Selection based on Spark) using the unified analytics engine for big data processing
Apache Spark to implement them.

4 The Classical MRMR

mRMR (minimum Redundancy and Maximum Relevance) is an algorithm frequently
used to rank features based on their relevance to the label class, and, at the same time,
the redundancy of features is also penalized. The goal is to find the maximum
dependency between a subset F’ of features, and the class label l, using mutual
information (MI) [12].

Let fi and fj be two features in F. MI fi; fj
� �

is the mutual information between fi and
fj. MI l; fið Þ stands for the mutual information between the class label l and fi.

The redundancy between features in F, is determined by

QI Fð Þ 1

Fj j2
X

fi;fj2F
MI fi; fj

� � ð1Þ

The relevance of the features in F with the class label l is given by

RI Fð Þ 1
Fj j

X

fi2F
MI l; fið Þ ð2Þ

Determine the best subset of features F* in F, which contains maximally relevant
and minimally redundant features consist of optimizing (1) and (2) as follows:

F� ¼ argmaxF0�F RI Fð Þ � QI Fð Þ½ � ð3Þ

178 R. M. N. Marone et al.

5 Ours Proposals

• PSFS-mRMR

Many authors demonstrate that [13] SVMs (support vector machines) with simple
feature rankings are effective on datasets. That’s why, in our proposal PSFS-mRMR,
we rank the features using a combination of [14] SVM and mRMR for better results.
Let b 2 0; 1½ � determines the tradeoff between SVM ranking and mRMR ranking. The
relevancy RF,i of feature fi in the F set in classification is given by

RF;i
1
Fj j

X

l

MI l; fið Þ ð4Þ

And QF,i the redundancy of feature fi in the set F in classification is computed as
follows

QF;i
1

Fj j2
X

fi;fj2F
MI fi; fj

� � ð5Þ

Let xi represents the SVM weight of the attribute fi.
For i-th feature, the ranking measure di is calculated as follows

di ¼ b xij j þ 1� bð Þ RF;i

QF;i
ð6Þ

• PNFS_Spark

In the PNFS_Spark we propose a novel metric called me that represents the median
value of the relevance with the class label l. In fact, the median gives a satisfactory idea
of the general tendency of a statistical serie (F set in our case). The outliers of the
variable that might be in the series do not influence it.

Let n be the number of features in F and e a number given by applying the formula
below if n is pair:

e ¼ nþ 1ð Þ=2

or

e ¼ n/2þ n/2þ 1ð Þ=2

if n is impair.

Two Parallelized Filter Methods for Feature Selection Based on Spark 179

me is obtained by:

me ¼ RF;e ð7Þ

where RF,e represents the relevance of e-th feature.
If the mutual information between 2 features fi and fj is greater than the median then

fi is considered a neighbor of fj. The score of the feature fi is given by multiplying its
relevance RF,i with its number of neighbors.

6 Our Algorithms

Our proposed algorithms, called respectively PSFS_mRMR and PNFS_Spark are
feature selection methods that we base on Spark, an open-source distributed cluster-
computing framework.

In this section we describe how our algorithms perform.
Let S be the input dataset (composed of n attributes and m instances) and K the

number of attributes that must be returned. Let b be a ratio between SVM ranking and
mRMR ranking (in the case of PSFS_mRMR), and x the number of partitions for the
dataset. F represents the space of attributes. The output S’ is the subset of S constituted
of K features that have the maximal di scores.

PSFS_mRMR method follows seven steps:

Step 1: create x partitions of features
1. Construct labels={ ,.., } the set of the class la-

bel in each instance.

2. Construct vals ={{ ,.., }, i=1 to n }

vals represents the values of each attribute fi of

instance Ij:
3. Construct x subspaces of features SFt, t = 1..x from

the space of feature F.

4. Construct x subspaces subt of {{ ,.., }, i SF}

5. Send each subt to a worker (between the x workers).
Step 2: Combine features by two with class labels

On each worker t:
6. Map each attribute fi with each other attribute fj in

F as follows:

fi=>{ fi, { ,.., }, { ,.., } , { ,.., }}

1l ml

1
iv

i
jv

m
iv

1
iv

m
iv

1
iv

m
iv

1
jv

m
jv 1l ml

180 R. M. N. Marone et al.

We call the set {fi, { ,.., }, { ,.., }, { ,..,

}, i=1 to n, j=1 to n and j } rdd2.

Step 3: calculate the mutual information among the
features and the relevance of each feature

In this step, we use each element of rdd2 to calculate

mutual information between each feature fi and another

feature fj of F. We compute also the relevance Ri (mutual
information with the class label) of fi. We proceed as
follows:

For each element e rdd2

7. rdd [(fi, , Ri)] = mapToPair (e=>{ fi, , Ri })

= MutualInformation ({ ,.., }, { ,.., })

Ri= MutualInformation ({ ,.., }, { ,.., }) /n

where is the class label in the instance Ik..

End For each
The set constituted of each attribute fi, mutual infor-

mation between fi and another attribute fj and the rele-
vance Ri between the class label and fi will be called
rdd3.

Step 4 : aggregate the mutual information for each
feature by summing them.

Calculate the redundancy of each feature fi by summing
its mutual information with other features. A set consti-

tuted of {fi, , Ri}, where fi is the feature,

the sum of mutual information between fi and the other fea-
tures and Ri the mutual information between fi and the
class label, is then obtained. This set is called rdd4.
This is done as follows:

For each element (fi, , Ri) rdd3

8. rdd [(fi, , Ri)]= reduceByKey (_+_)

=

End Foreach
Step 5: for each feature, compute the SVM weight

In this step compute for each feature fi its SVM

weight as follows:

For each fi F

1
iv

m
iv

1
jv

m
jv 1l ml

ijM

⊂
ijM ijM

ijM 1
iv

m
iv

1
jv

m
jv

1
iv

m
iv 1l ml

ijsumM

ijM

ijsumM

ijsumM ∑
=

n

i
ijM

1

Two Parallelized Filter Methods for Feature Selection Based on Spark 181

where =SVMWeight(F)

End For each

Step 6: for each feature, compute the rapport be-
tween relevance and redundancy
Determine for each feature fi its score , which repre-

sents a tradeoff between the redundancy and the relevance

of fi. Send scores to the master.

This is done as follows:

For each element (fi, , Ri) rdd4

10.rdd [(fi,)]= mapToPair ({fi, , Ri } =>{fi,
})

Qi= /(n*n);

=β + +((1-β)* (Ri /Qi));

/* is the SVM weight of attribute fi*/

End For each

11.Workers send scores to the master

Step 7: Choose the best features in F
Master collects, orders and returns the K attributes

that obtained the highest scores. This is done as

follows:
On the master:
12.Collect and take ordered
13.Return S’: optimal subset of K features in S with

highest scores .

ijsumM

ijsumM

9. rdd [(fi,)]= map (fi =>{ fi, })

For PNFS_Spark:
PNFS_Spark algorithm follows seven steps:

Step 1: create x partitions of features
1. Construct labels={ ,.., } the set of the class la-

bel of the different instance in S.

2. Construct vals={{ ,.., }, i=1 to n }

vals represents the values of each feature fi in each

instance Ij:

1l ml

1
iv

m
iv

182 R. M. N. Marone et al.

4. Construct x subspaces subt of {{ ,.., }, i SF}

5. Send each subt to a worker.
Step 2: Combine features by two with labels

On each worker x:
6. Map each attribute fi with each other attribute fj in

F as follows:

fi=>{ fi, { ,.., }, { ,.., } , { ,.., }}

We call the set {fi, { ,.., }, { ,.., }, { ,..,

}, i=1 to n, j=1 to n and j } obtained rdd2.

Step 3: calculate the mutual information between
features and the relevance of each feature

In this step, we use each element of rdd2 to calculate

mutual information between each feature fi and another

feature fj of F. We compute also the relevance Ri (mutual
information with the class label) of fi. We proceed as
follows:
For each element e rdd2

7. rdd [(fi, , Ri)] = mapToPair (e=>{ fi, , Ri })

= MutualInformation ({ ,.., }, { ,.., })

Ri= MutualInformation ({ ,.., }, { ,.., }) /n

where is the class label in different instances.

End For each
The set constituted of each attribute fi, mutual infor-

mation between fi and another attribute fj and the rele-
vance Ri between the class label and fi will be called
rdd3.

Step 4 : calculer la valeur medianne de la relevance
des attributs avec l’etiquette de classe.

Calculate Rfe the median value of the set of values of
relevance Ri.
Let fe be the index of the median value in the list of

relevance values between features and class labels.
If (n%2==0)

fe = (n+1)/2

else

fe = (n/2 +n/2+1)/2

Rfe= rdd3 [fe]. Re

1
iv

m
iv

1
iv

m
iv

1
jv

m
jv 1l ml

1
iv

m
iv

1
jv

m
jv 1l ml

ijM

⊂
ijM ijM

ijM 1
iv

m
iv

1
jv

m
jv

1
iv

m
iv 1l ml

3. Construct x subspaces of features SFt, t = 1..x from
the feature space F.

Two Parallelized Filter Methods for Feature Selection Based on Spark 183

In this step calculate for each feature fi the ranking

measure that represents a tradeoff between the redun-

dancy and the relevance of fi. Then send all values to

the master.
This is done as follows:
On each worker x:
For each fi subx

For each fj F

/* represents the mutual information between fi

and fj */

If (>Rfe)

rdd [(fi,)]= mapToPair ({fi} =>{fi, fj})

EndForeach
EndForeach

8. All workers send to the master

Step 6: for each feature, compute the ranking measure
which represents the score of the feature
Determine for each feature fi its score , which repre-

sents a tradeoff between the redundancy and the relevance

of fi. Send scores to the master.

This is done as follows:

For each element fi rdd [(fi,)]

For each element fj rdd [fi].)

rdd [(fi,)]= mapToPair ({fi} =>{fi, })

/* determines nV number of neighbor of fi */

nV= .length

/* the score di of fi is obtained by multiply-
ing its relevance Ri with its number of neighbor nV
*/

di = Ri

End For each
End For each
9. Workers send scores to the master

Step 7: Choose the best features in F

Step 5: for each feature, determine the list of his
neighbor

184 R. M. N. Marone et al.

Master collects, orders and returns the K attributes

that obtained the highest scores. This is done as

follows:
On the master:
10.Collect and take ordered

Return S’: optimal subset of K features in S with highest
scores.

7 Experiment Setup

The classifier that we used in our experiments is support vector machine.
The datasets used are from mldata.org [15] and are in LibSVM format. Table 1

describes those datasets.

We perform ours experiments on a cluster of 4 nodes, then on a cluster of 6 nodes.
Each node runs at the linux and consists of 8 cores. Each core runs at 2.60 GHz and has
56 GB of memory and 382 GB of disk.

8 Experimental Results

We conducted the experiment with different number of selected features and number of
nodes to measure the scalability of our propositions and compare the running time of
ours methods in comparison with the centralized ones.

Figures 1, 2 and 3 show respectively the running time of PSFS_mRMR method
and classical mRMR algorithm for selecting 25%, 50% or 75% of the colon-cancer
dataset with various numbers of nodes.

Table 1. Characteristics of datasets

Name Number of Features Number of Instances

Colon-cancer 2000 62
Colon-Tumor 2000 60

Two Parallelized Filter Methods for Feature Selection Based on Spark 185

http://mldata.org

Fig. 1. Scalability of PSFS_mRMR and classical mRMR with 25%.

Fig. 2. Scalability of PSFS_mRMR and classical mRMR with 50%.

Fig. 3. Scalability of PSFS_mRMR and classical mRMR with 75%.

186 R. M. N. Marone et al.

Figures 4, 5 and 6 show respectively the running time of PNFS_Spark method and
its centralized version for selecting 25%, 50% or 75% of the colon-cancer dataset
various numbers of nodes.

Fig. 4. Scalability of PNFS_Spark and CNFS_Spark with 25%.

Fig. 5. Scalability of PNFS_Spark and CNFS_Spark with 50%.

Fig. 6. Scalability of PNFS_Spark and CNFS_Spark with 75%.

Two Parallelized Filter Methods for Feature Selection Based on Spark 187

From the figure, when we add more nodes, the running time of PSFS_mRMR and
PNFS_Spark considerably decreases, whereas the time taken by classical mRMR and
CNFS_Spark remains the same.

We have used 4 then 6 nodes for the scalability. And for every case we have run the
tests using the same environment.

For every dataset we first select 25% then 50% and after 75% of features.
After having studied the scalability of our propositions we will study the time taken

by the feature selection for our parallel methods in comparison with the central
methods. We start first with the colon-cancer dataset then with colon-tumor.

• Colon-cancer

Figures 7 and 8 show the running time of PSFS_mRMR method and the classical
mRMR.

Fig. 7. Time taken for colon-cancer with 4nodes

Fig. 8. Time taken for colon-cancer with 6nodes

188 R. M. N. Marone et al.

Figures 9 and 10 show the running time of PNFS_Spark method in comparison
with its centralized one for respectively 4 and 6 nodes.

From the results, we can see that, the running time of ours parallel methods is at
least 4 times shorter than the classical mRMR and CNFS_Spark algorithm.

• Colon-Tumor

Results obtained for colon-tumor with 4 nodes are shown in Figs. 11 and 12:
For a cluster of 6 nodes the running time is stated in Figs. 13 and 14.

Fig. 9. Time taken for colon-cancer with 4nodes

Fig. 10. Time taken for colon-cancer with 6nodes

Two Parallelized Filter Methods for Feature Selection Based on Spark 189

Fig. 11. Time taken per PNFS_Spark for colon-tumor with 4 nodes

Fig. 12. Time taken per PSFS_mRMR for colon-tumor with 4 nodes

Fig. 13. Time taken per PSFS_mRMR for colon-tumor with 6 nodes

190 R. M. N. Marone et al.

As for the colon-cancer we can notice that the execution time of PSFS-mRMR and
PNFS_Spark is also 4 times shorter at least.

Therefore, the conclusion of ours experiments is that parallel solutions outperform
centralized methods in terms of running time. Moreover, when we add more nodes, the
running time of ours methods becomes shorter, whereas the time taken by the cen-
tralized one remains constant.

Our empirical analysis confirms the scalability of ours algorithms with respect to
the number of features and processing cores.

Our experiment is limited to the datasets up to 2000 features since beyond that
number, the centralized algorithms takes too much time to run.

9 Conclusion

In this paper we have proposed two feature selection methods, which are capable of
scaling feature selection to large datasets. One of them is a parallel version of a famous
feature selection method called mRMR. Our proposal was developed on Spark, a
unified analytics engine for large datasets processing.

Our methods consist of computing the score of each feature relatively to its
redundancy with the others features and its relevance with the class label. Then return
the features with the best scores.

Experimental results demonstrate that our parallel algorithms achieve a great per-
formance improvement in scaling well and reducing the running time. In the case of
mRMR our parallel method PSFS_mRMR have led to better performance in terms of
selecting relevant and non redundant features.

In the future, we plan to parallelize many other classical feature selection methods
like RELIEF or RFE-SVM.

Acknowledgment. We would like to express our sincere thanks to the CEA-MITIC (African
Center of Excellence in Mathematics, Computer Science and Tic) who financed our research by
paying the publication fees of the 2 papers that we published in Africatek2018.

Fig. 14. Time taken per PNFS_Spark for colon-tumor with 6 nodes

Two Parallelized Filter Methods for Feature Selection Based on Spark 191

The CEA-MITIC, located at the UFR of Applied Sciences and Technology (UFR SAT) of the
Gaston Berger University (UGB) of Saint-Louis in Senegal, is a consortium of university
institutions in Senegal and subregion of Senegal, research institutions and national, regional and
international companies involved in the ICT sector.

In this work Microsoft Azure sponsored us by putting at our disposal a cluster of machines for
the tests and we send them our warm thanks as well.

References

1. Liu, C., Wang, W., Zhao, Q., Konan, M.: A new feature selection method based on a validity
index of feature subset. Pattern Recognit. Lett. 92, 1–8 (2017)

2. Wenyan, Z., Xuewen, L., Jingjing, W.: Feature selection for cancer classification using
microarray gene expression data. Biostat. Biom. Open Acc. J. 1(2), 555557 (2017)

3. Zhao, Z., Cox, J., Duling, D., Sarle, W.: Massively parallel feature selection: an approach
based on variance preservation. In: Flach, Peter A., De Bie, T., Cristianini, N. (eds.)
ECML PKDD 2012. LNCS (LNAI), vol. 7523, pp. 237–252. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33460-3_21

4. Singh, D., Reddy, C.K.: A survey on platforms for big data analytics. J. Big Data 2(1), 8
(2015). Published online 9 October 2014

5. Jaseena, K.U., David, J.M.: Issues, challenges, and solutions: big data mining. In: Sixth
International Conference on Networks and Communications (2014). https://doi.org/10.5121/
csit.2014.41311

6. Ramırez-Gallego, S., et al.: An information theory-based feature selection framework for big
data under apache spark. J. Latex Class Files 13(9) (2014)

7. De Jay, N., Papillon, S., Olsen, C., El-Hachem, N., Bontempi, G., Haibe-Kains, B.: mRMRe:
an R package for parallelized mRMR ensemble feature selection. Bioinformatics 29, 2365–
2368 (2013). https://doi.org/10.1093/bioinformatics/btt383

8. Zhang, Y., Ding, C., Li, T.: Gene selection algorithm by combining reliefF and mRMR.
BMC Genom. 9(Suppl 2), S27 (2008). https://doi.org/10.1186/1471-2164-9-S2-S27

9. Ramírez-Gallego, S., et al.: Fast-mRMR: fast minimum redundancy maximum relevance
algorithm for high-dimensional big data: FAST-mRMR ALGORITHM FOR BIG DATA.
Int. J. Intell. Syst. 32, 134–152 (2016). https://doi.org/10.1002/int.21833

10. Eiras-Franco, C., Bolón-Canedo, V., Ramos, S., González-Domínguez, J., Alonso-Betanzos,
A., Touriño, J.: Multithreaded and spark parallelization of feature selection filters. Journal of
Computational Science 17(Part 3), 609–619 (2016)

11. Palma-Mendoza, R.J., Rodriguez, D., de-Marcos, L.: Distributed ReliefF-based feature
selection in spark. Knowl. Inf. Syst. 57, 1–20 (2018)

12. Mandal, M., Mukhopadhyay, A.: An improved minimum redundancy maximum relevance
approach for feature selection in gene expression data. In: IEEE/ACM Transactions on
Computational Biology and Bioinformatics, July 2016

13. Chang, Y.-W., Lin, C.-J.: Feature ranking using linear SVM. In: Proceedings of the
Workshop on the Causation and Prediction Challenge at WCCI 2008 (2008). PMLR 3, 53–64

14. Mundra, P.A., Rajapakse, J.C.: SVM-RFE with MRMR filter for gene selection. IEEE Trans.
Nanobiosci. 9(1), 31–37 (2010)

15. http://mldata.org/repository/data/viewslug/ovarian-cancer-nci-pbsii-data/

192 R. M. N. Marone et al.

http://dx.doi.org/10.1007/978-3-642-33460-3_21
http://dx.doi.org/10.5121/csit.2014.41311
http://dx.doi.org/10.5121/csit.2014.41311
http://dx.doi.org/10.1093/bioinformatics/btt383
http://dx.doi.org/10.1186/1471-2164-9-S2-S27
http://dx.doi.org/10.1002/int.21833
http://mldata.org/repository/data/viewslug/ovarian-cancer-nci-pbsii-data/

	Two Parallelized Filter Methods for Feature Selection Based on Spark
	Abstract
	1 Introduction
	2 Related Works
	3 Problem Definition
	4 The Classical MRMR
	5 Ours Proposals
	6 Our Algorithms
	7 Experiment Setup
	8 Experimental Results
	9 Conclusion
	Acknowledgment
	References

