
Performance Analysis of Storm
in a Real-World Big Data Stream

Computing Environment

Hongbin Yan1, Dawei Sun1(&), Shang Gao2, and Zhangbing Zhou1

1 School of Information Engineering, China University of Geosciences,
Beijing 100083, People’s Republic of China

{yanhongbin,sundaweicn}@cugb.edu.cn,

zhangbing.zhou@gmail.com
2 School of Information Technology, Deakin University,

Geelong, Victoria 3216, Australia
shang.gao@deakin.edu.au

Abstract. As an important distributed real-time computation system, Storm has
been widely used in a number of applications such as online machine learning,
continuous computation, distributed RPC, and more. Storm is designed to
process massive data streams in real time. However, there have been few studies
conducted to evaluate the performance characteristics clusters in Storm. In this
paper, we analyze the performance of a Storm cluster mainly from two aspects,
hardware configuration and parallelism setting. Key factors that affect the
throughput and latency of the Storm cluster are identified, and the performance
of Storm’s fault-tolerant mechanism is evaluated, which help users use the
computation system more efficiently.

Keywords: Storm � Performance analysis � Stream computing
Big data computing � Big data

1 Introduction

1.1 Background

With the rapid development of the Internet, the amount of data generated by various
industries is growing exponentially. It is expected that the amount of data generated
worldwide will exceed 80 ZB by 2020, which shows that we have entered the era of
big data [1]. Big data contains a lot of useful information; therefore, data analysis and
calculation becomes more and more important [2]. In recent years, there have been
some data processing systems developed such as Hadoop and Spark which made it
possible for us to handle much more data, However, they are not real-time systems, and
cannot handle data in real time. Large-scale real-time data processing has become a
business need, and the appearance of Storm fills the gap.

As one of the most popular distributed data processing systems, Hadoop has been
successfully applied to various industries. It uses a simple programming model for
distributed processing of large datasets [3, 4]. While Storm is more like a real-time

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
I. Romdhani et al. (Eds.): CollaborateCom 2017, LNICST 252, pp. 624–634, 2018.
https://doi.org/10.1007/978-3-030-00916-8_57

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00916-8_57&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00916-8_57&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00916-8_57&domain=pdf

Hadoop computing system. It has its own master node and work node that are con-
nected by external resources and submitted with application code to complete calcu-
lation tasks like Hadoop. As stated in paper [5, 6], in terms of data processing,
especially for batch computing and streaming computing [7], their data processing
methods are very different. Hadoop stores the data first, then processes the static data.
Hard disk, as the intermediate media of data exchange, needs to read and write data
during processing [8]. However, the data of Storm is always stored in memory. The
data is read through the network into memory directly. In terms of computing speed,
Storm is much faster than Hadoop because of this feature. Storm is therefore being
applied in various industries more and more widely.

1.2 Purposes

We have been developing real-time big data processing applications using Storm for
years, and understand how important it is to improve the processing efficiency. After
investigating all kind of features and mechanisms of Storm, we identify the key factors
which affect system throughput capacity and latency. In this paper, we examine the
performance of a Storm cluster from two aspects, hardware configuration and paral-
lelism setting, and analyze the influencing factors for throughput capacity and latency.
These factors will help users design and implement more efficient applications based on
Storm platform.

1.3 Paper Organization

The rest of this paper is organized as follows. Section 2 introduces the components,
features and working mechanism of Storm system. Section 3 describes the experi-
mental environment, experimental procedure and experimental results. Section 4 ana-
lyzes the factors affecting Storm throughput and latency. Finally, this paper is
concluded in Sect. 5.

2 Storm System

2.1 Cluster Composition

Apache Storm is a free and open sourced distributed realtime computation system. The
design of Storm makes it easy to process massive streams of data in real time and can
be used with any programming language. Storm is mainly used for data stream pro-
cessing and real-time search [9, 10].

The various components of Storm are shown in Fig. 1:

Nimbus: The master node in a Storm cluster, responsible for sending code in the
cluster, assigning tasks, and monitoring the entire cluster state.
Supervisor: The work node in a Storm cluster, responsible for accepting nimbus
assigned tasks, starting and stopping their own management of the worker process.
Worker: Worker is a process that runs specific processing component logic.
Executor: Executor is a concrete physical thread in the Worker process.

Performance Analysis of Storm in a Real-World Big Data Stream 625

Task: Task is the work that each component does.
Zookeeper: Zookeeper is an external resource that Storm relies heavily on, con-
necting the master node and the work node, coordinating the operation of the entire
cluster.
Topology: Topology is a real-time application running in Storm, similar to a job in
Hadoop, but it will run until it is explicitly killed [11].

As shown in Fig. 2. There are two components in a topology, Spout and Bolt.
Spout is a component that generates the source data stream in the topology. Normally a
spout pulls data from the outside and then sends it to the Bolt component for its
consumption. Bolt is a component that accepts the data sent from Spout and processes
it. It can perform filtering, merging, writing database and other operations.

Tuple is a basic unit of message passing between Spout and Bolt, and the constant
Tuple will form a Stream. These data streams can be grouped between two components
according to mission requirements [12]. The most common grouping methods are the
following four:

Fig. 1. Structure of a Storm cluster

Fig. 2. Structure of a topology in Storm

626 H. Yan et al.

• Shuffle Grouping: Randomly distributed tuple to the bolt and each bolt at the same
level accepts the same number of Tuples.

• Fields Grouping: Grouped based on the value of the specified one or more fields.
• All Grouping: Copy all tuples to all bolt tasks and use them carefully.
• Global Grouping: Route all tuples to a single task, Storm select the task of receiving

data by the latest task ID.

2.2 Work Mechanism

When a client submits a task topology to the master node Nimbus, Nimbus first
establishes a local directory based on the configuration information of the topology,
instructing zookeeper to assign the task to each work node, finally starts the topology.
Supervisors get assigned tasks from Zookeeper and start multiple worker processes,
and establish the connection between tasks according to the configuration information
of the topology. Now the topology is running. The Storm system provides a UI
monitoring interface in master node, through which the client can monitor the running
status of the entire cluster in real time. The whole process is shown in the Fig. 3.

The configuration information of the topology and grouping methods might affect
the system throughput and latency. We thoroughly examine the Storm features and
mechanisms, design and conduct series experiments to investigate the potential factors
which might affect the system processing efficiency.

3 Experiment

3.1 Experimental Environment

In this experiment, Storm parallelism and fault tolerance are tested using the following
hardware configuration: intel Core i5-2400CPU @ 3.10 GHz � 4, memory 4G, and

Fig. 3. Workflow of a Storm cluster

Performance Analysis of Storm in a Real-World Big Data Stream 627

the operating system is 64-bit ubuntu 16.04 LTS. Twelve (12) machines are used to test
parallelism, and ten (10) machines are used to test fault tolerance. For hardware per-
formance test, the following hardware configurations are used: the first group is a Dell
desktop computer, with processor intel Core i5-2400CPU @ 3.10 GHz � 4, memory
4G, and 64-bit operating system ubuntu 16.04 LTS; second group is a DELL laptop,
with processor Intel (R) Core (TM) i5-2430 M CPU @ 2.4 GHz � 4, memory 8G, and
64-bit ubuntu 16.04 LTS; the third group is a HP laptop, with processor Intel (R) Core
(TM) i7-7700HQ CPU @ 2.80 GHz 2.81 GHz, 8G memory, and 64-bit ubuntu
16.04 LTS.

3.2 Experimental Topology

The experimental network topology is shown in Fig. 4. The task topology used in this
experiment is a typical word count program, which includes a Spout component
(named spout) and two Bolt components (named split and count). Spout components
are used to randomly launch English sentences. The split component receives the
sentences sent from the spout component and divides it into words, and finally sends it
to the count component for word counting. The topology structure is shown in Fig. 5.

3.3 Experimental Process

(1) Parallelism Test
In Storm settings, the degree of parallelism is generally addressed in three areas: a

topology specifies how many worker processes run in parallel; a worker process
specifies how many executor threads run in parallel; and an executor thread specifies
how many tasks run in parallel. In parallelism tests, the first two areas are mainly
considered, with each executor assigned one task by default.

Fig. 4. Experimental environment.

628 H. Yan et al.

Firstly, the number of threads assigned to three components spout, split, and count
is (5, 8, 12) unchanged, and the number of Workers is set to 1, 3, 6, 12, and 24
respectively.

Secondly, the number of workers for each topology is not changed, and the number
of threads increases in turn. The first test sets the number of Worker to 3, the numbers
of threads are (5, 8, 12), (10, 16, 24), (15, 24, 36), (20, 34, 48), (25, 40, 60), (50, 80,
120), (100, 160, 240), (150, 240, 360), (200, 320, 480), (250, 400, 600). The second
test sets the number of Worker to 12, and the number of threads is the same as the first.

Finally, the number of processes set by the topologies is the same, the total number
of threads of all components is unchanged, but the number of threads of each com-
ponent is adjusted. The number of Worker is set to 3, and the number of threads in the
three components is (5, 8, 12), (5, 10, 10), (5, 12, 8), (3, 10, 12) (7, 10, 8), (7, 8, 10), (9,
7, 9), (12, 5, 8), respectively.

(2) Hardware Performance Test
The number of Workers set by the topology and the number of threads for each

component are unchanged. The configuration of the three machines is shown in Fig. 6.

Fig. 5. Structure of the wordcount topology

Fig. 6. Hardware configuration

Performance Analysis of Storm in a Real-World Big Data Stream 629

(3) Robustness Test
We test Storm on fault handling and analyze its impact on throughput and latency.

Two special scenarios are designed. In the first scenario, we shut down two of the
nodes when the cluster is running up to 20 min. In the second scenario, we shut down
one node when the cluster is running up to 20 min. After the two tests, we compare
them with the normal scenario.

3.4 Experimental Results

In the parallelism test, when the number of threads keeps constant and the number of
Workers in the topology increases, the throughput of the system and the latency of
processing data are essentially unchanged. The average throughput in an hour is about
366 Tuple/s. In terms of processing latency, when the number of threads assigned to
each component keeps constant and the system becomes stable, as the number of
Worker increases, the processing latency does not change much as shown in Fig. 7.
It basically remains between 3 and 4 ms.

When the number of Worker in the topology is 3, as the number of threads assigned
to each component increases, the average throughput over an hour also increase. Also,
if the number of Workers is set to 12, when the number of threads assigned to each
component increases, the throughput also increases in a positive correlation. In terms of
system latency, as shown in Fig. 8, if the number of Worker in the topology is 3, when
the number of threads assigned to each component increase, the processing delay of the
system decreases first but then increases. When the number of threads assigned to each
component is (50, 80, 120), the processing delay of the system is minimized and then
gradually increases. The same result applies when the number of Worker is set to 12,
when the delay achieves minimum, the number of threads assigned to each component
is (100, 60, 240).

Given the number of processes in topologies keeps the same, the total number of
threads of all components unchanged, if the number of threads in the three components
is set to (5, 8, 12), (5, 10, 10), (5, 12, 8), (3, 10, 12) (7, 10, 8), (7, 8, 10), (9, 7, 9), (12,
5, 8) respectively, the average throughput and latency during the one-hour testing

Fig. 7. Latency test results of worker

630 H. Yan et al.

period are shown in Fig. 9. It is observed that the system throughput is only related to
the number of threads assigned to the delivery component spout; when the number of
threads assigned to Spout component increases, the system throughput also increases;
when the number of threads assigned to Spout component decreases, the system
throughput also decreases. In terms of system latency, no matter how the threads are
allocated to the three components, the system latency is unchanged, although the delay
is mainly caused by the Bolt component (named split), but adding threads to it does not
decrease the delay at all.

In the hardware performance test, when using three different performance com-
puters to run the same topology, the amount of data processed within one hour is
basically the same. The average throughput is 366 Tuple/s. But in terms of data
processing latency, the DELL laptop with poorer performance has obviously higher
latency than the other two as shown in Fig. 10. The average delay of DELL notebook
with lowest CPU performance is much higher than the other two during the one-hour
testing period. CPU performance has a greater impact on data processing latency than
memory.

Fig. 8. Latency test results of executor

Fig. 9. Throughout test results of thread allocation

Performance Analysis of Storm in a Real-World Big Data Stream 631

In the robustness test, as shown in Fig. 11. In the first test, when two nodes are shut
down after 20 min, the system reduces the speed of data processing, because the
system has to redistribute the task from the down node. The data processing speed
resumes to normal 10 min later. In the second test, we shut down a node after 20 min,
the outcome observed is almost the same as the first. There is slight reduction in the
number of data processed within one hour in the second test. The average throughput is
361,351,350 Tuple/s. But in terms of system latency, task redistribution does not
affect it.

4 Result Analysis

After analyzing the test results, we can conclude that:

• Increasing the number of Worker in a topology alone does not improve system
throughput. The throughput of the system has positive correlation to the number of
threads assigned to each component and mainly related to the number of threads of
components that emit data.

• The latency in data processing is related to Worker number and the number of
threads that assigned to each component. However, the impact is limited. Larger

Fig. 10. Results of hardware performance test

Fig. 11. Results of robustness test

632 H. Yan et al.

numbers of worker and threads do not lead to a significant low latency. Therefore, a
reasonable value is to be set according to different computing tasks. The processing
latency is also affected by hardware performance.

• Storm handles faulty nodes quickly. Task redistribution has little impact on the data
processing speed and does not increase the data processing latency.

5 Conclusion

In this paper, we test the Storm cluster from three aspects: the parallelism, hardware
performance and fault handling. The results observed show that Storm has strong
scalability and robustness. For users who use Storm to develop real-time big data
processing applications and want to improve the speed of processing, it is recom-
mended that: besides of increasing the number of Worker or threads that assigned to
components, the number of the Worker and the threads of individual components
should also be set appropriately. To improve the degree of parallelism, both of the CPU
performance and system memory should be considered. What’s more, each node
should leave out memory to accommodate redistributed tasks from failed nodes.

In future work, we are interested in investigating the impact on Storm performance
caused by the topology and algorithm complexity. Moreover, we plan to examine the
behavior of Storm on receiving data from the cloud and its impact on performance.

Acknowledgment. This work is supported by the National Natural Science Foundation of
China under Grant No. 61602428; the Fundamental Research Funds for the Central Universities
under Grant No. 2652015338.

References

1. Václav, S., Jana, N., Fatos, X., Leonard, B.: Geometrical and topological approaches to Big
Data. Future Gener. Comput. Syst. 67, 286–296 (2017)

2. Chen, D.Q., et al.: Real-time or near real-time persisting daily healthcare data into HDFS and
ElasticSearch Index inside a Big Data platform. IEEE Trans. Ind. Inform. 13(2), 595–606
(2017)

3. Mavridis, L., Karatza, H.: Performance evaluation of cloud-based log file analysis with
Apache Hadoop and Apache Spark. J. Syst. Softw. 125, 133–151 (2017)

4. Lv, Z.H., Song, H.B., Basanta-Val, P., Steed, A., Jo, M.: Next-generation Big Data analytics:
state of the art, challenges, and future research topics. IEEE Trans. Ind. Inform. 13(4), 1891–
1899 (2017)

5. Zhang, J., Li, C.L., Zhu, L.Y., Liu, Y.P.: The real-time scheduling strategy based on traffic
and load balancing in storm. In: Proceedings of the 18th International Conference on High
Performance Computing and Communications, pp. 372–379. IEEE Press (2016)

6. Xu, J.F., Miao, D.Q., Zhang, Y.J., Zhang, Z.F.: A three-way decisions model with
probabilistic rough sets for stream computing. Int. J. Approx. Reason. 88, 1–22 (2017)

7. Zhang, W.S., Xu, L., Li, Z.W., Lu, Q.H., Liu, Y.: A deep-intelligence framework for online
video processing. IEEE Softw. 33(2), 44–51 (2016)

Performance Analysis of Storm in a Real-World Big Data Stream 633

8. Rahman, M.W., Islam, N.S., Lu, X.Y., Panda, D.K.: A comprehensive study of MapReduce
over lustre for intermediate data placement and shuffle strategies on HPC clusters. IEEE
Trans. Parallel Distrib. Syst. 28(3), 633–646 (2017)

9. Karunaratne, P., Karunasekera, S., Harwood, A.: Distributed stream clustering using micro-
clusters on Apache Storm. J. Parallel Distrib. Comput. 108, 74–84 (2017)

10. Cardellini, V., Nardelli, M., Luzi, D.: Elastic stateful stream processing in storm. In:
Proceedings of the 14th International Conference on High Performance Computing &
Simulation, pp. 583–590. IEEE Press (2016)

11. Shieh, C.K., Huang, S.W., Sun, L.D., Tsai, M.F., Chilamkurti, N.: A topology-based scaling
mechanism for Apache Storm. Int. J. Netw. Manag. 27(3), 1–12 (2017)

12. Li, C.L., Zhang, J., Luo, Y.L.: Real-time scheduling based on optimized topology and
communication traffic in distributed real-time computation platform of storm. J. Netw.
Comput. Appl. 87, 100–115 (2017)

634 H. Yan et al.

	Performance Analysis of Storm in a Real-World Big Data Stream Computing Environment
	Abstract
	1 Introduction
	1.1 Background
	1.2 Purposes
	1.3 Paper Organization

	2 Storm System
	2.1 Cluster Composition
	2.2 Work Mechanism

	3 Experiment
	3.1 Experimental Environment
	3.2 Experimental Topology
	3.3 Experimental Process
	3.4 Experimental Results

	4 Result Analysis
	5 Conclusion
	Acknowledgment
	References

