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Abstract. Existing navigation methods are generally based on GPS or
cameras and these methods have limitations in terms of signal strength
and brightness. To overcome drawbacks of navigation methods above, we
propose a Lidar-based Navigation Approach (LNA) to predict movement
trajectory of self-driving vehicles through road edges information, and
this approach is a fitting and real-time regression method. By combining
regression model with vehicle coordinate system, navigation trajectory
is accurately generated. Experiments on common road scenarios demon-
strate that our approach is effective to improve navigation techniques.
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1 Introduction

Navigation plays an important role in autonomous driving scenarios. Currently,
navigation methods based on Global Positioning System (GPS) and images are
very common. One of popular navigation methods is joint application of global
positioning system (GPS) and IMU [1]. [2] shows a vision navigation method.
[3,4] use vision technology to extract lane lines for navigation. Modern autopilot
systems are commonly equipped with laser scanners. Lidar is very important
in unmanned-vehicles areas, and it can provide very accurate environment and
road profile information. Therefore, this paper aims at using lidar for navigation.
We are not concerned about obstacle detection in complex traffic conditions,
positioning and obstacle avoidance problems. Therefore, in this paper, a Lidar-
based Navigation Approach (LNA) is proposed for unmaned-vehicles navigation.

Our approach uses linear regression methods, which can fit outline charac-
teristics of road. We use lidar to get real-time point cloud as input. After many
preprocessings, we extract clear and effective road sides information. Point cloud
of two road edges are linearly fitted to get two linear models. We merge the two
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linear models and translate them into vehicle coordinate system. A series of vehi-
cle motion trajectories are generated. Then, we calculate lateral control data to
control the car. Finally, LNA is evaluated in different types of lidars and differ-
ent cars. Experiment results show that LNA can achieve lidar-based navigation
within a general environment on different platforms. The LNA has many advan-
tages, such as large detection range, high accuracy and strong reliability. Except
that, it is also applicable to many scenarios which have obvious outline features,
such as highway and urban road.

2 Related Work

Existing lidar technologies include maps making, environment detection, real-
time positioning and path planning. In this paper, we briefly review previous
work on Simultaneous Localization and Mapping(SLAM) and road environment
detection.

Over the past years, SLAM develops very fast and there are many appli-
cations about SLAM [5]. SLAM can establish a model for spatial environment
in process of movement with an absence of prior environment knowledge. [6]
shows a SLAM making process. [7] shows a classic method of odometry and
mapping using a lidar. [8] describes a method of using lidar for simultaneous
localization and mapping. However, all of these SLAM methods mainly focus
on environmental modeling and they cannot meet the requirements of realtime
navigation.

[9] proposes a road boundary detection and tracking method based on 2d
lidar, but this method cannot obtain enough road information. [10] describes a
method of detecting road geometric features to identify road shapes. [11] pro-
poses a road surfaces extraction method using a fuzzy cluster. However, these
methods based on lidar cannot meet the requirements of realtime navigation.
Some researches [12–14] use fusion methods by combing lidar with camera for
environment sensing, but these work need complex sensors calibration and fusion
algorithms.

Therefore, in this paper, we propose a lidar-based realtime and concise road
border modeling method for autonomous driving navigation—Lidar-based Nav-
igation Approach (LNA).

3 The LNA Method

LNA is a lidar-based navigation approach for self-driving cars, which includes
lidar data acquisition, data preprocessing, real-time fitting and computing tra-
jectory. It takes lidar point cloud sets as input and clears noises firstly. Then,
sparse process can reduce the amount of data and maintain effective data char-
acteristics, which will help to achieve real-time fitting. And a Linear Regression
(LR) or Support Vector Regression (SVR) method is followed for linear fitting.
Finally, models are transformed into vehicle coordinate system to obtain a tra-
jectory points set, which we use to calculate the lateral control value to reach
the goal of navigation.
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3.1 Data Preprocessing

This section includes data filtering, interception, classification and sparse pro-
cessing. In filter stage, we clear noises. In interception stage, we choose point
cloud which we have interests in. In classification stage, we get road shoulder
and isolation belt information. For sparse processing stage, we reduce the com-
puting load.

(a) Road image (b) Raw data (c) Projections in 3 views

Fig. 1. Road image, point cloud raw data and projections.

Figure 1(b) shows that the collected point cloud has obvious noises. As shown
in Fig. 1(a), these noises are mainly from the ground, trees, obstacles and other
objects. From Fig. 1, we observe distribution of point cloud in three-dimensional
space. Figure 1(c) shows projections of point cloud on top view, front view and
side view. We need effectively exploit three views of point cloud distribution. To
this issue, we use a meshing method to process point cloud in a three-dimensional
spatial grid. Moreover, we use vehicle parameters, lidar placement parameters
and some prior knowledge to filter point cloud. Taking HDL-32 lidar as an exam-
ple, the vehicle height is 1.5 m, which can be defined as hv. Height of lidar away
from vehicle top is 0.3 m, written as hl−v. Height of isolation belt is about 1.5 m,
written as hib. Height of road shoulder is about 0.20 m, written as hr. Vehicle
width is 0.9 m, marked as wv. Distance from vehicle front to mounting location is
2m, recorded as ll. Taking lidar scanning distance into account, for HDL-32, we
only consider point cloud in range of 20 m, recorded as lrange. As we control the
highest speed at 20–40 km/h, which equals 5.6–11.1 m/s. And data fitting time
is below 0.3 s. These make the forward reaction distance is sufficient. Accord-
ing to conditions above, we design a simple classifier and filter, as expressed by
formula 1 and formula 2.

FilterR= {[z > −(hv+hl−v)]&[z < −(hv+hl−v−hr)]}&{[y >ll]&[y <lrange]}&
{[x >wv]&[x < (xsam+wsamp)]}

(1)
FilterL= {[z > −(hv+hl−v)]&[z < −(hv+hl−v−hr)]}&{[y >ll]&[y <lrange]}&

{[x < −wv]&[x > −(xsam+wsamp)]}
(2)

where the xsam is minimum value of samples X set after filtered and classified.
wsamp is width of samples in x direction, which also is obtained after filtered
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and classified. This could guarantee the robustness and universality of classifier
in different road conditions.

(a) Road shoulder raw data and
transformed data

(b) Isolation belt raw data and
transformed data

Fig. 2. Filter point cloud

The data set before fitting is projected onto the horizontal coordinate system
of x−y. If the number of points is more than N(N = 50), data set will be divided
into 10 parts in the X direction, and each part randomly choose samples in
proportion of λ(λ = 90%) . Repeatedly sampling in value of λn until the number
of samples is just below 50. The purpose of dividing set into 10 parts is to
keep data descriptive ability for environmental information characteristics. If
whole set randomly sampled in ritio of λn directly, it is very likely to make data
distorted. Also, we make a data transformation by using formula 3 and formula
4 to reduce the fitting cost.

xrawData → y′,
yrawData → x′. (3)

The data were originally a set of point cloud datasets approximately parallel
to the X axis. This results in training was very difficult to fit, so we did the
process.

y′′
i = y′

i × x′
i, (4)

Eventually, we got the new data set of DNew = (x′
1, y

′′
1 ), (x′

2, y
′′
2 ), ..., (x′

n, y′′
n),

n ≈ 50. DNew makes data very easy to fit, which greatly improves real-time
performance of model training. Figure 2 shows the point cloud data after being
preprocessed. Figure 2(a) shows road shoulder raw data after preprocessed and
transformed data. Figure 2(b) shows isolation belt raw data after preprocessed
and transformed data.

3.2 Real-Time Linear Fitting

In this paper, we use two linear models of LR [15,16] and SVR [17]. Using LR
& SVR to fit a series of continuous points is a common sense. Linear regression
is relatively simple, it is widely used and has very good effects. In industrial and
commercial areas, it has extensive applications.
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Linear Regression. Our model can be described as formular 5.

fLR(x) = wT x + b. (5)

When choosing model, we exclude methods of multivariate linear regression
and linear regression of higher degree. Multivariate linear regression function
is proved not applicable for pointcloud. Higher degree model is also excluded.
Firstly, it adds training costs and reduces real-time performance. Secondly, it
is difficult to converge with few training samples. And final fitting effect shows
higher degree model can not effectively fit road environment characteristics. For
our model, formula 6 is the cost function. Our goal is to minimize the cost
function, which is written as formula 7. And we use a gradient descent method
to train it.

JLR(θ) =
1
2

m∑

i=1

(fθ(xi) − yi)
2
. (6)

min
θ

JLR(θ). (7)

Support Vector Regression. The SVR regression function is similar to linear
regression function, as shown in formula 8. We evaluate the difference between
every sample ground truth value and every prediction value to determine whether
it is used for cost. This can be seen from formula 9. The final cost function is
designed as formula 10.

fSV R(x) = wT x + b (8)

max(0, |yi − fSV R(x)| − ε) (9)

JSV R(θ) = min
w,b

1
2
||w||2 +

1
m

m∑

i=1

max(0, |yi − fSV R(xi)| − ε) (10)

In formula 10, if point cloud data is within region from upper fit line to lower
fit line, ε makes loss function equal to 0.

3.3 Computing Movement Trajectory

The two models obtained after training need to be merged. There are two meth-
ods: predicting two movement trajectories before fusion or fusing two linear mod-
els before predicting trajectories. We choose the former way. A concise fusion
way is to compute mean of two movement trajectories. We can compute steer-
ing angle in real time. As cars are equipped with GPS equipment, we can also
transform trajetories lidar predicted into the GPS coordinate system for navi-
gation. The linear fitting models need to be converted into vehicle coordinate
system, that is the mounting location of VLP-16. T (tx, ty, tz) is a translation
matrix. Rz(α), Rx(β), Ry(γ) are rotation matrices. Whole coordinate transfor-
mation process is denoted by formula 11. After simplified, formula 11 is written
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as formula 12 . The distance parameters used in translation transformation and
angle parameters used in rotation transformation can be measured.
⎡
⎢⎢⎣

xv

yv
zv
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 lx
0 1 0 ly
0 0 1 lz
0 0 0 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

cosα − sinα 0 0
sinα cosα 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ .

⎡
⎢⎢⎣

1 0 0 0
0 cosβ − sinβ 0
0 sinβ cosβ 0
0 0 0 1

⎤
⎥⎥⎦ .

⎡
⎢⎢⎣

cos γ 0 sin γ 0
0 1 0 0

− sin γ 0 cos γ 0
0 0 0 1

⎤
⎥⎥⎦ .

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦

(11)

Pointv = T (tx, ty, tz) · Rz(α) · Rx(β) · Ry(γ) · Point (12)

The obtained trajectory points need to be processed by formula 13 to get vehi-
cle trajectory set, which is denoted by T = {(x1, f(x1)′), (x2, f(x2)′),(x3, f(x3)′),
..., (xn, f(xn)′)}.

f(x)′ = f(x)/x. (13)

Then, we use vehicle trajectory set to compute steering angle. [18] shows a lateral
control method, and our work is inspired by it. As shown in following formu-
las, we makes some changes based on actual situation. Firstly, we respectively
compute average Deflection and average Deviation in formula 14. As shown in
formula 15, the steering angle can be computed through 4 parameters. ADef
is an average Deflection. ADev is an average Deviation. Kang and Kpos are
empirical control values which both could be adjusted according to feedback.

ADef = arctan

⎛

⎜⎜⎝

(
m∑

i=1

xi)/m

(
m∑

i=1

yi)/m

⎞

⎟⎟⎠ × 180/π,ADev =

m∑
i=1

xi

m
(14)

steer = (Kang × ADef + Kpos × ADev) × 2 (15)

This part involves complex vehicle dynamics and control knowledge. In order
to ensure safety of experiment, we add some thresholds on speed and steering
to ensure that vehicles would not occur some violent driving behavior.

4 Experiments and Results

We evaluate LNA in different vehicles with different lidars. There are three lidars:
VLP-16, HDL-32 and HDL-64. They provide different number of points. In this
paper, for the typical feature of HDL-32, it is used to introduce the experiments.
Previously obtained steering angle can be sent to control node. The control node
directly driving an vehicle. Experiments are conducted in an Ubuntu 14.04 +
ROS Indigo + tensorlfow environment. In this section, we show fitting effects of
different regression methods. The fitting results directly determine final naviga-
tion effects.
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4.1 Data Acquisition and Correction

To get more reliable data, lidar mounting location should be accurated. Lidars
placement structures are shown in Fig. 3. As Velodyne 16-line lidar (VLP16)
laser wires are few, which result in sparse point cloud. As shown in Fig. 3(a),
we choose to mount VLP16 in a front position. It has been proved that this
placement can better collect road information. The HDL32 lidar and HDL64
lidar are mounted on top of cars respectively. As shown in Fig. 4, we can see
point cloud collecting effects of three lidars. After preprocessing, we use Linear
Regression and Support Vector Regression to fit point cloud respectively.

(a) VLP-16 (b) HDL-64 (c) HDL-32

Fig. 3. Lidar placement

(a) VLP-16 (b) HDL-32 (c) HDL-64

Fig. 4. Point cloud in different lidars

4.2 Linear Regression Results

The parameter w is initialized in a random normal distribution (mean =
−0.2, stddev = 0.01) and parameter b is initialized as 0. The gradient descent
optimizer parameter is set to 0.001.

Road Shoulder Fitting Effects. Figure 5 shows different fitting effects in dif-
ferent iteration times. As shown in Fig. 5(b), line fits data well after 20 iterations.
Also, it can be demonstrated in Fig. 5(c) that loss is approximate to zero already
at 20th iter or even earlier.
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(a) 10 iterations (b) 20 iterations (c) Loss

Fig. 5. Road shoulder fitting effects in different training times.

Isolation Belt Fitting Effects. As can be seen from Fig. 6, data is slower to
be fitted. After 20 iterations, loss becomes very small. As the number of point
cloud is large, which results in a slow convergence. But, it still could reach a
good fitting result within 30 iterations. Figure 6(b) shows a fitting effect after
50 iterations. Combining Fig. 6(b) and (c), we can see that, after 30 rather than
50 iterations, model reaches a good fitting effect. All of these features prove our
method has better characteristics in the aspects of validity and real-time.

(a) 20 iterations (b) 50 iterations (c) Loss

Fig. 6. Isolation belt fitting effects in different training times.

4.3 Support Vector Regression Results

In SVR experiment, we set ε = 1.0, batchsize = 5 and gradient descent optimizer
is set as 0.09. SVR algorithm fitting effects for road shoulders and isolation belt
are following.

Road Shoulder Fitting Effects. As shown in Fig. 7, we can see that SVR
easily fit data within 20 iterations. After 10 iterations, the model fits the data
well and the loss value is very small. After 20 iterations, loss nears to 0.

Isolation Belt Fitting Effects. As shown in Fig. 8, we see that SVR is similar
to Linear Regression. SVR is under fitting within 10 iterations. SVR fitting line
presents a good fitting effect after 20 iterations. After 50 and 100 iterations,
effects are further improved. Before that, loss is approximately reach to zero
after 20 iterations.
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(a) 10 iterations (b) 20 iterations (c) Loss-100

Fig. 7. Support Vector Regression Effects in different training times.

(a) 10 iterations (b) 20 iterations (c) Loss

Fig. 8. Support Vector Regression Effects in different training times.

5 Conclusion

In this paper, we propose an effective navigation approach based on lidar. In
order to evaluate the method, we use linear regression and support vector regres-
sion to fit point cloud, respectively. The obtained linear fitting models are trans-
formed into vehicle coordinate system. We predict trajectory and compute lateral
control data to navigate self-driving cars. LNA can fit well of road outlines within
20 iterations. Loss functions of two linear fitting methods converge to 0 quickly.
Each calculation cycle is less than 0.3 seconds. LNA does have advanteges of fast
convergence and high approximation accuracy. Experiments of different cars with
different lidars in general roads get good navigation effects. This real-time nav-
igation method reaches similar effects of RTK locally. In future work, we will
exploit other linear regression methods to further improve processing speed and
accuracy.
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