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Abstract. 5G technologies will facilitate the emergence of applications
integrating multiple physical Things. In such scenarios, Cloud-integrated
platforms end up having a key role due to their storage and process-
ing capabilities. Therefore, a clear understanding of Sensor Clouds, and
on how Cloud mechanisms can be orchestrated to better face requests,
becomes a very relevant issue as Sensing as a Service models emerge.
This article presents a model for Sensor Clouds, suitable for emerging
IoT related Sensing as a Service business models. Such a model is used to
assess the impact of resource allocation approaches and unveil the trade-
off between scalability, elasticity and quality of experience. Results show
that the best resource allocation approach is highly dependent on the
suppliers/consumers scenario.

1 Introduction

With the Internet of Things (IoT), devices/Things can easily exchange data
over the Internet. Resources can be easily discovered, accessed and managed,
making Things accessible to a large pool of developers. The 5th generation wire-
less technology will have a key role in such scenarios and 5G IoT is already
called the Internet of everyone and everything [1]. 5G technologies meet the
requirements of mobile communications and needs for Thing data transmission,
facilitating the emergence of applications integrating multiple physical Things
with virtual resources available at the Internet/Web. The Sensing as a Service
(Se-aaS) model emerges from this reality, allowing everyone to benefit from such
an [oT eco-system, and Cloud-integrated platforms are usually used due to their
storage and processing capabilities [2,3].

The most relevant “as a service” models under the Cloud Computing paradigm
are: (1) Infrastructure as a Service (IaaS), providing computing resources (e.g., vir-
tual machines); (i7) Platform as a Service (PaaS), providing computing platforms
that may include an operating system, database, Web server, and others; (ii7) Soft-
ware as a Service (SaaS), where the Cloud takes over the infrastructure and plat-
form while scaling automatically [4]. The Se-aaS model emerged more recently for
sensors/data to be shared. This means that there is a multi-supplier deployment
of sensors, and multi-client access to resources [5]. Cloud service providers should
find some incentive mechanism for device owners to participate [6,7].
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In this article, the modeling of Sensor Clouds is addressed. Although a first
attempt was done in [5], their focus is on Wireless Mesh Networks (WSNs) and
on how these can move to Sensor Clouds, not being adequate for other IoT
Se-aaS business models. More specifically, in [5] sensors are allocated to a sin-
gle application and mashups are not addressed. Therefore, it can be seen as
a WSN virtualization. Here we propose a model that is suitable for emerging
IoT related Se-aaS business models, including the one in [5]. This model con-
siders sensors/data sharing by multiple applications and mashups, allowing one
to assess the impact of resource allocation approaches (both Cloud and physi-
cal Things), and better understanding of trade-offs, so that mechanisms can be
orchestrated to face future requests.

The remainder of this article is organized as follows. In Sect. 2, previous research
on Se-aaS paradigm is discussed. Section 3 presents the mathematical model, while
Sect. 4 analyses it and discusses trade-offs. Finally, Sect. 5 draws conclusions.

2 Related Work

The Se-aaS was initially discussed in [6] for Cloud-based sensing services using
mobile phones. Such work analyses its design and implementation challenges.
In the context of smart cities, Se-aaS is discussed in [2,8]. The first addresses
technological, economical and social perspectives, while the last proposes the
abstraction of physical objects through semantics, so that devices can be inte-
grated by neglecting their underlying architecture. In [9,10], the semantic selec-
tion of sensors is also addressed.

Multimedia Se-aa$S is explored in [11-13]. These focus on real-type commu-
nication requirements, and [13] explores Cloud edges and fogs. For a survey on
mobile multimedia Cloud computing see [14].

In [5,15,16], the integration of WSNs with the Cloud is investigated. Their
concerns are mainly data storage and/or device assignment to tasks. In [5], a
WSN virtualization model is discussed.

This article, contrarily to previous works, addresses a multi-supplier and
multi-client modeling of Sensor Clouds, allowing client applications to request
for available devices and build mashups. The focus is not on crowd sensing
making data from mobile phones available to multiple clients, but instead on
how applications can share devices and build mashups, which is not considered
in [5,15,16]. Mashups may lead to internal data flows in the Cloud, if data is used
by different mashups (each integrating it differently with other Internet/Web
resources), and this has not been accounted for by previous approaches.

3 Theoretical Modeling of Sensor Cloud

3.1 Definitions

Definition 1 (Physical Thing). A sensor detecting events/changes, or an
actuator recetwing commands for the control of a mechanism/system. The model
of a physical Thing © includes all properties necessary to describe it, denoted by
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Pi, and all its functionalities, denoted by F;. That is, P; = {p : p € P}, where
P is the overall set of properties (e.g., sensing range, communication facility,
location), and F; = {f : f € F}, where F is the overall set of functionalities
(e.g., image sensor), considering all devices registered at the Cloud.

It is assumed that properties and functionalities, at P and F respec-
tively, result from a semantic description of physical Things registered at the
Cloud. That is, specific vocabularies are used when naming properties and
functionalities (see [17], for example). Each property p; € P; has a “sub-
ject /predicate/object” description! denoted by spo(p;) (e.g., temperature has-
Value 30 °C). The set of all physical Things is denoted by 7%, and sensor owners
voluntarily register/deregister physical Things to/from the Cloud.

Definition 2 (Mashup). Workflow built by wiring together Things and ser-
vices from various Web sources, on which an application is based.

That is, applications (at the user side) should be able to access Things at the
Cloud and, if necessary, blend them with other services and data sources on the
Web, as shown in Fig. 1. However, for resources to be used efficiently, applications
should not pick physical Things directly. Instead, a functionality requirement
and minimum/maximum property requirements should be specified for each ele-
ment n included in a mashup, denoted by f, and P,, allowing then an opti-
mized allocation of physical Things to mashup elements. Each p,, € P,, can have
a “subject/predicate/object” description of the condition/requirement that is
being defined (e.g., cameraResolution greaterThan 12.1MP; frequencySampling
equalTo 10s), denoted by spo(p,). The overall population of mashup elements
(from all applications) at the Cloud will be denoted by N.

Q)| apehr
“| _snapshot

Listen for PIR

Fig. 1. Thing mashup.

For devices/data to be consumed by multiple applications, virtual Things
will be created at the Cloud. Then, each mashup element is binded to a single
virtual Thing, while a virtual Thing can be binded to multiple mashup elements
(with same functionality and compatible property requirements). Basically, vir-
tual Things represent multiple mashup elements, from multiple applications,

! A Resource Description Framework (RDF) triple.
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and these are the ones to be materialized into physical Things. Such an app-
roach allows data generated by a virtual Thing to be consumed by multiple
applications, while reducing data collection/storage and increasing data utility.
Mashup elements are, however, application dependent.

Definition 3 (Virtual Thing). Thing at the Cloud to which mashup elements
are binded to. A virtual Thing j is materialized through one or more concerted
physical Things, denoted by M;, M; C TP, able to provide the requirements
associated with the virtual Thing (requirements from all mashup elements binded
to it). Therefore, f; & Uiep, Fi and Pj = Ujem, Pi.

That is, a virtual Thing can have one or multiple physical Things in the back-
ground working together. The set of all virtual Things is denoted by 7.

With virtualization users remain unaware of the physical devices used, allow-
ing these to be dynamically allocated to virtual Things. The client ends up having
no deployment and maintenance costs, while having an on-demand fault tolerant
service because virtual Things can always use other available physical Things.

3.2 The Model

Assumptions: A Cloud Service Provider (CSP), denoted by S, includes a set
of distributed computing resources, each set serving a certain region or having
a certain role. Therefore, S = {Si,...5s/}. The set of applications (outside
the Cloud), requesting for sensors with certain properties, is denoted by A =
{A1, ..., Aj4}. An application A; can have one or more independent components,
denoted by C(A;) = {Ci,...C{c(4,)}; and each component Cj is binded to a

mashup (at the Cloud) of 5} steps, C} £1,.., 6:}. The following is also assumed:

— Web templates are used to draw the mashup associated with each compo-
nent, where minimum/maximum property and functionality requirements are
specified for each mashup element. Elements can be connected, and succ(n)
denotes the successors of element n at the mashup workflow (elements to
which n sends data to).

— Final mashups’ data is sent to the corresponding application components
through bindings.

— Virtual Things are created, and binded to mashup elements, by the Cloud.

Formalization: One or more physical Things materialize one virtual Thing.
Assuming 7 = {7;7, ", ...} to be a partition of 77, function g1 : 70 — TV
is defined for virtual Thing materialization:

g(T) ={NkeTV: f 2 Uerri Fi}- (1)
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This states that a virtual Thing k € 7" is mapped to ij’i if they are functionally
similar. Assuming now 1’ = {Nf, N, ...} to be a partition of A/ (all elements in
J\fj with the same functionality requirement), function go : 7 — 7V is defined
to bind /\/jz to a virtual Thing:

gg(J\f;) ={3%kecTV: f,=Fr AP, C Pr A A(spo(py),spo(py)) = true,
,Vn € J\/';,Vpn € Pn,Vpi € Pr}. (2)

where A specifies whether p,, is compatible with pg, or not. This states that a
virtual Thing k& € 7V mapped to J\f]z must: (7) provide the functionality being
requested by elements in J\/;, (4t) fulfill the property requirements of all elements
in J\/jz

Different resource allocation approaches (partitions and allocations done by
g1 and g3) can be adopted by sensor Clouds, each with an impact on scalability,
elasticity and Quality of Experience (QoE). Let us assume that nV is the uni-

verse set of all feasible partitions of mashup elements, nY = {n',n?% ...,n‘"u‘}
and 7' = (N, NS, . . Nipv b Vi € {1,...[nY[}. Also, 7¥ is the universe

set of all feasible partitions of physical Things, 7Y = {71,72,...,7"7”‘} and
7= {’TlP’Z?’TQP’Z,...,TI;’é‘}, Vi € {1,...,|7Y|}. Thus, each element in 7V is a

feasible materialization of virtual Things. For such universe sets, the most scal-
able resource allocation approach (system can accommodate more load/clients
in the future) would select the following solution:

)SCA = a'rgminnienU{miH' (3)

(', 7
That is, since each element of partition n° will be associated with a vir-
tual Thing, fewer virtual Things not only means less virtual workspaces but
also more productive virtual Things, as data flowing from them serves more
mashups/applications.

Elasticity is the ability to adapt resources to loads. That is, resources should
become available when the load increases, but when the load decreases then
unneeded resources should be released. Thus, the most elastic resource allocation
approach would select the following solution:

(', ) FEA = argmingcyo {mazses{ ) E(k,Si)}} (4)
keTV

where £(k,S;) is the amount of computational resources allocated to virtual

Thing k at S;. Therefore, virtual Things are evenly distributed by CSPs.
Regarding the resource allocation approach with a better impact on the QoE

perceived by users, this would be the one selecting the following solution:

(', 7)9°F = argmingicyv ricov{h(y', 77)} (5)
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where h : n¥ x 7Y — RT is a cost function defined as:

hp',m)y =Y > TFVV(kE)+ > > TFVA(k A+

keTV k' ex(k) A€ Aked(A;)

+ > > TEPV(K k). (6)

keTV k'ew (k)

The TFV2V (k,k') is a transfer cost associated with the data flow between the
workspaces of virtual Things k and k' at the Cloud (Virtual-to-Virtual cost),
because mashup elements can be connected. The x(k) must provide all virtual
Things requiring data flow from virtual Thing k. That is,

x(k) ={k" €TV : k = g2(NV}), k" = g2(N,) A 0 = suce(n),n € N,
' e NE NI NE e’y (7)

The TFV?4(k, A;) is a transfer cost associated with the data flow between the
workspace of virtual Thing k and the user application A;. The @(A;) provides
all virtual Things consumed by application A;,

B(A;) ={k €T : k' = go(N) A suce(n) =0 An € CL N} €n',n e NS,
,C; € C(A)}- (8)

Finally, the TFFP2V (k' k) is a transfer cost associated with the data flow between
the physical Thing k" (or its corresponding proxy/gateway) and the workspace
of virtual Thing k, which depends on the materialization of k. Therefore, ¥ (k)
will be

U(k)={k" € TP : k= gu(T") N K" € My, T € 79}, )

Regarding the transfer cost itself, this may include the number of hops, pro-
cessing required at the destination, etc, or any combination of these.

4 Analysis of Results

4.1 Scenario Setup

A set of random graphs, using the algorithm in [18], were used to apply the model
described. These graphs, each with 10 nodes, represent the location of CSP’s
resources, S1,...S|s|. There are |A] = r; x |S| applications and 77| = k3 x |S]|
physical Things registered at the Sensor Cloud, where k1 and ko are integers.
Each §; € § connects, on average, % applications and %
the Cloud.

The virtual Things to be built depend on physical Things, application
requirements and aggregation level when allocating mashup elements to vir-
tual Things. Therefore, tests were done for different amounts of virtual Things,

physical Things to
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M\ﬂ# <|7TV| < Mlx'ﬁ%, where k3 is the average number of components
per application and k4 is the average number of elements at mashups. For trans-
fer costs in Eq. (6), the following is assumed:

— TFV?4: Since there will be k3 bindings of data flow from the Cloud to an
application, a virtual Thing k will send its data towards application A; with

probability prob(k, A;) = ITL?’

— TFV2V: Since each mashup has sy — 1 flow links?, a virtual Thing &k has a
data flow towards k' with probability prob(k, k') = W X «, where

a is the virtual Thing sharing factor or ratio %ﬁ,xllm.

— TFP2V: A physical Thing &’ has a data flow towards virtual Thing k with
probability prob(k', k) = IITE%\’ where k5 is the average number of physical
Things in a virtual Thing materialization.

— The number of hops is assumed to be the transfer cost in TFY24, TFV2V
and TFP?V,

Table 1 shows the parameter values assumed.

Table 1. Simulation parameters.

Parameter Value
Number of nodes at CSP graph (|S]) 10
Number of applications (|.A|) 30
Number of physical Things (|77]) 30
Avg number of components per app (k3) 3

Avg number of elements at each mashup (k4) | 3

Virtual Thing materialization factor (ks) 1
Lowest number of virtual Things Mle%
Highest number of virtual Things Mlx"%

4.2 Discussion

Figure2 shows® the impact of || (or number of virtual Things), which is a
consequence of the aggregation level used by resource allocation approaches.
Less virtual Things means that solutions are more scalable.

A relevant observation regarding the impact of making more or less scalable
choices (virtual Things serving more or less applications), is that in general the
QoE and elasticity improve as Sensor Clouds choose for less scalable solutions.
In this case, virtual Things are serving less applications and, therefore, less data
transfers between virtual Things occurs and data takes less hops to flow towards

2 A flow tree is assumed.
3 Average of results obtained for all generated graphs.
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Fig. 2. Impact of |n‘| (or number of virtual Things).

applications. Also, for each virtual Thing there will be less load. However, this
does not happen for a small number of virtual Things. In this case, increasing the
number of virtual Things leads to a higher transfer cost, with a negative impact
on QoE, and worse elasticity. This happens because virtual Things are already
highly dependent, and flow from physical Things towards the Cloud takes over
the previously mentioned benefit of using more virtual Things. Thus, scalability
can have a positive or negative impact on QoE and elasticity depending on the
scenario (mashups, etc), which will determine possible allocations of mashup
elements to virtual Things, and the best resource allocation approach to use.

5 Conclusions

In this article, a model for Sensor Clouds is presented allowing the impact of
resource allocation approaches to be assessed, and trade-off between scalability
and QoE/elasticity to be unveiled. Results also show that the best resource
allocation approach to use will depend on mashups, etc, influencing possible
allocations of mashup elements to virtual Things. This awareness allows Sensor
Cloud providers to choose the best approach according to their case.
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