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Abstract. Proliferation of ubiquitous smartphones makes location
based services prevalent. People carry these devices around everyday
and everywhere, which makes mobile volunteered services emerging. As
far as we know, little work has been done on the search for mobile spatial
textual objects, even though considerable researches have been done on
moving objects query and spatial keyword query. In this paper, we study
the problem of searching for mobile spatial textual objects in mobile
volunteered services: given a set of mobile object and a user query, find
the most relevant objects considering both spatial locations and textual
descriptions. We model each mobile object as probabilistic instances with
time recency. A new hybrid index is proposed for mobile spatial textual
objects, called BIG-tree. And we propose an improved threshold algo-
rithm to efficiently process the top-k query based on the index. We eval-
uate the performance of our approaches on real and synthetic datasets.
Experimental results show our solutions outperform the baselines.

1 Introduction

Popularity of mobile devices makes location based services a compelling
paradigm, which bring unique location-aware experiences to users. Location-
based services hasten the advent of mobile crowdsourcing, and the need of search-
ing for qualified mobile users becomes urgent [1]. Sometimes we submit certain
queries, but cannot get satisfied results from traditional search engines, such as
get me a cab, fix my computer, and I need a house cleaner. From these queries,
what we expect is someone who can provide specific services with domain skills.
In reality, people with skills like taxi driving, computer fixing and house clean-
ing are just around us. Xie et al. [2] propose a Volunteered Geographic Service
system, which enables mobile users to efficiently monitor nearby services. In
the proposed scenarios, mobile users are able to volunteer as providers of spe-
cific location-based services, and they are also able to subscribe specific services.
With the diffusion of online mobile users, it is necessary to provide efficient
means of enabling such queries for mobile volunteers.
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Existing LBS systems employ a spatial keyword search approach to provide
LBS services [3,4], in which, given a set of point of interests (POIs) or region
of interests (ROIs) and a user query with a location and several keywords, all
relevant POIs or ROIs are returned. Current researches mainly focus on query
over static objects, such as restaurants, hotels or sights. Little research has been
done on query for mobile objects with both spatial and textual information, for
example, “find the nearest people who can fix a computer”. We name this evolved
location based services as mobile volunteered services for its unique features.

In mobile volunteered services, both spatial and textual information should
be concerned as well as the mobility of users. No existing techniques can be
employed seamlessly to enable the query without appropriate modifications. To
address these issues, we introduce mobile spAtial teXtual objects sEarch (AXE).
Volunteered users are the objects with textual description and location informa-
tion and they move stochastically. But the range they move around is generally
in their routine hotspots (e.g., home, work place and malls). They change their
locations without a high speed or lasting moving, such as taxi drivers. We focus
more on the mobility rather than the motion perspective (e.g., direction and
speed). Our contributions are four-folds:

– We study the problem of mobile spatial textual objects search, model the
objects based on probabilistic instances and measure the spatial textual sim-
ilarity with time recency.

– We propose BIG-tree, a hybrid index structure based on sorted lists of spatial
linear quad-tree and textual inverted index. Two baselines are proposed based
on modified classic indexes, i.e., IR-tree with bounding box (IRBB) and top-k
aggregation with partial score (TAPS).

– We also propose an efficient improved threshold algorithm with lazy refine-
ment and prior pause (NEWLP) based on the new index for top-k query.

– We have conducted extensive experiments on both real and synthetic datasets.
Experimental results show that our methods outperform the baselines.

2 Related Work

Spatial keyword search and moving objects/query search have been well studied
for years. Spatial Keyword Search: The R-tree based solution is arguably
the dominant index for spatial keyword query. IR-tree [5] integrates each node
of R-tree with a summary of the text content in the corresponding subtree.
Several variants of IR-tree exist, which optimize the efficiency, including DIR-
tree, CIR-tree, CDIR-tree [5], WIR-tree [6], KR∗-tree [7], IR2-tree [3] and SKI [8].
They integrate the textual information into R-tree with different data structures.
Quad-tree is another choice in indexing the spatial textual objects. SFC-QUAD
[9] is based on space filling curve. IQ-tree [10] is associated with an inverted
file that organizes the keyword expression. I3-tree [11] adopts the quad-tree
structure to hierarchically partition the data space into cells. ILQ-tree [12] is
proposed to keep the non-empty leaf node of the quad-tree in an auxiliary disk-
based one dimensional structure. Moving Objects/Query Search: In moving
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query researches [13–15], the query moves continuously while the data objects
(e.g., hotels, restaurants) are stationary. Safe region (e.g., MW Voronoi) is used
to model the moving query. In moving objects search [16], the objects move
continuously while the query is stationary. Most existing solutions for moving
objects indexes can be divided into object partitioning (e.g., TPR-tree [17]) and
space partitioning (e.g., Bx-tree [18]).

Few work has been done on the mobile spatial textual objects search, which is
different from existing works and essential in mobile volunteered services. There
are two main challenges: (1) both spatial and textual information should be
concerned. (2) the mobility of objects makes it difficult to model and index the
objects. In this paper, we propose probabilistic instance model to capture the
mobility of users and an improved threshold algorithm is presented to process
the query based on our hybrid index structure BIG-tree.

3 Model AXE

3.1 Object Model

In mobile object environments, it is infeasible for the system to track the move-
ment of objects and store the exact locations of objects at all times [16,19]. In
this situation, it is impossible for queries to produce correct results based upon
old data. However, if the degree of uncertainty is controlled, then the error of
the answers to certain queries can be reduced. The routine hotspots of mobile
users can be augmented with probabilistic estimates of the confidence of the
occurrence. Generally speaking, there are two ways to model an object’s current
location. One is based on the history routine data and the other is based on the
latest updated location. We introduce time recency to take both history data
and latest data into consideration.

Definition 1 (Mobile Spatial Textual Object). A mobile spatial textual
object is represented with a triple o = 〈ψ, l, r〉, where o.ψ is the set of keywords,
o.l is the last latitude and longitude of the objects with timestamp and o.r is
the set of probabilistic instances. Correspondingly, a query is q = 〈ψ, l〉, where
q.ψ is the set of query keywords and q.l is the query location with time. The
probabilistic instance set o.r for each object is represented by instances with
probability, i.e., cj(pi). For an instance cj of an object oi, the probability is pj

i .
A probabilistic instance represents a routine hotspot of an object, e.g., home.
Given a set of moving objects O = {o1, o2, ..., on}, the instance set C contains
all instances with positive probability, i.e., C = {cj |∃i(pi(cj) > 0)}.

In this paper, we give a naive statistic method to get the instance and
corresponding probability of each object. Given the history locations L =
{l1, l2, ..., lm} of an object o, the probability p of instance c is, p(c) = |l∈c|

|L| ,
i.e., of all the history locations, the ratio of the locations fall in a certain range.
The inference method introduces distribution information of the objects’ history
locations, which indicates the probability of instances, i.e., routine hotspots.
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In our implementation, each certain range is divided by quad-tree, which will be
illustrated in the next section. More sophisticated methods (e.g., cluster tech-
niques) can be exploited.

3.2 Similarity Measure

Definition 2 (Spatial Similarity). Given an object o and a query q, the spa-
tial similarity (spatial proximity) of o and q is defined as:

SimS(o, q) = 1 − D(o.l, q.l)
Dmax

(1)

where Dmax is the maximum distance in the location space. For a mobile object,
the update of the location is undetermined, and neither the history nor the
updated last location can precisely predict the current location. We introduce
time recency to infer the current location with probabilistic instances aggregation
and last updated location. The spatial similarity can be expressed by,

D(o.l, q.l) = θd1(o.l, q.l) + (1 − θ)d2(o.r, q.l) (2)

where d1() is the Euclidean distance and θ = λ−(tq−tu) is the time recency [20].
λ is the base number that determines the rate of recency decay, tq is the query
time and θ is monotonically decreasing with tq − tu. The similarity between the
query location and probabilistic instance set is

d2(o.r, q.l) =
∑

j

pjd0(o.cj , q.l) (3)

where pj , o.cj ∈ o.r and d0() is the Euclidean distance between q.l and centroid
of instance o.cj . The spatial similarity is based on probabilistic instances set and
last location with time recency. Time recency is a key factor in measuring the
spatial similarity based on locations updated by mobile objects. It is introduced
in [21] and is applied widely as the measurement of recency for stream data, in
which, the exponential decay function has been shown to be effective [22]. In this
paper, we use the time recency to measure the importance between probabilistic
instances and latest location. The validity of a location decreases when it is not
updated for a long time.

Definition 3 (Textual Similarity). Given an object o and a query q, the
textual similarity (textual relevancy) of o and q is defined as:

SimT (o, q) =

∑
t∈o.ψ

⋂
q.ψ w(t)

∑
t∈o.ψ

⋃
q.ψ w(t)

(4)

where w(t) is the weight of keyword t in textual information. In this paper we
use the inverted document frequency (denoted by idf) as keywords weight, i.e.,

w(t) = ln
|O|

count(t,O)
(5)
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where count(t,O) is the number of objects containing token t. Infrequent tokens
have more weights for their rarity.

Definition 4 (Spatial Textual Similarity). Given an object o and a query
q, the spatial textual similarity between o and q is defined as:

Sim(o, q) = αSimS(o, q) + (1 − α)SimT (o, q) (6)

where SimS(o, q) is the spatial similarity and SimT (o, q) is the textual similar-
ity. α ∈ [0, 1] is a preference parameter that balances the importance between
distance proximity and text relevance.

Our mobile spatial textual objects search problem is substantially different
from the existing problems. (1) We focus on the mobility rather than movement.
(2) The spatial model is a set of discrete probabilistic instances rather than
ROI or POI. (3) We take the temporal information to spatial textual similarity
measurement.

4 Handle AXE: Object Indexing

We first introduce two straightforward modified methods as baselines. Then, we
present BIG-tree, a hybrid index based on sorted lists of spatial linear quad-tree
and textual inverted index, which essentially consists of B+-tree and Inverted
file index based on Grid partition.

4.1 Baseline Methods

Two types of classical indexes for spatial keyword objects are: the tree based
integrated index and the sort lists based aggregation. The corresponding repre-
sentatives are IR-tree [5] and RCA [23]. IR-tree integrates each node of R-tree
with a summary of the text content of the objects in the corresponding subtree.
Specifically, each node contains a pointer to an inverted file that describes the
objects rooted at the node. RCA is a new approach based on modeling the spa-
tial keyword query as a top-k aggregation problem [24]. Give a query with m
keywords and a location, it constructs m + 1 sorted lists. RCA is a rank-aware
combined algorithm by accessing the lists in a score-bounded manner, which is
an improved TA. Experiments show RCA performs better than IR-tree when
processing spatial keyword query [11,23].

We modify the IR-tree and RCA to adapt our situation. The two baselines
are IR-tree with Bounding Box (IRBB) and Top-k Aggregation with Partial
Score (TAPS). In the mobile spatial textual object model, each object is a set of
probabilistic instances in terms of the spatial aspect. To adapt IR-tree, we draw
a bounding box for the set of probabilistic instances. In IR-tree, The spatial
attribute of each entry is a point, i.e., location coordinates. In IRBB, the spatial
attribute is a rectangle with several probabilistic instances as shown in Fig. 1(a),
i.e., the minimum quad-tree region that covers all the probabilistic instances.
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Fig. 1. Two baselines based on modified classical indexes.

Fig. 2. Structure of BIG-tree. The left part is the linear encode based on extensive
quad-tree and the right part is the sorted lists with score si based on keywords for
object oi.

To adapt RCA, each probabilistic instance in our model is an object in RCA
model. And the similarity score of each mobile spatial textual object is the sum
of all probabilistic instances. The differences of index structures between RCA
and TAPS are shown as in Fig. 1(b). As we can see, the spatial list is far longer
than the textual lists due to the several instances for each object. The query
processing algorithms for IRBB and TAPS remain the same as in [5,23].

However, IRBB inherits the disadvantages from IR-tree. First, the centralized
R-tree mechanism requires a high update cost. Second, the processing cost to
examine whether a node is relevant to the query keywords is not negligible.
Besides, TAPS is also not efficient when processing mobile spatial objects due to
its large number of probabilistic instances. Each object in RCA becomes several
instances in TAPS. Therefore, it is difficult for both baselines to scale.

4.2 Our Methods

The key idea of our optimization is to sort the spatial attribute list offline
based on an approximate spatial order-preserving encoding such that the two-
dimensional location attribute values are encoded into one-dimensional values
with the desirable property. A pair of encoded location values that are close
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together in the total order represents a pair of locations that are likely to be
spatially close to each other. In this paper, we apply the well-known linear
quad-tree [25] to obtain such a mapping. There are two useful properties of
linear quad-tree encoding that we exploit in our algorithm. (1) A quad-tree is a
space-partitioning tree data structure in which a d-dimensional space is recur-
sively subdivided into 2d regions, which shows simplicity and regularity in many
applications. (2) As an efficient implementation of the disk-based quad-tree, the
linear quad-tree is proposed to keep the non-empty leaf node of the quad-tree
in an auxiliary disk-based one-dimensional structure (e.g., B+ tree), where each
node can be encoded by the space filling curve techniques.

In BIG-tree, the internal nodes are directory and the leaf nodes are the
objects. The key in the tree is the one-dimensional space filling curve value,
which mapped from the two-dimensional location coordinates. Each object at
the leaf node is represented by a set of probabilistic instances with the last
updated location. In the conventional quad-tree, the tree splits when the node is
full. In our index structure, we map the bounding box into a least quad cell, i.e.,
the minimum quad-tree region that covers all the probabilistic instances. And
the node splits not according to the number of items, but the size of bounding
box. We call this extensive quad-tree. We make this modification because we
only take quad-tree structure as the mapping method, and the data is stored in
B+-tree based on the one-dimensional value. The extensive quad-tree can hold
a large number of objects under a quad cell, which facilitates the spatial search
when we process the query.

In implementation, we encode the quad-tree nodes based on the Morton
code (Z-order) because the Morton code of a node is encoded based on its split
sequence, i.e., the path of the node in the quad-tree, and the code of a particular
node (region) in the space is unique. This is essential because multiple quad-
trees with different shapes are used in the paper. The way of how to derive the
Morton code of a node based on its split sequence in two-dimensional space can
be found in [25]. For the linear quad-tree, we only keep the solid leaf nodes on
the disk by one-dimensional index structure (e.g., B+-tree), which are ordered
by their Morton codes. We apply a temporary buffer to solve the false positive
problem as described in [23].

However, based on the properties of the linear quad-tree encoding, it is possi-
ble that some of the documents accessed in the searched spatial region (specified
by some range of linear quad-tree values) could be false positives; i.e, the actual
distance between the accessed document and query could be larger than the
current search radius ri at the ith iteration. To avoid processing these false pos-
itives too early, we maintain buffers to temporarily store these false positive
documents: a false positive document that should have been processed later in
the jth iteration (i.e., j > i) will be temporarily stored in the jth buffer. Thus,
the documents in the jth buffer will be considered later during the jth iteration.

Based on the encoded linear quad-tree, our algorithm progressively accesses
the documents (objects) in the spatial attribute list in iterations. The textual
lists can be easily obtained. We index the mobile spatial textual objects by
BIG-tree, shown in Fig. 2, which is a new hybrid index structure. The BIG-tree
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can be easily integrated into an existing relation database. We skip the BIG-tree
manipulation (insertion and deletion) details due to the space limitation.

Existing geo-textual indexes are designed for processing spatial-keyword
queries on static objects. They do not provide an efficient mechanism to maintain
the index for the objects with mobile information. In BIG-tree, we encode the
linear extensive quad-tree to construct the spatial sorted list and the textual lists
with inverted files. To optimize the query processing, we apply quad-tree based
spatial structure rather than R-tree for frequent updates. The reasons for using
grid based structure are: (1) The grid based structure is update-friendly because
the query region is indexed in mutually-exclusive cells. (2) We can use different
indexing granularity for different queries by considering the spatial distribution
and keyword distribution.

5 Wield AXE: Query Processing

5.1 Query Processing

In this paper, we focus on the top-k query. Given a query q = 〈ψ, l, k〉, retrieve
k objects ranked according to the mobile spatial-textual similarity.

Definition 5 (Top-k Query). Given a set of objects O and a query q, the
answer set of a top-k mobile spatial textual objects search is a subset of O, A,
such that
(1) The size of A is k ,i.e., |A| = k, and (2) ∀o∗ ∈ A,∀o ∈ O − A,Sim(q, o∗) ≥
Sim(q, o)
where Sim is the similarity function to evaluate the relevancy between a query
and an object. According to the similarity measurement in Sect. 3, what differ us
are the probabilistic instance set and time recency in measuring the similarity
score between the query and each mobile spatial textual object.

Before the improved algorithm for TkQ, we present the threshold algorithm
for top-k aggregation problem [24] in Algorithm 1, which consists of two main
steps. First, perform a sorted access in parallel to each of sorted lists and compute
the aggregated score of the object using the ranking function (Line 8). Then,
update the threshold according to the aggregated score of the last seen object
(Line 9–12). The algorithm terminates as soon as at least k objects have been
seen whose score is at least equal to the threshold (Line 4–6).

Based on the threshold algorithm, we adapt our BIG-tree to the top-k query,
specifically based on RCA [11], which is Rank-aware Combined Algorithm. We
rank the spatial list based on quad-tree mapping rather than uniform grid in
RCA. We name the modified RCA as mRCA. There are two main methods to
optimize the threshold algorithm. One is to early terminate the iteration when
accessing the sorted lists, as the RCA does. The other is to reduce the random
access, which can reduce I/O cost. Based on these observations, to improve the
efficiency, we propose optimized solution NEWLP for TkQ.
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Algorithm 1. Threshold Algorithm
Input: O: A set of objects

q: A query
I: Inverted lists of spatial and tex-

tual attributes
Output: R: Top-k results
1: Q ←an empty prior queue
2: θta ← 1, θq ← 0
3: while true do
4: if θta < θq then
5: R ←Refinement(Q)
6: return R
7: end if
8: candidate set {oi} ←

SequentialAccess(q, I)
9: if |Q| < k or Sim(oi, q) > θq then

10: add object oi to queue Q
11: update threshold θq

12: end if
13: R ←Refinement(Q)
14: θta ← Sim(oi, q)
15: end while

Algorithm 2. NEWLP
Improvements
1: SequentialAccess(q, I)

2: if oi.score< θscore OR
oi.num> θnum then

3: update θscore, θnum

4: break sequential
access

5: end if
6:
7: Refinement(Q)
8: if oi.score> θran then
9: RandomAcess(oi)

10: end if

5.2 Lazy Refinement

In conventional threshold algorithms, the refinement of top-k results is carried
out in every iteration. The access of the index increases the disk I/O, which
incurs time latency. In NEWLP, we proceed random access until the score of the
top-k results reach the threshold. We set a threshold to stop the unnecessary
random access. The refinement of the top-k results is processed once they exceed
the threshold, otherwise, they will be refined later with the other candidates. The
modification takes place in Line 13 in Algorithm 1.

5.3 Prior Pause

We terminate each iteration when the score-bounded or number-bounded con-
ditions satisfy in the sequential access. There are two core factors affecting the
efficiency of TA: termination conditions and the number of random access times.
In contrast to the RCA algorithm, which accesses only a score-bounded docu-
ments in each iteration, the documents accessed by Prior Pause is determined by
a score interval and a fixed number of documents corresponding to each itera-
tion. This difference between RCA and Prior Pause is motivated by two reasons.
First, the upper-bound score for the ranking function relies on the minimum
distance of all the unseen objects to the query location. The upper bound score
could decrease very slowly if a fixed number of documents is accessed per iter-
ation. Second, The drawback of score bounded method is that it may lead too
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Table 1. Dataset statistics.

Dataset # of objs # of locs # of terms Region Size

Twitter 61413 9.6556 90.4253 (24.54, −134.54,

58.41, −67.45)

138M

Foursquare 4163 64.6002 138.8080 (−54.80, −175.19,

83.97, 178.59)

78M

Syndata 194466 6.5 9.5 (−54.80, −175.19,

83.97, 178.59)

100M

Table 2. Parameters and
their settings.

Parameters Settings

Different datasets Twitter FS

Syndata

# of syn objects 40K 60K 100K

150K 200K

# of query kwds 2 3 4 5 6

# of tok-k results 1 5 10 20 50

Parameter α 0.1 0.3 0.5 0.7 0.9

Skewness ratio 5.18 3.58 2.88 1.28

0.58 0

much unnecessary access if there is a large amount of objects in a certain score
interval. Prior Pause wield the power of these two tricks. The modification lies
in Line 8 in Algorithm 1.

The overall improvement for TA is explained in Algorithm 2, which gives the
outlines of SequentialAccess(q, I) and Refinement(Q). Details can refer to [11].
In the improvements, θscore, θnum, θran indicate score-bounded threshold, fixed
number threshold and random access threshold, respectively.

6 Performance Evaluation

We modify and extend two classical methods as baselines to handle our problem,
i.e., IRBB based on IR-tree and TAPS based on top-k aggregation. We compare
our proposed mRCA and improved version NEWLP with the two baselines. We
conduct our experiments on two real data sets and one synthetic data set from
different evaluation metrics. All the algorithms are implemented in Java and
run on a Linux server machine with an Intel(R) Xeon(R) CPU E5-2670 0 @
2.60 GHz and 256 GB memory. We run each experiment three times and report
the average results.

6.1 Data Sets

To the best of our knowledge, no available dataset targeting the envisioned
mobile volunteered service exists. We use two real datasets1 and one synthetic
dataset to evaluate the performance. The first one is a real Twitter dataset.
It provides check-ins data with content information across USA. The second
real dataset is Foursquare. This dataset contains check-in records with check-in
venues. These two datasets all contains check-in locations, check-in time, text
content and user ID. We aggregate the locations and text content of each user
as one mobile spatial object. Each location acts as an instance with occurrence
probability. As there are too many instances and keywords for one object, which

1 https://sites.google.com/site/dbhongzhi/.

https://sites.google.com/site/dbhongzhi/
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is far more to describe the object, we generate a synthetic dataset based on the
two real datasets. We split one “fat” object from aggregated real datasets into
several virtual objects in the synthetic dataset. This can preserve the spatial
proximity and text relevance from each user and generate reasonable data with
average 6.5 instances and 9.5 keywords for each user. It is enough to describe the
service skills of a user by 10 keywords (instead of a long web-page document)
and to represent the routine hotspots by 7 instances. Table 1 summarizes details
of the three datasets.

6.2 Evaluation Metrics

In the following experiments, we evaluate the performance of different indexes
and algorithms from several aspects. We study the metrics including: (1) index
building time; (2) index disk storage; (3) query processing time. The different
aspects are: (1) different datasets; (2) varying size of datasets; (3) varying num-
ber of query keywords; (4) varying number of return results; (5) varying α in
similarity measure and (6) skewness of query keywords. Table 2 summarizes the
settings, where values in bold represent the defaults.

Index Construction. (1) Index Construction Time Index construction
cost is used to measure the elapsed time when building the index. The time
is affected by various factors, such as cache size and code optimization. It is
difficult to provide a thoroughly fair comparison and we report the average time.
(2) Index Storage Cost We use the size of index on disk to evaluate the space
efficiency. The index storage includes the spatial and textual attribute.

Query Processing. The query parameters include number of keywords, query
skewness, size of k and preference parameter α. To make the queries resemble
what users would likely use, we generate the query sets randomly from the
provided datasets. For each round of experiments, we generate query sets on
each dataset, in which the number of query keywords is from 1 to 7 with an
average 4. Each set consists of 30 queries. For evaluating the query performance
free from cache impact, we generate 1,000 queries for experiments to warm up
the experiment system.

6.3 Experiment Results

Different Datasets. We evaluate the index building time, index disk storage
and query processing time on three different datasets as shown in Table 1. The
two baseline methods IRBB, TAPS and our proposed algorithm mRCA and
NEWLP are compared. The experiments results are shown in Fig. 3. TAPS shows
high building time due to the possible massive probabilistic instances. In terms
of index disk storage, the sorted lists based methods (i.e., TAPS, mRCA and
NEWLP) on the real data sets (i.e., Twitter and Foursquare) incur higher costs.
This is because for each object in the real datasets, the merged object has too
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many instances and keywords, which leads to duplicates in the storage. When
the instances and keywords decrease as shown in Fig. 3(b) - Syndata, the storage
costs are similar for all indexes. In fact, the Syndata more resembles the real data
format from mobile volunteered service if it exists. As for the query processing
time, NEWLP performs best of all, which is about five times better than IRBB.
To be noted, mRCA and NEWLP share the same index structure (BIG-tree),
which makes the index building time and index storage quite the same.
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Fig. 3. Different datasets.

Varying Size of Datasets. In this experiment, we examine the scalability in
terms of increasing size of datasets. We vary the size of synthetic data from 40K
to 200K. As shown in Fig. 4, when the size of datasets increases, the efficiency
of four indexes and processing algorithms decrease. However, the three aspects
of building index time, index disk storage and query processing, our proposed
BIG-tree and NEWLP perform best of all. As we have mentioned, mRCA and
NEWLP share the same index as BIG-tree but NEWLP is an improved version in
terms of query processing. BIG-tree maps the bounding box of set of probabilistic
instances from quad-tree to one-dimensional value, which reduces the duplicates
of storage. NEWLP optimize the threshold algorithm in two aspects, i.e., early
iteration termination and reduced random access. Results show that these two
optimizations work.

Varying Number of Query Keywords. We vary the number of query key-
words from 2 to 6 to evaluate the query processing algorithms on the synthetic
dataset. Since an object is considered relevant if it contains at least one query
keyword, results in Fig. 5 show the query time increases as the number of query
keywords increases especially for IRBB. However, the sorted lists based meth-
ods scale smoothly because the pruning techniques that take into account both
spatial and textual relevance are more effective.

Varying Number of Query Results. The number of query results, i.e., the
value of k is set from 1 to 50 to evaluate all the algorithms. The IRBB query
time increases quickly while the sorted lists based methods work well without
much fluctuation. The query processing latency for TAPS, mRCA and NEWLP
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Fig. 4. Varying size of datasets.
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is mainly affected by the sorting of spatial lists, sequential access and random
access of the sorted lists. As k increases, the overhead of sorting is fixed and the
running time increases due to the sequential/random access. NEWLP performs
better than mRCA due to its lazy refinement and prior pause that can reduce
random access and terminate the iteration earlier (Fig. 6).

Varying α in Ranking Function Preference parameter α indicates the impor-
tance of spatial and textual attributes in the similarity measurement. As α
increases, the spatial relevance plays a more important role in determining the
final results. IRBB is more sensitive to α because it examines the spatial attribute
first. When α is larger, the spatial relevance dominates the results and this
reduces the running time. On the contrary, the other three algorithms are not
sensitive to α because the spatial and textual sorted lists are accessed in parallel
(Fig. 7).

Skewness of Query Keywords. We evaluate the impact of query term fre-
quency skewness. The skewness ratio is defined as term frequency compared to
average frequency of all keywords. For each keyword, the frequency is n and the
average frequency is m. The skewness ratio for each keyword is ln(n/m). Results
in Fig. 8 show that, the frequent query keyword incurs high query time for sorted
lists based methods. The reason is that when the query keyword frequency is
high, the sorted lists for keywords become long, which incurs time latency to
access the lists. But NEWLP still shows advantages over others. Notice that
IRBB performs better for both high frequency and low frequency query key-
words. One reasonable explanation is that, the spatial pruning power generates
and dominates to terminate the iteration early.
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7 Conclusions

We have studied the problem of mobile spatial textual objects search in mobile
volunteered services. We model the objects based on probabilistic instances and
measure the similarity with time recency. We propose a new hybrid index struc-
ture, BIG-tree, to manage the mobile objects, which encodes the extensive quad-
tree mapping into one-dimension value. We also propose improved threshold
algorithm with lazy refinement and prior pause based on the index. Extensive
experimental results show that our methods outperform the two proposed base-
lines and achieve better performance.

One apparent limitation of this study is that the data sets we use are slightly
modified from mobile social networks rather than mobile volunteered services.
Actually, we are under implementation of a system that supports the proposed
mobile volunteered service, which will bring it to reality. A demonstration video
can be found at Youtube2. We hope this study may open many new interesting
and challenging problems that need further research.
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