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Abstract. The heavy reliance of Industry 4.0 on emerging communication
technologies, notably Industrial Internet-of-Things (IIoT) and Machine-Type
Communications (MTC), and the increasing exposure of these traditionally
isolated infrastructures to the Internet, are tremendously increasing the attack
surface. Network segregation is a viable solution to address this problem. It
essentially splits the network into several logical groups (subnetworks) and
enforces adequate security policy on each segment, e.g., restricting unnecessary
intergroup communications or controlling the access. However, existing seg-
regation techniques primarily depend on manual configurations, which renders
them inefficient for cyber-physical production systems because they are highly
complex and heterogeneous environments with massive number of communi-
cating machines. In this paper, we incorporate machine learning to automate
network segregation, by efficiently classifying network end-devices into several
groups through examining the traffic patterns that they generate. For perfor-
mance evaluation, we analysed the data collected from a large segment of
Infineon’s network in the context of the EU funded ECSEL-JU project
“SemI40”. In particular, we applied feature selection and trained several
supervised learning algorithms. Test results, using 10-fold cross validation,
revealed that the algorithms generalise very well and achieve an accuracy up to
99.4%.
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1 Introduction

Recent advancements in information and communications technologies and the
emergence of Industrial Internet of Things (IIoT) and Machine-to-Machine (M2M)
communications bring about the fourth industrial revolution (Industry 4.0), where
product, man and machine are fully interconnected across the whole supply chain from
supplying raw material to providing the final product to the market. This allows more
efficient, flexible and customized production as well as remote operation and control.
However, connecting previously isolated production facilities to the Internet tremen-
dously increases the attack surface, for most of the equipment is still legacy, primarily
designed for reliable operation, with certain limited interfaces between the legacy
equipment and the modern infrastructure [1]. Therefore, there is an urgent need to
address cyber-physical security in these key infrastructures.

Network segregation is considered as an effective access control mechanism for
information security management in ISO/IEC 17799:2005. It essentially divides the
network into subnetworks, each called a network segment. Such splitting helps boost
not only the network performance, by minimizing the local traffic, but also the network
security through: (i) limiting the broadcast domain to the local segment; (ii) reducing
the attack surface, in case of compromise in the machines hosted by a network seg-
ment; and (iii) allowing the access privileges be independently controlled for each
network segment. Furthermore, network segregation can also limit the effect of local
failures on other network segments. Security Group Tagging (SGT) and Access
Control List are common practices for implementation of network segregation at dif-
ferent layers. However, in an industrial network there are tremendously huge number of
heterogeneous machines, mostly legacy, communicating with each other. There is
limited or no documentation at all about their communication profiles. Therefore, it is
impractical to manually define rules for identifying the communication patterns in order
to group the end devices. As illustrated by Fig. 1, a viable approach is to use Machine
Learning (ML) to group network devices by learning their communication patterns as
there exist considerable regularities in the way machines communicate or interact in an
industrial network.

In this paper, we employ supervised ML algorithms to identify communication
patterns in an Industry 4.0 Cyber-Physical Production Systems (CPPS) by classifying
the traffic flows crossing the network. The data that we analyse has recently been
collected from a large segment of Infineon’s network, which is around 5 GB network
trace files, in PCAP format, containing only the packet headers plus the initial 20 bytes
of each payload. The independence of our flow processing algorithms from the packets’
payload is crucially important to ensure the preservation of user privacy as well as the
protection of industry’s intellectual property. We construct labelled datasets using a
Deep Packet Inspection (DPI) tool and apply following supervised ML algorithms: One
Rule (OneR), Decision Tree (DT), Naïve Bayes (NB), Bayesian Network (BN),
Support Vector Machine (SVM), and k-Nearest Neighbour (k-NN). The results show
that among them, DT and k-NN outperform the others, with an accuracy reaching up to
99.4%. To the best of our knowledge, this is the first attempt on applying ML for
network segregation and traffic analysis in industrial networks.
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The rest of this paper is organized as follows. Section 2 reviews the related work.
Section 3 describes how we construct datasets from the raw data (which is in PCAP
format) collected from Infineon’s network. Section 4 defines the metrics that we use for
performance evaluation. Section 5 presents the supervised ML algorithms that we use
for traffic classification. Section 6 presents and discusses the results. Finally, Sect. 7
concludes the paper and draws some guidelines for the future work.

2 Related Work

There are three main approaches for network traffic classification: port-based,
payload-based and flow features-based [2–12]. In the early days of the Internet, traffic
classification relied on transport layer port numbers, typically registered with the Internet
Assigned Numbers Authority (IANA) to designate well-known applications. Nonethe-
less, more recently, growing number of applications, notably those for Peer-to-Peer (P2P)
file sharing, hide their identity, by using a random port number or the well-known port of
other applications, which renders port-based approach inefficient [7].

On the other hand, traffic classification based on payload analysis is more reliable
and is mostly incorporated by commercial solutions, e.g., Bro, Prelude, and Snort,
where packet payloads are inspected for specific string patterns (also called signatures)
of known applications. Although this approach is more accurate, it suffers from con-
cerns for protecting intellectual property – which is especially sensitive in industrial
networks – and violating user’s privacy. Furthermore, it scales poorly for high band-
widths, is computationally expensive, and is inefficient for encrypted packets [7, 8].

Finally, flow features-based approach adopts ML or statistical algorithms to build a
model for each traffic type, by feeding a training set containing flow examples. The
model is then able to predict class membership for new instances by examining the

Fig. 1. Machine learning for automatic grouping of network endpoints to apply proper security
policy on each network segment.
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feature values for unknown flows. Learning algorithms that are used for traffic clas-
sification generally fall into two main categories: supervised and unsupervised [9]. The
latter groups traffic flows into different clusters according to similarities observed in the
feature values [11]. These clusters are not predefined and the algorithm itself deter-
mines their number and statistical nature. In contrast, supervised algorithms require the
class membership of each training example, also called label, beforehand, and based on
it, construct a general rule for determining the label of an unseen future flow [10, 12].
For flow feature, different traffic attributes are extracted, such as flow duration,
max/min/average/standard deviation of packet size, number of sent/received packets,
packet inter-arrival time in the forward or backward direction, TCP flags, the size of the
first ten packets, and so forth [3, 7, 8]. Finally, due to the limitations of port-based and
payload-based approaches, current research is primarily focused on ML approach.

3 Dataset Generation

We use libprotoident 2.0.121 DPI to construct a labelled dataset. The output file is in a
Comma Separated Values (CSV) format (see Table 2), where, for each row, the first
element indicates the label, i.e., the Application protocol and the next elements indicate
flow attributes, representing training features in the order listed by Table 1.

4 Evaluation Metrics

For numerical evaluation, we perform k-fold cross validation, with k = 10. That is, we
divide the whole data into k subsets and repeat the test k times. In each trial, we use one
of the k subsets as the test set and the rest k-1 subsets as the training set. We then
calculate the average performance over all k trials. This in fact provides a good indi-
cation of algorithm’s generalisation capability when classifying an unseen data point
[8]. Finally, we use the following standard evaluation metrics [9]:

• Accuracy: the percentage of correctly classified instances over the total number of
instances;

• Precision: the number of class members classified correctly over the total number of
instances classified as class members;

• Recall (or true positive rate): the number of class members classified correctly over
the total number of class members.

• F-Measure: a combination of precision and recall defined specifically as their
harmonic mean. The traditional F-measure, also called balanced F-score or F1
measure, is calculated as follows:

F ¼ 2
Precision� Recall
PrecisionþRecall

; ð1Þ

1 https://github.com/wanduow/libprotoident.
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which is a special case of the general Fb measure ðb� 0Þ.

Fb ¼ 1þ b2
� � Precision� Recall

b2PrecisionþRecall
ð2Þ

Two other commonly used F measures are the F2 measure, which weights recall
more than precision, and the F0.5 measure, which puts more emphasis on precision than
recall.

Table 1. List of training features, representing different columns of the dataset.

Column Feature

1 Application layer protocol (label)
2 Transport protocol (e.g., 6 stands for TCP and 17 stands for UDP)
3 Total number of packets sent in the forward direction
4 Total number of bytes sent in the forward direction
5 Total number of packets sent in the backward direction
6 Total number of bytes sent in the backward direction
7 Minimum payload size sent in the forward direction
8 Mean payload size sent in the forward direction
9 Maximum payload size sent in the forward direction
10 Standard deviation of payload size sent in the forward direction
11 Minimum payload size sent in the backward direction
12 Mean payload size sent in the backward direction
13 Maximum payload size sent in the backward direction
14 Standard deviation of payload size sent in the backward direction
15 Minimum packet inter-arrival time in the forward direction
16 Mean packet inter-arrival time for packets sent in the forward direction
17 Maximum packet inter-arrival time in the forward direction
18 Standard deviation of packet inter-arrival time in the forward direction
19 Minimum packet inter-arrival time in the backward direction
20 Mean packet inter-arrival time in the backward direction
21 Maximum packet inter-arrival time in the backward direction
22 Standard deviation of packet inter-arrival time in the backward direction
23 Flow duration (in microseconds)

Table 2. Few training examples from the constructed dataset.

Label Training examples

HTTP ,6,3,19,5,85,0,6,19,9,0,17,85,34,81,386,982,421,0,0,1,0,1163,1499110420.978695
DHCP ,17,23,2254,0,0,98,98,98,0,0,0,0,0,0,0,1,0,0,0,0,0,11,1499110681.654235
DNS ,17,23,4002,0,0,174,174,174,0,0,0,0,0,0,0,1,0,0,0,0,0,11,1499110482.156615
RTP ,17,0,0,2,344,0,0,0,0,172,172,172,0,0,0,0,0,0,1,2,1,2,1501080810.070283
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5 Classification Algorithms

In the following, we briefly elaborate ML algorithms that we use for traffic classifi-
cation in an Industrial Network, which have widely been employed for Internet traffic
classification [7, 8] as well. Note that all of these algorithms are supervised, i.e.,
requiring labels for training.

One Rule (OneR): is a simple yet effective classification algorithm based on only
one rule. During the training phase, it creates one rule for each feature and picks the
one that leads to the minimum classification error as the general classification rule.

Decision Tree (DT): creates a model based on a tree structure where each node
represents a test on a feature and the resulting braches represent possible outcomes of
this test, and each leaf node represents a class label. Determining the label of a test
instance is the matter of tracking the path of nodes and branches to a terminating leaf.

Naïve Bayes (NB): is based on Bayes rule for inferring the posterior probability
using prior class probabilities and the conditional probabilities (likelihood). It is lit-
erally called Naïve because it makes a naïve assumption that all features are inde-
pendent from each other. However, despite this unrealistic assumption, the algorithm
works well in most of the cases even if this assumption is violated.

Bayesian Network (BN): is a directed acyclic graph whose nodes represent fea-
tures and edges represent their probabilistic relations. Each node contains a table for the
conditional probabilities of its representing feature given the outcomes of the parent
node. Every node is assumed to be dependent only on its immediate parent node. BN
may outperform the NB algorithm if the conditional independence assumption between
the features in the NB algorithm is violated.

Support Vector Machine (SVM): constructs the optimal separating hyperplane,
which maximises its distance to the closest example, from any class. It leads to a
maximum-margin separation between the classes. In two-dimensional space, the
hyperplane is reduced to a line dividing the plane in two parts where the examples of
each class lay in either side.

k-Nearest Neighbour (k-NN): computes the Euclidian distance between a new test
example and the k nearest examples from previously classified examples, in the
n-dimensional feature space, and assigns the test tuple the majority label of these k
nearest neighbours. We use k = 1, which means that we assign a new test example to
the class of its nearest neighbour example amongst the previously classified examples.
Unlike other training examples which normally include a computationally expensive
training phase and simple calculation for the test phase, the k-NN algorithm essentially
requires no training phase and the test phase is computationally expensive.

6 Performance Evaluation

For performance evaluation, we conduct three experiments. The first one studies the
performance of different learning algorithms using all 22 original raw features. The
second experiment, examines the performance of the same algorithms when we apply the
Principal Component Analysis (PCA) technique with 95% variance coverage, which
reduces the number of features down to 13. Finally, the last experiment investigates the
impact of the variance retained by the PCA algorithm on the accuracy of a learning
algorithm.
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6.1 Experiment 1: Training and Testing with All Original Features

Our training dataset contains 448,724 examples from network traffic generated by 39
applications, including HTTP, DHCP, DNS, NTP, Skype, SNMP, etc. Each example is
composed of 23 traffic attributes listed above in Table 1. Note that, in this table, the
first attribute, in fact, indicates the output label, which is the application protocol.
Hence, the training set actually contains 22 training features. For the purpose of
simulations, we conduct several experiments. For the first experiment, we train the six
abovementioned classification algorithms (OneR, DT, NB, BN, SVM, k-NN with
k = 1) and test them using 10-fold cross validation method. In this experiment, we do
not apply any feature selection algorithm and perform the training phase using all 22
original features. Table 3 summarizes the results. Here, Accuracy means the ratio of
test examples that are correctly classified. We observe that DT and k-NN algorithms
outperform the others, achieving an accuracy of up to 0.994, which means that among
448,724 test examples, these algorithms successfully classify 99.4% of them and
commit mistakes in only 6% of them.

6.2 Experiment 2: Applying PCA with 95% Variance Retain

Applying PCA, with 95% variance retain, considerably reduces the number of features
from 22 down to 13. In order to assess the impact of this remarkable dimensionality
reduction on the classification performance, we conducted the second experiment,
where we first applied PCA algorithm and then again trained and tested the same ML
algorithms employed in the first experiment. Table 4 summarizes the results. We
observe that applying PCA algorithm with 95% variance retain, surprisingly boosts the
overall performance of learning algorithms. This is due to the fact that some learning
algorithms such as NB are quite sensitive to the violation of the underlying assumption
about the independence of all training features one from another. Applying PCA,
provided that the variance retain is high enough, can help extract a set of independent
but informative features out of the original ones. In particular, DT and k-NN still
outperformed other algorithms and applying PCA has no impact on their performance.
Furthermore, the PCA algorithm considerably improves the performance of OneR and
the Bayesian classifiers (NB and BN) and only slightly deteriorates the performance of
SVM algorithm. It is worthwhile to stress that the combination of OneR and PCA
algorithms results in a quite promising performance, considering its pretty simple
decision rule for classification.

6.3 Experiment 3: Feature Selection with PCA

In this experiment, we apply PCA algorithm choosing different values for the covered
variance, ranging from 95% down to 10%. As summarized by Table 5, the number of
remaining attributes after applying PCA algorithms is 13 for 95% variance retaining
and only one attribute for 10% variance coverage. We also incorporated DT algorithm
for classifying the output instances of the PCA algorithm. The results are presented by
the last column of this table. An interesting finding is that reducing the variance retain
down to 70% reduces the number of remaining attributes considerably, resulting in
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only 6 attributes, out of 22 original ones, yet the sacrifice in the accuracy of the learning
algorithm is negligible, only 0.01%. Furthermore, choosing variance retain of 50%
leads to elimination of two additional features while reducing the accuracy marginally,
0.16% comparing to the case with 70% variance retain. Finally, applying PCA with
only 10% variance coverage results in only one remaining feature while witnessing a
minor reduction in the classification accuracy, only 3.65% additional sacrifice relative
to the case with 50% variance coverage. This highlights the importance of performing
feature selection before implementing any ML algorithm for traffic classification. For
example, the output of PCA algorithm with 10% variance retain is the following
feature, where the parameters are the abbreviations of attributes listed by Table 1:
maximum forward packet length (maxfpktl), maximum backward packet length
(maxbpktl), standard deviation of backward packet length (stdbpktl), standard deviation
of forward packet length (stdfpktl), average backward packet length (meanbpktl).

0437maxfpktlþ 0:43maxbpktlþ 0:425stdbpktlþ 0:413stdfpktl

þ 0:292meanbpkt. . .

Table 3. Results for Experiment 1, training with all 22 original features.

Algorithm Accuracy Precision Recall F-Measure

OneR 0.904 0.914 0.904 0.896
DT 0.994 0.993 0.994 0.993
NB 0.391 0.535 0.391 0.404
BN 0.969 0.976 0.969 0.972
SVM 0.890 0.881 0.890 0.878
k-NN 0.994 0.994 0.994 0.994

Table 4. Results for experiment 2, employing PCA with 95% variance retain and training with
13 selected features.

Algorithm Accuracy Precision Recall F-Measure

OneR 0.972 0.971 0.972 0.972
DT 0.993 0.992 0.993 0.993
NB 0.446 0.511 0.447 0.442
BN 0.974 0.989 0.974 0.980
SVM 0.795 0.771 0.795 0.755
k-NN 0.994 0.994 0.994 0.994
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7 Conclusion

Security of CPPSs is a mounting concern in Industry 4.0, where IIoT and MTC
technologies are massively employed to connect all stakeholder, including man, pro-
duct, and machine, across the whole supply chain. In spite of this revolution, still, there
is considerable legacy equipment in factories that cannot be replaced immediately, all
at once, due to excessive capital expenditure and typically long lifespan of the
machineries. To address this concern, network segregation seems essential to divide the
network into different segments, based on the communications needs, to control the
access to machines sitting in each segment, and to restrict unnecessary inter-segment
communications. To this end, machine learning is a promising tool to classify network
endpoints based on their communication patterns. In this paper we applied ML and
traffic classification to group network endpoint in Industry 4.0 networks. We analysed
the data collected from a large segment of Infineon’s network, within the realization of
ECSEL research project SemI40. Using DPI tools, we constructed labelled datasets
with 22 traffic features and applied several supervised algorithms. The results reveal
that DT and k-NN demonstrate outstanding performance, with an accuracy reaching up
to 99.4%. Moreover, applying PCA algorithm can reduce the number of feature
remarkably from 22 features down to only six features, with a negligible loss of 0.05%
in the accuracy of the learning algorithm. This work can be extended in the following
directions. First, determining different groups of network endpoint in a CPPS, based on
the traffic flows that they generate, is an important research topic. Second, integrating
the proposed grouping intelligence into a conventional network device, e.g., Firewall,
is another critical research problem.
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Table 5. Results for experiment 3, feature selection with PCA with different variance retains.

Variance retain Number of remaining attributes Accuracy of DT algorithm (%)

0.95 13 99.36
0.90 11 99.35
0.80 8 99.35
0.70 6 99.35
0.50 4 99.19
0.20 2 98.97
0.10 1 95.56
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