
Multi-tenant Isolation in Software
Defined Networks

Sarah Irum(B), Patrick Luedke, Klaus Warnke, and Gerrit Schulte

Acticom Gmbh, Am Borsigturm 48, 13507 Berlin, Germany
{sarah.irum,patrick.luedke,klaus.warnke,gerrit.schulte}@acticom.de

http://www.acticom.de

Abstract. Software Defined Networking (SDN) provides a flexible and
programmable infrastructure for future networks. SDN supports multi-
domain networks where customers, called tenants, can share network
resources on the large data centers. In the multi-tenant environment,
tenants can share the network elements while keeping them isolated from
each other. In this paper, we describe an isolated multi-tenant solution
where the tenants can have control over their assigned network resources.
The described approach provides isolation through VxLAN and configu-
ration of flow tables in the OpenFlow switch. VxLAN tunnels are used to
isolate packets transmitted by different tenants. Virtual Network Identi-
fiers (VNIs) are assigned to the flow table for identification of the tenant.

Keywords: Software defined network · VxLAN
Network function virtualization · OpenFlow

1 Introduction

Software Defined Networking (SDN) has emerged as an architecture to develop
and deploy fast-growing applications over the past few years. SDN provides
a dynamic, manageable, cost-effective approach that simplifies today’s network
capabilities and management. It helps to resolve the issues with the conventional
network infrastructure such as large-scale integration of end systems and virtual
networks. SDN gained considerable recognition from the researchers because of
its benefits for the future Internet architectures such as information-centric net-
working [1]. SDN separates the control plane and forwarding paths to reduce
network energy, provide security mechanisms [2] and data center network man-
agement [3]. A centralized network controller is used in SDNs to manage the
entire network resulting in faster service provisioning, automation, and efficiency
gains. The OpenFlow protocol is used for the communication of SDN controllers
and switches.

Traditional network infrastructures manage servers, storage, and networking
manually by highly skilled system administrators. This hardware-centric man-
agement approach is replaced by the multi-tenant services which offer virtualiza-
tion and abstraction technologies. SDN technology allows the customers to have
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

V. Sucasas et al. (Eds.): BROADNETS 2018, LNICST 263, pp. 367–376, 2019.

https://doi.org/10.1007/978-3-030-05195-2_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05195-2_36&domain=pdf
https://doi.org/10.1007/978-3-030-05195-2_36


368 S. Irum et al.

a higher level of control over their virtualized network resources in the multi-
tenant environment. However, the isolation between tenant domains becomes
important in the design of multi-tenant architectures as some of the network
resources are shared between the multiple tenants. Virtual Network Function
(VNF) architectures together with SDN virtualize the traditional network func-
tions and replace the dedicated network hardware with software applications,
which helps in accurate monitoring and manipulation of network traffic [4].

In this paper, we propose a testbed to isolate multi-tenant traffic in SDNs.
In the testbed, multiple tenants are connected to multiple OpenFlow switches
through one centralized SDN controller. The traffic is isolated using VxLAN
overlay networks and flow tables. Virtual Extensible Lan (VxLAN) is the encap-
sulation protocol for the overlay network on existing Layer 3 infrastructure. It
provides scalability to the system, while providing isolation to the tenants [5].
Flow tables are used in the OpenFlow protocol and they match incoming pack-
ets to specific flows and specify the functions that are to be performed on the
frames.

The rest of the paper is organized as follows. Section 2 will present a brief
description of Software Defined Networking and NFV. Section 3 will address the
details of the testbed. Finally, Sect. 4 will present our conclusion and future work.

2 Concepts

In this section, we briefly explain the basic concepts and terminologies that are
used in this paper.

2.1 Software Defined Networks

The traditional network paradigm focuses on hardware-centric networking,
where switches have their own data and control planes, and adding new proto-
cols or updating the existing protocols is a challenge. However, in SDN, switches
have become simpler by taking out the control plane from the forwarding devices
and managing the switches using the centralized controller devices. SDN intro-
duces the softwarized programmable network, where data and control planes are
separated and forwarding decisions are made on centralized SDN controllers. In
the data plane, packets are transported through switches towards the destina-
tion. Whereas, in the control plane, the SDN controller decides about the packet
flow through the network in the data plane. Control plane functionalities include
system configuration, management, and exchange of routing table information.
The SDN controller sends packet rules to the SDN switches and configures them
with the information about the traffic they are handling using the OpenFlow
protocol.

2.2 OpenFlow

The OpenFlow protocol is the communication protocol between a SDN controller
and one or multiple SDN switches. The controller manipulates the flow entries



Multi-tenant Isolation in Software Defined Networks 369

in the switch such as adding, updating or deleting the flow entries of a flowtable.
The OpenFlow switch supports flow-based forwarding using the flow tables. Flow
tables contain information about packet flows and their end points. Each packet
flow entry contains information of packets such as Ethernet addresses and IP
addresses of source and destination, output actions that are to be performed on
the received packet, and the total number of transmitted bytes etc. When the
switch receives a packet, it matches the flow entry with the flow table. In case a
table miss entry, the switch forwards the packet back to the controller, and the
controller gives the direction to the switch to manage the packet in the future
or it just drops the packet [6].

2.3 SDN Controllers

The SDN controller manages the flows, application and business logic to enable
intelligent networking. Tasks of the controller are monitoring of SDN network
traffic, providing network statistics, and adding new rules throughout the net-
work. Most popular SDN controllers are Ryu [7], Open Day Light (ODL) [8],
POX [9], NOX [10], Floodlight [11] controller. Some of the controllers are config-
ured using Python scripts such as Ryu, POX, NOX, while others are developed
in C++ or Java.

2.4 VxLAN

There have been several approaches for the development of OpenFlow standards.
Virtual Extensible LAN (VxLAN) was developed to address the scalability prob-
lem in the large computing environments. It is a virtual encapsulation technol-
ogy for operating an overlay network on existing Layer 3 infrastructure [12]. The
devices’ which support VxLAN’ are called virtual tunnel endpoints (VTEPs).
The devices that can act as a VTEP are host endpoints, switches, and routers.
VTEPs encapsulate VxLAN traffic by adding the number of fields such as the
outer media access control (MAC) destination address, the outer MAC source
address, the outer IP destination address, the outer IP source address, the outer
UDP header, and the VxLAN network identifier (VNI), which is used to uniquely
identify the VxLAN traffic. It also de-encapsulates the traffic leaving the VxLAN
tunnel.

2.5 Network Function Virtualization - NFV

Network Virtualization (NV) [13] allows executing multiple instances of a net-
work on a shared physical infrastructure. SDN enables NV by distinguishing
and forwarding flows to different networks. In Network Function Virtualization
(NFV) [14], specific in-network functions are virtualized such as firewalls, load
balances, and VPN gateways etc. NFV focuses on data plane programmability
and can be used to extend SDN because SDN mainly focuses on the control
plane programmability.



370 S. Irum et al.

3 Implementation

In our testbed, we developed our SDN environment using computer nodes as the
hosts using Ubuntu Linux as an operating system. These hosts use the KVM
hypervisor to spawn virtual machines. We used OVS switches on each host,
which supports the OpenFlow protocol for communication inside SDN. The Ryu
controller has been used as SDN controller which provides the control plane
capability. In order to achieve isolation in the setup, we modified the flow tables
in the OVS switch, and added the entries manually for the traffic control between
VxLAN tunnels.

3.1 Creating Virtual Machines Using Hypervisors

There are several existing solutions for the isolation of multi-tenant network
in SDNs. In our testbed, multiple tenants are isolated using VxLANs overlays
and designing policies for flow tables. Isolation is achieved by assigning the end
hosts and tagging the initial flows using tunnel ids. An OpenFlow switch is
responsible to enforce policies and it inserts the label into the packet headers.
We implemented our solution on the Ryu Controller to evaluate the traffic and
isolation of multi-tenants setups.

Fig. 1. Two Virtual vachines running on a hypervisor.

For the testbed we exclusively use hosts with KVM (Kernel Based Virtualiza-
tion) as a hypervisor running on Ubuntu Server 16.04 LTS. For managing KVM,
the virsh tool is used because it is scriptable, well documented and capable of
communicating with KVM (see Fig. 1).

The host acts as a spawn point for the virtual machines that can be used
at a later stage to serve as SDN. In Fig. 2, it is shown that the system consists
of multiple hosts containing multiple guest virtual machines according to the
requirements of the setup.

3.2 Connecting Virtual Machines with OVS Switch

In the setup, OVS is used as OpenFlow switch. OVS is the multilayer virtual
switch that supports OpenFlow enabling network automation through program-
ming. In Fig. 3, a simple topology is depicted in which two virtual machines are



Multi-tenant Isolation in Software Defined Networks 371

Fig. 2. Four hosts with hypervisors that act as spawnpoints for virtual machines.

connected to the OVS switch and the switch is controlled by the Ryu Controller.
The OpenFlow table is configured in the OVS switch by the controller. In this
topology, if VM1 transmits a packet to VM2, the packets are first received by
the OVS switch connected to VM1, and depending on the flow table entries, the
received packet would be forwarded to VM2. The controller is managing all the
flow entries in the switch.

Fig. 3. VM1, VM2 and Ryu controller are connected through OVS switch.

3.3 Configuration of OVS Switch Using OpenFlow

An OVS switch has a flow table with flow entries that can be managed by
the SDN controller. The flow entries can control the forwarding of the packets.
The decision of forwarding or dropping the packets is made by the controller.
Each flow entry specifies a matching pattern and defines the action that can be
performed on the packet. When the switch receives the packet, it matches it with
the forwarding matching pattern and if the flow entry is not found in the flow
table, i.e. with a table miss entry, it forwards the packet to the controller. The
controller then adds the flow entry to the switch or just drops it. A flow entry



372 S. Irum et al.

contains information of the flow, such as Ethernet address and IP address of
source and destination, output actions that are to be performed on the received
packet, and the total number of transmitted bytes etc (see Fig. 4).

Fig. 4. Flow table and basic composition of a flow entry.

3.4 Connecting Switches Through VxLAN

A Virtual Extensible Local Area Network (VxLAN) supports a large number of
tenants in comparison to previous solution VLAN. It encapsulates the network
traffic in to the tunnel, and creates overlay networks that are isolated from the
providers physical network. Virtual Tunnel endpoints (VTeps) are the devices to
perform encapsulation and de-encapsulation on the VxLAN traffic. Each traffic
segment is identified by a unique Virtual Network Identifier (VNI) (see Fig. 5).

Fig. 5. OVS switches connected through a VxLAN tunnel.

In real world scenarios, multiple switches are connected to each other for the
transmission of the network packets. The testbed is extended by adding more
switches. As shown in Fig. 6, three virtual machines are added to the second
switch and their virtual ports are defined as well. The Ryu controller manages
the communication between the two switches. For the transmission of VxLAN
encapsulated packets between the switches VxLAN tunnels are used in the setup.

The Fig. 7 explains the basic topology of a multi-tenant SDN network in
which tenant A and tenant B have different virtual networks and their traffic is
isolated using VxLAN tunnels. The tunnel is created on both VTEPs (switches)
for the transmission of packets. VNIs are assigned on the VTEPs to separate the
traffic of both tenants. The VTEP adds headers to the original packet sent by
the VM such as VNI, and IP and MAC addresses of source and destination etc.
and forwards the packet into the tunnel. Vtep2 receives the packet and removes
the UDP headers assigned by the VTEP and sends the packet to the actual
destination.



Multi-tenant Isolation in Software Defined Networks 373

Fig. 6. Five Virtual Machines and two OVS switches that are controlled by a Ryu
controller.

Fig. 7. Setup with five virtual machines distributed among two hosts. Both OVS
switches are connected by a VxLAN tunnel with two isolated overlay networks (VNI
100- orange and VNI 200 - light blue). (Color figure online)

3.5 Isolation of Multi-tenants Using Flow Table

In the testbed scenario, two overlay networks are shown that are isolated from
each other. The two networks are assigned different VNIs. The first network
has VNI 100 and contains VM1, VM3, and VM5. The second network has VNI
200 and contains VM2 and VM4 as shown in Fig. 7. The virtual machines in a
single host can have equal IP configuration and same MAC addresses as they



374 S. Irum et al.

Fig. 8. OVS switch 1 flow table.

are separated using the VNI. This prevents IP address collision and any tenant
can create a network without having the information of other tenant networks.

In Fig. 8, the flow table of OVS switch 1 contains the information of VNIs
assigned to the virtual machines and the forwarding path of the packets according
to the assigned VNIs. In the first two lines of the flow table, VNIs are assigned
using tun-id field to the respective ports of the VMs. For the incoming packet
from host 2, tun-ids and the destination MAC address (dl-dst) are matched and
the packets are forwarded to the specified ports (VMs) in the output field. Lines
7–9 shows the outgoing transmission to host 2 through the tunnel. In line 11–15,
same process is followed for the incoming and outgoing flow for Layer 3 packets.
All other packets are dropped by the switch.

Fig. 9. OVS switch 2 flow table.



Multi-tenant Isolation in Software Defined Networks 375

Figure 9 shows the flow table of OVS switch 2 which contains two VMs of
same network VM1 and VM5 respectively and one VM of different network.
VM1, VM3, and VM5 are reachable, because they share the same network, while
VM2 can’t reach the VM1 and VM5 in host 2 because of network isolation. In
the first three lines of the flow table VNIs are assigned to all the VMs in host 2.
The matching of incoming and outgoing transmission in flow table in host 2 is
similar to the matching done in flow table of host 1. However, in host 2 packets
from VM2 can be forwarded to VM5 and vice versa as they share the same VNI
as shown in line 12–13.

4 Conclusion and Future Work

In this paper, we discuss the main concepts of SDN and the techniques which are
used to develop a testbed in a SDN environment. We also describe our testbed
for isolation of multi-tenants in SDN. In the testbed, isolation is achieved using
VxLAN and the configuration of flows in the flow table of the switch. Ryu
controller is used as SDN controller to manage all the communication between
switches and hosts. Two OVS switches are created in the testbed and multiple
virtual machines are attached to the switches. VxLAN tunnels are created on
the switches and VNIs are assigned for the identification of different networks
in the tunnel. The flow table is configured for the isolated communication of
packets between the switches. With the configured OpenFlow table in the OVS
switches and specified VNIs for the VxLAN tunnels, we are now able to create
multi-tenant SDNs in the testbed.

In the future, we will focus on the implementation of our testbed in the
OpenStack environment [15]. OpenStack is a cloud operating system that allows
us to create multi-tenant SDNs in a much faster and scalable way. This will
improve the efficiency, and it will allow a more sophisticated SDN setup. We
will also develop an outlook to integrate OpenFlow based authentication using
IEEE standard mechanisms.

Acknowledgment. This project has received funding from the European Unions
H2020 research and innovation program under grant agreement H2020-MCSA-ITN-
2016-SECRET 722424

References

1. Ahlgren, B., Dannewitz, C., Imbrenda, C., Kutscher, D., Ohlman, B.: A survey of
information-centric networking. IEEE Commun. Mag. 50(7), 26–36 (2012)

2. S. Shin, P. Porras, V. Yegneswaran, M. Fong, G. Gu, M. Tyson, Fresco: modu-
lar composable security services for software-defined networks. In: Proceedings of
Network and Distributed Security Symposium (2013)

3. Yu, M., Jose, L., Miao, R.: Software defined traffic measurement with opensketch.
USENIX NSDI vol, 31 (2013)



376 S. Irum et al.

4. Fayazbakhsh, S.K., Chiang, L., Sekar, V., Yu, M., Mogul, J.C.: Enforcing network-
wide policies in the presence of dynamic middlebox actions using flowtags. In:
USENIX NSDI, Seattle, WA, USA, pp. 1–13, 533–546 (2014)

5. Kapadia, S., Subagio, P.H., Yang, Y., Shah, N., Jain, V., Agrawal, A.: Implemen-
tation of virtual extensible local area network (VXLAN) in top-of-rack switches in
a network environment, Google Patents, US Patent 9,565,105 (2017)

6. OpenFlow Switch Specification. http://goo.gl/1DYxw6. Accessed 14 Oct 2013
7. Ryu: An Operating System for Software Defined Network. http://osrg.github.com/

ryu/
8. OpenDayLight. https://www.opendaylight.org/
9. POX: A Python-Based OpenFlow Controller. http://www.noxrepo.org/pox/

about-pox/
10. Gude, N., et al.: NOX: towards an operating system for networks. ACM SIGCOMM

CCR 38(3), 105–110 (2008)
11. Floodlight. http://floodlight.openflowhub.org/
12. Mahalingam, M., et al.: Virtual eXtensible Local Area Network (VXLAN): a frame-

work for overlaying virtualized layer 2 networks over layer 3 networks. In: RFC7348
(2014). https://doi.org/10.17487/RFC7348

13. Chowdhury, N., Boutaba, R.: A survey of network virtualization. In: Elsevier Com-
puter Networks (2010)

14. European Telecommunications Standards Institute, Network Functions Virtualisa-
tion (2012). http://portal.etsi.org/NFV/NFVWhitePaper.pdf

15. OpenStack. https://www.openstack.org/

http://goo.gl/1DYxw6
http://osrg.github.com/ryu/
http://osrg.github.com/ryu/
https://www.opendaylight.org/
http://www.noxrepo.org/pox/about-pox/
http://www.noxrepo.org/pox/about-pox/
http://floodlight.openflowhub.org/
https://doi.org/10.17487/RFC7348
http://portal.etsi.org/NFV/NFVWhitePaper.pdf
https://www.openstack.org/

	Multi-tenant Isolation in Software Defined Networks
	1 Introduction
	2 Concepts
	2.1 Software Defined Networks
	2.2 OpenFlow
	2.3 SDN Controllers
	2.4 VxLAN
	2.5 Network Function Virtualization - NFV

	3 Implementation
	3.1 Creating Virtual Machines Using Hypervisors
	3.2 Connecting Virtual Machines with OVS Switch
	3.3 Configuration of OVS Switch Using OpenFlow
	3.4 Connecting Switches Through VxLAN
	3.5 Isolation of Multi-tenants Using Flow Table

	4 Conclusion and Future Work
	References




