q

Check for
updates

ONAP Architectures for Network
Function Virtualization

Abel Fernandez-Nandin, Felipe Gil-Castineira®™®,
and Francisco J. Gonzéalez-Castano

atlanTTic Research Center for Telecommunication Technologies,
Universidade de Vigo, Campus Universitario, 36310 Vigo, Spain
{abel,xil, javier}@gti.uvigo.es

Abstract. The Network Function Virtualization paradigm is changing
the telecommunications industry. Network applications in general pur-
pose telco infrastructures will be instantiated on demand or deployed in
the most appropriate location for each use case. Nevertheless, these vir-
tualized scenarios are complex and require tools to manage the different
components flexibly and reliably. ONAP is one of the projects that are
implementing such tools. It provides a rich set of elements that can be
executed in virtual machines or containers, following different architec-
tures. In this paper we present the different possibilities for that and
analyze their advantages and disadvantages.

Keywords: Network Function Virtualization -+ Containers - ONAP

1 Introduction

In the last years, cloud computing has become a key enabler in the IT field.
Infrastructure virtualization has been crucial to optimize resource usage [1],
and has brought unparalleled management flexibility. The continuous search for
improvements has spawned several solutions that continue to shape the cloud
computing world.

One of the most relevant technologies in the last years is containers [2], which
provide means to encapsulate applications without using virtual machines. Since
there is no virtual kernel between the host machine and the containerized appli-
cation, this technology is lighter, but also less secure: a vulnerable application
that compromises the host kernel also compromises the rest of the containers [3].
This is challenging for multi-tenancy scenarios. The most frequent solution is to
launch these containers on top of virtual machines [4] that are already running,
which does not involve extra boot time.

Containers technology has had such an impact that not only new associated
solutions like Kubernetes [5] have appeared, but also traditional cloud computing
software like OpenStack has been adapted to support them [6]. There also exist
implementations of orchestration engines to automate application deployment,
scaling, and management [7].

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019
Published by Springer Nature Switzerland AG 2019. All Rights Reserved

V. Sucasas et al. (Eds.): BROADNETS 2018, LNICST 263, pp. 62-71, 2019.
https://doi.org/10.1007/978-3-030-05195-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05195-2_7&domain=pdf
https://doi.org/10.1007/978-3-030-05195-2_7

ONAP Architectures for Network Function Virtualization 63

The telco sector has not been indifferent to this revolution. Initially, telecom-
munications were just commodities that provided connectivity to the cloud (for
the users or to interconnect data centers). Since then many telcos have become
cloud computing service providers themselves trying to leverage their intrinsic
advantages (such as large network bandwidth) to reach a new market [8]. Nev-
ertheless, the real impact in the telco sector started with network “softwariza-
tion”. Typical network functions started to migrate from proprietary hardware to
Commercial-Off-The-Shelf (COTS) computers, simplifying tasks such as feature
upgrades, fixing bugs, or scaling the service [9]. The next logical step is the virtu-
alization of these network functions, by turning network equipment into virtual
entities. This is the driving force behind the Network Function Virtualization
(NFV) concept [10]. The new virtual appliances that satisfy the NFV paradigm
can be instantiated on demand or deployed in any cloud location with enough
available resources, and scaled with the number of requests. Furthermore, the
same hardware can perform different functions at a time (by executing different
virtual network functions or VNFs in the same hardware) or at different times
(e.g. different services over the same physical platform for different customers).

Software Defined Networking (SDN) is another related technology that
decouples the control and data planes and centralizes the decisions in a con-
troller [11]. These planes are separated through a well defined API between the
switches and the controller. The most popular API nowadays is OpenFlow. SDN
allows controlling traffic flows from a centralized location, simplifying the cre-
ation of new NFV instances and relocating of existing ones, without interrupting
service for end users.

A NFV infrastructure supported by a SDN enabled network is a complex
environment that also requires an architecture for management and orchestra-
tion. For this purpose, the ETSI NFV group defined the management and orches-
tration (MANO) framework [12]. It standardizes the functionalities for the pro-
visioning of VNF's, their configuration, and the configuration of the supporting
infrastructure. It also includes the orchestration and management of the physical
and virtual resources that the VNFs require.

The ONAP (Open Network Automation Platform) project provides a unified
operating framework that comprises the orchestration and automation of VNF's,
SDNs and the services combining both. Thus, ONAP is a superset of ETSI
MANO with extra capabilities. It evolved from the merge of ECOMP (Enhanced
Control, Orchestration, Management and Policy) and Open-O, and is under the
umbrella of the Linux Foundation. Nowadays it has strong momentum with the
participation of vendors that cover over 60% of mobile customers worldwide [13].
This makes ONAP an interesting platform to analyze how containers can help
build an NFV infrastructure.

This paper reviews different ways to stack technologies to support VNFs with
the ONAP platform, which is discussed in depth in Sect. 3. Section 2 presents the
related work. Section 4 describes different architectures for ONAP deployment.
Finally, Sect. 5 presents our conclusions and plans for future work.

64 A. Fernandez-Nandin et al.

2 Related Work

The NFV paradigm appeared with the maturity of virtualization techniques.
Previous work has addressed how to combine different virtualization technolo-
gies to deploy NFV in a telco environment [14,15], including containers [16,17].
Nevertheless, we are not aware of any other work analyzing the different possi-
bilities to use ONAP for this task.

OpenStack is a platform that allows managing the networking, computing, and
storage resources in a cloud. It is very popular in the virtualization field and is one of
the main components in ONAP. In [18] the authors studied its suitability for provi-
sioning and deploying NF'V services. The paper also discussed future challenges for
OpenStack to be adopted to implement an NFV infrastructure. For example, the
authors state that OpenStack should not affect service performance, and that its
configuration options should cover VNF services from different vendors. Some lim-
itations were identified regarding networking capabilities, traceability, the assign-
ment of VNF's to specific hardware resources and security. Finally, the paper also
described the different options to deploy VNF's (on virtual machines, containers,
or bare metal) and the interest of such flexibility.

In [19] the authors describe a resource allocation strategy based on ONAP
for deploying Virtualized Network Functions (VNF's) on distributed data centers.
They also describe the different ONAP components, how they are integrated,
and the mechanism for resource allocation (basically, it is the heuristic algorithm
implemented in OpenStack’s scheduler), but they do not discuss the different
options to deploy ONAP.

In [20] the authors describe the existing interest in using containers for NF'V
and other telecom infrastructures, but they also present several issues that make
them not ready for a production state. One of the main concerns is related to
the security of the deployments with containers. In [21] the authors discuss the
Docker environment’s security implications. Docker security relies on three fac-
tors: isolation of processes at the userspace level, the enforcement of the isolation
by the kernel, and security in the networks operation. If an attacker compromises
a container, it should not be possible to affect another. To conclude the paper,
the authors state that an orchestrator could solve some of the security issues with
mechanisms implemented at higher levels of abstraction, and by using automa-
tion to provide an automated way to audit the security and to patch the system.
Therefore, if such measures are implemented in ONAP, containers should be a
valuable alternative to deploy NFV services (and even the ONAP infrastructure).

Summing up, although there exists significant work on NFV requirements
and base technologies (such as OpenStack), we are not aware of any publication
on the suitability of different virtualization architectures to deploy ONAP.

ONAP Architectures for Network Function Virtualization 65

3 ONAP and Its Supporting Technologies

ONAP’s architecture is divided into its Design-Time and Run-Time frameworks.

The Design-Time framework features the Service Design and Creation (SDC)
and the Policy subsystems, which enables developers to define, simulate, and
certify assets and their associated processes and policies.

The Run-Time framework comprises the Active and Available Inventory
(AAI), which allows visualizing and managing the assets’ inventory; controllers
for managing the state of a resource; the Data Collection, Analytics and
Events (DCAE) subsystem, which gathers performance and usage metrics of
the resources to find anomalies; the Master Service Orchestrator (MSO), which
arranges, sequences, and implements tasks based on rules and policies to coordi-
nate the creation, modification, or removal of resources in the managed environ-
ment; and the Security Framework, which aims at providing security by design
in a variety of ways.

ONAP relies on OpenStack to allocate resources. Let us mention some key
components for ONAP. OpenStack Heat plugin implements an orchestration
engine. The infrastructure for a cloud application can be described in a text file,
which simplifies version control. The Magnum plugin brings several container
orchestration engines into OpenStack. It uses Heat to build virtual machine
clusters, on top of which an orchestration engine deploys containerized services.
The alternatives for orchestration engines are Docker Swarm, Apache Mesos and
Kubernetes. The latter has become the de facto standard for deploying, scaling,
and managing containerized applications. Its architecture follows a master/slave
hierarchy, in which the master nodes that belong to the control plane manage the
worker nodes. Kolla allows deploying Openstack clouds by containerizing its ser-
vices. This simplifies the configuration and scalability of clouds, since they may
run on top of Kubernetes for lifecycle management. Ironic is useful to employ
bare metal machines instead of virtual instances, for those cases where a virtu-
alization layer could hinder the performance of the system. By combining this
plugin with Magnum container execution reaches peak performance.

4 Possible ONAP Architectures

By combining previous technologies it is possible to build different architectures
for ONAP, which may have advantages and disadvantages in particular scenarios.

The following sections discuss different alternatives for the deployment of
ONAP and VNFs. The diagrams in this section represent the different elements
of the architectures with the following color code:

D Operating System
Bare-metal machine
Virtual Machine
Container

L]

66 A. Fernandez-Nandin et al.

Finally, Table 1 summarizes the main features of the alternative architectures.
It describes the cloud computing software used to deploy ONAP’s services, the
VIM (Virtual Infrastructure Manager) used by said services to launch the VNFs,
the ease of integration between the proposed architecture and an existing Open-
Stack cloud, the ease of managing the system according to how independent
the different technologies are from each other, the qualitative estimation of the
resources it uses, and the degree of security it provides according to the exis-
tence of a virtualization layer between the host machine and both the VNFs and
ONAP’s services.

4.1 ONAP on OpenStack

Figure 1 shows an architecture where a vanilla OpenStack installation runs bare-
metal on top of Ubuntu (or any other Linux distribution). In this scenario, ONAP
services are deployed as several virtual machines orchestrated by OpenStack Heat.

ONAP ’ ‘ VNF1 ’ ‘ VNF2 000 VNFn

OPENSTACK

UBUNTU

Fig.1. ONAP on OpenStack

The OpenStack infrastructure that hosts ONAP services also acts as its own
VIM. Therefore, VNFs are launched as virtual machines on top of the same
OpenStack infrastructure.

The high hardware costs make this choice unattractive in principle. However,
it may be useful in a scenario where a tenant with an OpenStack cloud wants to
adopt ONAP without any changes in its architecture.

4.2 ONAP on Kubernetes on OpenStack

The architecture depicted in Fig.2 shows a bare-metal OpenStack installation
on top of which a virtualized Kubernetes cluster runs.

ONAP services now run as containerized applications managed by Kuber-
netes, which simplifies management, scaling, and auto-healing. Kubernetes may
be installed manually inside virtual machines or by using the Magnum plugin.

ONAP Architectures for Network Function Virtualization 67

ONAP ONAP 000 ONAP
SERVICE 1| |SERVICE2| ~ ~ |[SERVICE n

p \ M)

VNF 1 Jt VNF 2 ’ 000 VNFn
J \) \

OPENSTACK

KUBERNETES

UBUNTU

Fig. 2. ONAP on Kubernetes on OpenStack

Since containers, unlike virtual machines, do not need to secure resources
before they run, their resource usage is more efficient. Moreover, the fact that
ONAP services still run on top of OpenStack makes integration almost as easy.
However, if a tight integration between Kubernetes and OpenStack is desired, it
would be necessary to install the Magnum plugin. This would presumably require
some cloud architecture changes and, therefore, adoption is not as straightfor-
ward as in Sect.4.1.

4.3 ONAP on Kubernetes and Openstack

The architecture in Fig.3 has two independent components, Kubernetes and
OpenStack, which run bare-metal.

ONAP ONAP
SERVICE1 || sERvicE2 | ©©© 000| VNFn

ONAP
SERVICE n ‘ VNF 1 ’ ’ VNF 2

KUBERNETES ’ ‘ OPENSTACK

UBUNTU

Fig. 3. ONAP on Kubernetes and Openstack

OpenStack no longer serves as the infrastructure for ONAP. It just acts as a
virtual infrastructure manager to launch the VNFs. Kubernetes, however, allows
managing the containerized ONAP services. This scenario behaves as that in
Sect. 4.2, but ONAP services are more efficient because there is no virtualization
layer between them and the host machine.

68 A. Fernandez-Nandin et al.

In principle, there is a trade-off between this scenario and that in Sect. 4.2
related to ONAP services infrastructure. Since Kubernetes is now bare-metal,
the containers it manages can achieve peak performance. However, OpenStack
no longer controls the lifecycle of the Kubernetes cluster, so another approach
is necessary for infrastructure deployment.

Fortunately, there exists an alternative that offers the best of both worlds by
making use of the Magnum and Ironic plugins: by combining them, OpenStack
can handle bare-metal machines as if they were virtual ones, and provision a
Kubernetes cluster inside them.

4.4 ONAP and OpenStack on Kubernetes

The architecture in Fig. 4 corresponds to a scenario in which a bare-metal Kuber-
netes containerizes and manages services from both ONAP and OpenStack.

/—\
VNF 1 ’ VNF 2 O 33 VNFn
- 4

OPENSTACK

OPENSTACI(
SERVICE 1

OPENSTACK
SERVICE 2

OPENSTACK
SERVICE n

ONAP ONAP
SERVICE 1 SERVICE 2 SERVICE n 000

\) \ / \)

KUBERNETES

UBUNTU

Fig.4. ONAP and OpenStack on Kubernetes

Here Kolla is the key enabler, as it allows OpenStack’s services to run inside
Docker containers, and the Kolla-Kubernetes project permits a Kubernetes clus-
ter to manage them.

This approach containerizes the whole underlying infrastructure of the plat-
form, enabling the management, scaling, and auto-healing of all the services both
from ONAP and OpenStack. It would also be the most resource-efficient due to
the lack of virtualization. However, it no longer takes advantage of an existing
OpenStack deployment, so it would not integrate well with a cloud where ONAP
and an existing platform must coexist.

The VNFs, however, are not free of a virtualization layer, since they run
on virtual machines on top of OpenStack. The transition from VNFs to cVNF's
(containerized VNFs) will be discussed in Sect. 5.

ONAP Architectures for Network Function Virtualization 69

Table 1. Comparison of architectures

Architecture ONAP VIM Integration Management |[Resource |Security
infrastructure usage environment
Architecture 4.1|OpenStack OpenStack Easy Easy High Virtualized
infrastructure +
VNFs
Architecture 4.2| Virtualized OpenStack Easy Medium Medium |Virtualized
Kubernetes difficulty infrastructure +
VNF's
Architecture 4.3| Kubernetes OpenStack Medium Hard Medium |VNFs
difficulty
Architecture 4.3| Kubernetes Containerized |Hard Medium Low VNFs
OpenStack difficulty
ONAP ONAP 000 PPN
SERVICE1 || sERVICE2 | ©©© | SERVICEn ‘ CYNES ’ Nz ‘ 000 ’ s

/

KUBERNETES

UBUNTU

Fig. 5. ONAP on Kubernetes

5 Conclusions and Future Work

From the discussion of the different architectures, one might infer a development
trend of cloud computing platforms for NF'V towards containerization. However,
the support for containerized VNFs is not fully extended or developed. For this
reason, ONAP has been taking steps into integrating Kubernetes as a virtual
infrastructure manager, which would enable containerized VNFs to reside adja-
cently to containerized ONAP services. This would result in a flat architecture
as shown in Fig.5. One important benefit derived from this flat architecture
would be that the way of enforcing security and load balancing policies would
be shared between the ONAP services and the cVNFs, since Kubernetes provides
those capabilities. Because the current solutions make use of both Kubernetes
and OpenStack, the configuration of these policies is split among the two plat-
forms and, therefore, more cumbersome to implement.

It is apparent that containerizing platforms as much as possible would greatly
benefit the infrastructure, but there is some concern that this approach would
not be valid for multi-tenancy scenarios. As a consequence, there is a trade-off
between virtual machines and containers. The former are secure but slow, and
the latter are fast but insecure. This is caused by sharing the kernel between the
host machine and the guest applications. There are some solutions that bring
the best of both approaches.

70 A. Fernandez-Nandin et al.

For example, Hyper (https://hypercontainer.io/) aims at providing a suit-
able environment for multi-tenancy by implementing hardware-enforced isola-
tion, which is achieved by containing applications within separate kernel spaces.
Since the kernel is really streamlined, it does not affect the performance of the
container heavily, so sub-second boot times are still feasible.

Clear Containers has a similar goal (https://clearlinux.org/containers), since
it implements lightweight virtual machines by placing an optimized kernel
between the host machine and the guest application.

Kata Containers (https://katacontainers.io/) is an upcoming project by the
OpenStack Foundation. It will combine underlying technologies of the previ-
ous projects, Hyper’s runV and Clear Containers’ runtime. The goal is an
architecture-agnostic system to be run on multiple hypervisors, supporting the
OCI specification. It will also support the CRI standard, so it will be compatible
with Kubernetes’ container runtime.

Frakti (https://github.com/kubernetes/frakti) is a hypervisor-based con-
tainer runtime for Kubernetes. It seeks to leverage Kata Containers to pro-
vide strong isolation by running containers and Kubernetes’ pods directly inside
hypervisors. The containers of each pod will share the kernel, reducing burden.
However, this will not compromise the infrastructure of other tenants, since each
pod will have its own kernel.

As future work we will contribute to the integration of one of these approaches
with the future Kubernetes virtual infrastructure manager, for ONAP to be not
only fully containerized but also multi-tenant.

References

1. Armbrust, M., et al.: Above the clouds: a Berkeley view of cloud computing. Techni-
cal report UCB/EECS-2009-28, vol. 4, pp. 506-522. EECS Department, University
of California, Berkeley (2009)

2. Vaughan-Nichols, S.J.: New approach to virtualization is a lightweight. Computer
39(11), 12-14 (2006)

3. Gao, X., Gu, Z., Kayaalp, M., Pendarakis, D., Wang, H.: ContainerLeaks:
emerging security threats of information leakages in container clouds. In: 47th
Annual IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN), pp. 237-248. IEEE (2017)

4. Manco, F., et al.: My VM is lighter (and safer) than your container. In: Proceedings
of the 26th Symposium on Operating Systems Principles, pp. 218-233. ACM (2017)

5. Brewer, E.A.: Kubernetes and the path to cloud native. In: Proceedings of the
Sixth ACM Symposium on Cloud Computing, pp. 167-167. ACM (2015)

6. Cacciatore, K., et al.: Exploring Opportunities: Containers and OpenStack. Open-
Stack White Paper, 19 (2015)

7. Vaquero, L.M., Rodero-Merino, L., Buyya, R.: Dynamically scaling applications in
the cloud. ACM SIGCOMM Comput. Commun. Rev. 41(1), 45-52 (2011)

8. Lei, X., Zhe, X., Shaowu, M., Xiongyan, T.: Cloud computing and services plat-
form construction of telecom operator. In: 2nd IEEE International Conference
on Broadband Network & Multimedia Technology, IC-BNMT 2009, pp. 864-867.
IEEE (2009)

https://hypercontainer.io/
https://clearlinux.org/containers
https://katacontainers.io/
https://github.com/kubernetes/frakti

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

ONAP Architectures for Network Function Virtualization 71

Afolabi, I., Taleb, T., Samdanis, K., Ksentini, A., Flinck, H.: Network slicing &
softwarization: a survey on principles, enabling technologies & solutions. IEEE
Commun. Surv. Tutor. (2018)

Chiosi, M., et al.: Network functions virtualisation: an introduction, benefits,
enablers, challenges and call for action. In: SDN and OpenFlow World Congress,
pp. 22-24 (2012)

Kreutz, D., Ramos, F.M., Verissimo, P.E.; Rothenberg, C.E., Azodolmolky, S.,
Uhlig, S.: Software-defined networking: a comprehensive survey. Proc. IEEE
103(1), 14-76 (2015)

ISG, N.: Network Functions Virtualisation (NFV): Management and Orchestration.
European Telecommunications Standards Institute, Technical report (2014)
Parker-Johnson, P., Doiron, T.: Succeeding on an open field: the impact of
open source technologies on the communication service provider ecosystem. ACG
Research Report (2018)

Duan, Q., Ansari, N., Toy, M.: Software-defined network virtualization: an archi-
tectural framework for integrating SDN and NFV for service provisioning in future
networks. IEEE Netw. 30(5), 10-16 (2016)

Kourtis, M.A., et al.: T-NOVA: an open-source MANO stack for NFV infrastruc-
tures. IEEE Trans. Netw. Serv. Manag. 14(3), 586-602 (2017)

Cziva, R., Jouet, S., White, K.J., Pezaros, D.P.: Container-based network func-
tion virtualization for software-defined networks. In: 2015 IEEE Symposium on
Computers and Communication (ISCC), pp. 415-420. IEEE (2015)

Cziva, R., Pezaros, D.P.: Container network functions: bringing NFV to the net-
work edge. IEEE Commun. Mag. 55(6), 24-31 (2017)

Kavanagh, A.: OpenStack as the API framework for NFV: the benefits, and the
extensions needed. Ericsson Rev. 2 (2015)

Slim, F., Guillemin, F., Gravey, A., Hadjadj-Aoul, Y.: Towards a dynamic adaptive
placement of virtual network functions under ONAP. In: Third International NFV-
SDN 2017-04SDI-Workshop on Orchestration for Software-Defined Infrastructures
(2017)

Rotter, C., Farkas, L., Nyiri, G., Csatéri, G., Janosi, L., Springer, R.: Using
Linux containers in telecom applications. In: 19th International ICIN Conference -
Innovations in Clouds, Internet and Networks, pp. 234-241 (2016)

Combe, T., Martin, A., Di Pietro, R.: To Docker or not to Docker: a security
perspective. IEEE Cloud Comput. 3(5), 54-62 (2016)

	ONAP Architectures for Network Function Virtualization
	1 Introduction
	2 Related Work
	3 ONAP and Its Supporting Technologies
	4 Possible ONAP Architectures
	4.1 ONAP on OpenStack
	4.2 ONAP on Kubernetes on OpenStack
	4.3 ONAP on Kubernetes and Openstack
	4.4 ONAP and OpenStack on Kubernetes

	5 Conclusions and Future Work
	References

